
Statistical Applications for
the Behavioral and Social
Sciences



Statistical Applications for the Behavioral
and Social Sciences

Second Edition

K. Paul Nesselroade, Jr.
Asbury University

Laurence G. Grimm†

University of Illinois at Chicago



This edition first published 2019
© 2019 John Wiley & Sons, Inc.
Edition History
John Wiley & Sons Inc. (1e, 1993)
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording
or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material
from this title is available at http://www.wiley.com/go/permissions.
The right of K. Paul Nesselroade, Jr. and Laurence G. Grimm are identified as the authors of the
material in this work has been asserted in accordance with law.
Registered Office
John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA
Editorial Office
111 River Street, Hoboken, NJ 07030, USA
For details of our global editorial offices, customer services, and more information about Wiley
products visit us at www.wiley.com.
Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Some
content that appears in standard print versions of this book may not be available in other formats.
Limit of Liability/Disclaimer of Warranty
In view of ongoing research, equipment modifications, changes in governmental regulations, and the
constant flow of information relating to the use of experimental reagents, equipment, and devices,
the reader is urged to review and evaluate the information provided in the package insert or instructions for
each chemical, piece of equipment, reagent, or device for, among other things, any changes in the
instructions or indication of usage and for added warnings and precautions. While the publisher and
authors have used their best efforts in preparing thiswork, theymake no representations orwarrantieswith
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties,
including without limitation any implied warranties of merchantability or fitness for a particular purpose.
No warranty may be created or extended by sales representatives, written sales materials or promotional
statements for this work. The fact that an organization, website, or product is referred to in this work as a
citation and/or potential source of further information does not mean that the publisher and authors
endorse the information or services the organization, website, or product may provide or
recommendations itmaymake. This work is sold with the understanding that the publisher is not engaged
in rendering professional services. The advice and strategies contained herein may not be suitable for your
situation. You should consult with a specialist where appropriate. Further, readers should be aware that
websites listed in this work may have changed or disappeared between when this work was written and
when it is read. Neither the publisher nor authors shall be liable for any loss of profit or any other
commercial damages, including but not limited to special, incidental, consequential, or other damages.
Library of Congress Cataloging-in-Publication Data
Names: Grimm, Laurence G., author. | Nesselroade, K. Paul, Jr., author.
Title: Statistical applications for the behavioral and social sciences / K.
Paul Nesselroade, Jr., Asbury University, Laurence G. Grimm, University of
Illinois at Chicago.

Other titles: Statistical applications for the behavioral sciences
Description: 2nd edition. | Hoboken, NJ : John Wiley & Sons, Inc., 2019. |
Includes index. | Earlier edition published in 1993 as: Statistical
applications for the behavioral sciences [by] Laurence G. Grimm. |
Identifiers: LCCN 2018022259 (print) | LCCN 2018025247 (ebook) | ISBN
9781119355380 (Adobe PDF) | ISBN 9781119355366 (ePub) | ISBN 9781119355397
(hardcover)

Subjects: LCSH: Social sciences–Statistical methods.
Classification: LCC HA29 (ebook) | LCC HA29 .G7735 2019 (print) | DDC
300.1/5195–dc23

LC record available at https://lccn.loc.gov/2018022259

Cover design: Courtesy of Meg Sanchez
Cover image: Courtesy of Max Ostrozhinskiy on Unsplash

Set in 10/12pt Warnock by SPi Global, Pondicherry, India

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1



For Cheryl, Andrew, Sarah, and Lisa
– each of you bring special meaning to life



Contents

Preface xv
Acknowledgments xix
About the Companion Website xxi

Part 1 Introduction 1

1 Basic Concepts in Research 3
1.1 The Scientific Method 3
1.2 The Goals of the Researcher 5
1.3 Types of Variables 7
1.4 Controlling Extraneous Variables 10
1.5 Validity Issues 18
1.6 Causality and Correlation 23
1.7 The Role of Statistical Analysis and the Organization of the

Textbook 26
Summary 27

Part 2 Descriptive Statistics 35

2 Scales of Measurement and Data Display 37
2.1 Scales of Measurement 37
2.2 Discrete Variables, Continuous Variables, and the Real Limits of

Numbers 41
2.3 Using Tables to Organize Data 45
2.4 Using Graphs to Display Data 50
2.5 The Shape of Things to Come 59
2.6 Introduction to Microsoft® Excel and SPSS® 62

Summary 64

vii



3 Measures of Central Tendency 69
3.1 Describing a Distribution of Scores 69
3.2 Parameters and Statistics 70
3.3 The Rounding Rule 70
3.4 The Mean 71
3.5 The Median 76
3.6 The Mode 81
3.7 How the Shape of Distributions Affects Measures of Central

Tendency 82
3.8 When to Use the Mean, Median, and Mode 83
3.9 Experimental Research and the Mean: A Glimpse of Things

to Come 85
Summary 89
UsingMicrosoft® Excel and SPSS® to FindMeasures of Centrality 90

4 Measures of Variability 97
4.1 The Importance of Measures of Variability 97
4.2 Range 97
4.3 Mean Deviation 100
4.4 The Variance 102
4.5 The Standard Deviation 109
4.6 Simple Transformations and Their Effect on the Mean and

Variance 111
4.7 Deciding Which Measure of Variability to Use 113

Summary 116
Using Microsoft® Excel and SPSS® to Find Measures
of Variability 117

5 The Normal Curve and Transformations: Percentiles and z Scores 127
5.1 Percentile Rank 127
5.2 The Normal Distributions 133
5.3 Standard Scores (z Scores) 137

Summary 150
Using Microsoft® Excel and SPSS® to Find z Scores 151

Part 3 Inferential Statistics: Theoretical Basis 161

6 Basic Concepts of Probability 163
6.1 Theoretical Support for Inferential Statistics 163
6.2 The Taming of Chance 165
6.3 What Is Probability? 168

viii Contents



6.4 Sampling with and Without Replacement 170
6.5 A Priori and A Posteriori Approaches to Probability 171
6.6 The Addition Rule 171
6.7 The Multiplication Rule 175
6.8 Conditional Probabilities 179
6.9 Bayes’ Theorem 184

Summary 188

7 Hypothesis Testing and Sampling Distributions 195
7.1 Inferential Statistics 195
7.2 Hypothesis Testing 197
7.3 Sampling Distributions 203
7.4 Estimating the Features of Sampling Distributions 210

Summary 212

Part 4 Inferential Statistics: z Test, t Tests, and Power Analysis 219

8 Testing a Single Mean: The Single-Sample z and t Tests 221
8.1 The Research Context 221
8.2 Using the Sampling Distribution of Means for the Single-Sample

z Test 222
8.3 Type I and Type II Errors 233
8.4 Is a Significant Finding “Significant?” 237
8.5 The Statistical Test for the Mean of a Population When σ Is Unknown:

The t Distributions 240
8.6 Assumptions of the Single-Sample z and t Tests 249
8.7 Interval Estimation of the Population Mean 250
8.8 How to Present Formally the Findings from a Single-Sample

t Test 252
Summary 253
UsingMicrosoft® Excel and SPSS® to Run Single-Sample t Tests 253

9 Testing the Difference Between Two Means: The Independent-Samples
t Test 265

9.1 The Research Context 265
9.2 The Independent-Samples t Test 268
9.3 The Appropriateness of Unidirectional Tests 283
9.4 Assumptions of the Independent-Samples t Test 288
9.5 Interval Estimation of the Population Mean Difference 289
9.6 How to Present Formally the Conclusions for an Independent-Samples

t Test 291

Contents ix



Summary 291
Using Microsoft® Excel and SPSS® to Run an Independent-Samples
t Test 292

10 Testing the Difference Between Two Means: The Dependent-Samples
t Test 311

10.1 The Research Context 311
10.2 The Sampling Distribution for the Dependent-Samples t Test 315
10.3 The t Distribution for Dependent Samples 318
10.4 Comparing the Independent- and Dependent-Samples t Tests 322
10.5 The One-Tailed t Test Revisited 323
10.6 Assumptions of the Dependent-Samples t Test 323
10.7 Interval Estimation of the Population Mean Difference 323
10.8 How to Present Formally the Conclusions for a Dependent-Samples

t Test 327
Summary 327
Using Microsoft® Excel and SPSS® to Run a Dependent-Samples
t Test 328

11 Power Analysis and Hypothesis Testing 343
11.1 Decision-Making While Hypothesis Testing 343
11.2 Why Study Power? 344
11.3 The Five Factors that Influence Power 345
11.4 Decision Criteria that Influence Power 348
11.5 Using the Power Table 351
11.6 Determining Effect Size: The Achilles Heel of the Power Analysis 354
11.7 Determining Sample Size for a Single-Sample Test 356
11.8 Failing to Reject the Null Hypothesis: Can a Power Analysis

Help? 358
Summary 361

Part 4 Review The z Test, t Tests, and Power Analysis 365

Part 5 Inferential Statistics: Analyses of Variance 375

12 One-Way Analysis of Variance 377
12.1 The Research Context 377
12.2 The Conceptual Basis of ANOVA: Sources of Variation 380
12.3 The Assumptions of the One-Way ANOVA 384
12.4 Hypotheses and Error Terms for the One-Way ANOVA 384
12.5 Computing the F Ratio in a One-Way ANOVA 388

x Contents



12.6 Testing Null Hypotheses 396
12.7 The One-Way ANOVA Summary Table 399
12.8 An Example of an ANOVA with Unequal Numbers of

Participants 399
12.9 Measuring Effect Size for a One-Way ANOVA 400
12.10 Locating the Source(s) of Significance 403
12.11 How to Present Formally the Conclusions for a One-Way

ANOVA 409
Summary 410
Using Microsoft® Excel and SPSS® to Run a One-Way
ANOVA 411

13 Two-Way Analysis of Variance 425
13.1 The Research Context 425
13.2 The Logic of the Two-Way ANOVA 437
13.3 Definitional and Computational Formulas for the Two-Way

ANOVA 441
13.4 Using the F Ratios to Test Null Hypotheses 451
13.5 Assumptions of the Two-Way ANOVA 456
13.6 Measuring Effect Sizes for a Two-Way ANOVA 456
13.7 Multiple Comparisons 457
13.8 Interpreting the Factors in a Two-Way ANOVA 462
13.9 How to Present Formally the Conclusions for a Two-Way

ANOVA 463
Summary 464
Using Microsoft® Excel and SPSS® to Run a Two-Way ANOVA 465

14 Repeated-Measures Analysis of Variance 483
14.1 The Research Context 483
14.2 The Logic of the Repeated-Measures ANOVA 486
14.3 The Formulas for the Repeated-Measures ANOVA 489
14.4 Using the F Ratio to Test the Null Hypothesis 497
14.5 Interpreting the Findings 497
14.6 The ANOVA Summary Table 498
14.7 Assumptions of the Repeated-Measures ANOVA 500
14.8 Measuring Effect Size for Repeated-Measures ANOVA 500
14.9 Locating the Source(s) of Statistical Evidence 501
14.10 How to Present Formally the Conclusions for a Repeated-Measures

ANOVA 504
Summary 505
Using Microsoft® Excel and SPSS® to Run a Repeated-Measures
ANOVA 506

Contents xi



Part 5 Review Analyses of Variance 521

Part 6 Inferential Statistics: Bivariate Data Analyses 529

15 Linear Correlation 531
15.1 The Research Context 531
15.2 The Correlation Coefficient and Scatter Diagrams 536
15.3 The Coefficient of Determination, r2 545
15.4 Using the Pearson r for Hypothesis Testing 549
15.5 Factors That Can Create Misleading Correlation Coefficients 556
15.6 How to Present Formally the Conclusions of a Pearson r 561

Summary 562
Using Microsoft® Excel and SPSS® to Calculate Pearson r 564

16 Linear Regression 579
16.1 The Research Context 579
16.2 Overview of Regression 580
16.3 Establishing the Regression Line 585
16.4 Putting It All Together: A Worked Problem 600
16.5 The Coefficient of Determination in the Context of Prediction 606
16.6 The Pitfalls of Linear Regression 607
16.7 How to Present Formally the Conclusions of a Linear Regression

Analysis 610
Summary 611
Using Microsoft® Excel and SPSS® to Create a Linear Regression
Line 612

Part 6 Review Linear Correlation and Linear Regression 625

Part 7 Inferential Statistics: Nonparametric Tests 633

17 The Chi-Square Test 635
17.1 The Research Context 635
17.2 The Chi-Square Test for One-Way Designs: The Goodness-of-Fit

Test 637
17.3 The Chi-Square Distribution and Degrees of Freedom 644
17.4 Two-Way Designs: The Chi-Square Test for Independence 647
17.5 The Chi-Square Test for a 2 × 2 Contingency Table 653
17.6 A Measure of Effect Size for Chi-Square Tests 656

xii Contents



17.7 Which Cells are Major Contributors to a Significant Chi-Square
Test? 657

17.8 Using the Chi-Square Test with Quantitative Variables 659
17.9 Assumptions of the Chi-Square Test 660
17.10 How to Present Formally the Conclusions for a Chi-Square Test 660

Summary 661
Using Microsoft® Excel and SPSS® to Calculate a Chi-Square 662

18 Other Nonparametric Tests 677
18.1 The Research Context 677
18.2 The Use of Ranked Data in Research 678
18.3 The Spearman Rank Correlation Coefficient 679
18.4 The Point-Biserial Correlation Coefficient 686
18.5 The Mann–Whitney U Test 691
18.6 The Wilcoxon Signed-Ranks Test 698
18.7 Using Nonparametric Tests 704
18.8 How to Present Formally the Conclusions for Various Nonparametric

Tests 707
Summary 707
Using Microsoft® Excel and SPSS® to Calculate Various
Nonparametrics 708

Part 7 Review Nonparametric Tests 727

Appendix A: Statistical Tables 735
Appendix B: Answers to Questions and Exercises 757
Appendix C: Basic Data Entry for Microsoft® Excel and SPSS® 881
References 885
Glossary 897
List of Selected Formulas 911
List of Symbols 919
Index 923

Contents xiii



Preface

This textbook is an outgrowth of our combined 40+ years worth of experience
teaching undergraduate statistics for social and behavioral science students, an
experience that has impressed us with the dread students face when entering the
course and the frustration they voice in trying to understand statistics. The
dread is most likely a result of the unimaginative manner in which mathematics
is taught in the American grade school system. Unfortunately, there is nothing a
statistics instructor can do about that. However, there is something the instruc-
tor of an undergraduate statistics course can (and must) do to combat this frus-
tration. To be sure, most students may not find a statistics course as engaging as
a course in social psychology or child development, but it need not rival the
forced reading of the unending pages of terms and conditions associated with
approving a new software program!
This book has been written with the typical student in mind – one who not

only dislikes math but also has no confidence in their ability to “deal with num-
bers.” Consequently, even the student with only a little background in algebra
will be able to understand the computational flow of the formulas. A knowledge
of algebraic derivations and proofs is unnecessary for mastering the material in
this text.

Goals of the Text

The primary goal of this book is to teach students the conceptual foundations of
statistical analyses, particularly inferential statistics. Where applicable, the con-
ceptual foundation of statistical tests is explained in the context of standardized
scores. Throughout the chapters on hypothesis testing, the surface mechanics
of computing a test statistic are always related to the underlying sampling
distribution of relevance. In this way, students learn why the formula for a test
statistic looks as it does, and they gain an appreciation of the statisticalmeaning
of each analysis.
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Emphasis on the conceptual underpinnings of hypothesis testing
distinguishes this textbook from those that offer a “cookbook” approach. In
addition, this text places heavy emphasis on the research context of the statis-
tical analysis under discussion. As a result, students will feel “connected” to the
research activities of social and behavioral scientists and come to view formulas
as tools to answer questions about human behavior.
Nonetheless, the arithmetic operations involved in arriving at problem solu-

tions are not sacrificed. Indeed, another goal of this book is to teach students
how to “work the formulas.” Learning to “crunch the numbers” is accomplished
by presenting definable, clearly specified steps in working through statistical
problems. Despite the existence of numerous statistical software packages that
can quickly and accurately arrive at the solution to problems, we believe that the
initial introduction to a statistical tool should utilize a hand calculation. This
number-crunching process provides the student with a deeper understanding
of the inner workings of statistical formulas. Once familiarity is achieved by
crunching through small sample versions of the mathematics of statistical tools,
then the introduction of a computer software program becomes a welcome
timesaving aid, and not a method of obscuring what is going on. For this reason,
at the end of most chapters, brief tutorials are presented, showing the user how
to use Microsoft® Excel and SPSS® to compute various descriptive and infer-
ential statistical values.

Organization and Flexibility

The text has 18 chapters organized into seven parts: (1) “Introduction,”
(2) “Descriptive Statistics,” (3) “Inferential Statistics: Theoretical Basis,”
(4) “Inferential Statistics: z Test, t Tests, and Power Analysis,” (5) “Inferential
Statistics: Analysis of Variance,” (6) “Inferential Statistics: Bivariate Data
Analysis,” and (7) “Inferential Statistics: Nonparametric Tests.” The breadth
of coverage of topic areas makes this book suitable for a semester course, a
two-quarter course, or a one-quarter course. If students have had exposure
to research design, Chapter 1 may be skipped or used as a brief summary of
research concepts.
Because earlier chapters build the conceptual foundation for later chapters,

there is only a modest amount of leeway in assigning chapters out of sequence.
Nonetheless, the chapters covering chi-square and other nonparametric tests
may be assigned before the chapter on one-way ANOVA. The chapters covering
two-way and repeated-measures ANOVA can be omitted without hampering
the students’ understanding of subsequent chapters. The chapters covering lin-
ear correlation and regression treat these data analytic procedures in the con-
text of inferential statistics. Consequently, it is not recommended that they be
presented immediately after the section on descriptive statistics. The chapter on
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probability can be left out if there is limited time or a desired lack of emphasis on
the theoretical underpinnings of inferential statistical tests. Finally, the chapter
on power may be omitted without sacrificing the students’ understanding of
hypothesis testing. The concept of power is defined simply whenever it is men-
tioned in chapters covering hypothesis testing.

Student Aids in the Text

Because most students approach statistics with considerable foreboding, we
have included several pedagogical features in the text to enhance learning
and maintain motivation:

1) The application of formulas is illustrated in step-by-step computational
procedures so that students can master the sequential process of arriving at
the correct answer to sample problems.

2) Boxes that highlight the topic under discussion using published and
unpublished research are presented in each chapter. The material is selected
for its interest value to students.

3) One series of boxes addresses, head-on, a major issue in the social and
behavioral sciences, the so-called replication crisis. These boxes bring stu-
dents into this larger discussion, help them understand the underlying
issues, and empower them to think critically about their own and others’
research.

4) Spotlights present biographical sketches of some of the luminaries in the
field of statistics. Interesting aspects of the person and their times are pro-
vided to bring the material to life.

5) A list of selected formulas can be found in the back of the text for easy
reference.

6) Recognizing that many instructors want their students to be able to com-
municate the outcomes of statistical analyses in written form, most chapters
contain a section informing the students how to present statistical findings
in sentence form.

7) Each chapter ends with an extended summary of the chapter (where
applicable), brief tutorials for how to use Microsoft® Excel and SPSS® to
generate statistical values associated with that chapter, a presentation of
the key formulas, and numerous questions and exercises for concept
checks and practice. Many of the questions and exercises are based on
published research findings of high interest to students, so that students
not only receive practice in data analyses but also increase their knowledge
of the content of psychology.

8) A glossary of terms is provided at the end of the text.
9) A list of symbols is provided in the back matter.
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Appendix A contains helpful tables for determining various critical values
needed for determining probability and testing null hypotheses. (Although
the tables are incomplete, they will provide the appropriate values for almost
all of the exercises. However, students may need to reference tables online to
find the critical values needed to answer a few questions.)
It is our experience that students overwhelmingly prefer that all the answers

to work problems be provided, and so they are, in Appendix B. In addition, for
computation problems, the answers are provided along with the interim steps,
thereby allowing students to locate the source of potential errors in the use of
formulas. Most of the chapters also include short data sets that can be used
with any statistical software program. The answers to these problems are also
provided in Appendix B.
Appendix C presents brief instructions for basic data entry procedures for

Microsoft® Excel and SPSS®. This resource further supports student’s ability
to use these software products for statistical calculation purposes.
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Part 1

Introduction

1



1

Basic Concepts in Research

1.1 The Scientific Method

This is a textbook about statistics. Simply defined, statistics are the mathemat-
ical tools used to analyze and interpret data gathered for scientific study. It is
paramount to remember that statistical analyses and interpretations do not
exist in a vacuum. They occur within the larger scientific research process. Both
how to analyze and how to interpret the data are quite dependent upon the sur-
rounding research context. While the subject of statistics can be singled out and
studied in isolation (as this textbook demonstrates), it is inextricably linked to
the larger scientific enterprise. As such, it is appropriate to review the basic fea-
tures of “doing” science before we delve into statistics proper.
The scientific method can be conceptualized as a three-step recursive process.

Each can be summarized as follows:

Theory. Theories are an attempt to explain and organize collections of data
observed about the topic (or “phenomenon”) under scrutiny by appealing to
general principles and relationships that are independent of the topic itself.
Take, for example, a line of research on the endurance of friendships. In theo-
rizing why some acquaintances lead to enduring friendships while others do not,
one could propose that personalities are a bit like magnets; similar ones repel
one another, while dissimilar personalities are drawn together (i.e. opposites
attract). Clearly, this theory appeals to the prior concepts “magnets,”
“personality,” “similarity,” and “dissimilarity” in purporting to explain why cer-
tain friendships pass the test of time while others do not.
Not all theories can be considered “scientific.” For a theory to qualify as prop-

erly “scientific,” it must be testable. By testable we mean: is it potentially falsi-
fiable? Can it be placed into jeopardy and potentially observed to be untrue? If it
cannot, it still remains a theory, but it is not considered to be properly “scien-
tific.” Using testability as a criterion, for example, the theory that each of our
choices, past and future, is actually predetermined by some combination of
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our DNA and behavioral conditioning through our previous experiences, could
hardly be considered “scientific.” While many people believe it to be true, how
exactly would we go about testing it? And chiefly, how exactly could we place
this theory in jeopardy and observe it to be true or untrue?

Hypothesis. In the light of any scientific theory, it should be possible to gener-
ate predictions about the data one expects to observe – this is a hypothesis.
Sticking with the aforementioned magnetic theory of friendships, one hypoth-
esis might be as follows: If we measure the personalities of incoming university
students who are randomly assigned to live on a given hall in a freshman dorm,
we might expect to find that students who have quite discrepant personality
profiles are more likely to be friends at the end of the semester than those
who had similar personality profiles.
Because it is possible to find evidence that would not support this hypothesis,

we can say that this theory is “testable.”However, we cannot stop at hypothesiz-
ing. To say anything meaningful, we have to complete the research process and
actually go out and do the work, set up the study, gather the participants, and
carefully collect the data. This leads us to the final step.

Observation. The gathering of scientific observations is done by careful and sys-
tematic measurements of events occurring in the world by using our five senses,
often with the aid of various scientific tools and instruments. In our example, we
would want to measure meticulously our incoming freshman’s personalities as
well as the nature of the friendships on the hall at the end of the semester. These
observations, then, would be organized and interpreted. Ultimately, what is con-
cluded would reflect back upon the theory. Observations will either support the
theory, fail to support it, or, perhaps, partially support it. The circle is complete as
we relate our findings to our original theoretical proposition.
In our particular example, we should not be too confident that supporting

data will be found – previous research suggests we will probably be disappointed
(e.g. Buss, 1985). And that is an important point – if supporting data is not
found, somuch the worse for the theory.Wemay need to think differently about
why some friendships begin and endure while others do not. As would be
expected, accurate theories will be supported by our observations. Supporting
observations can both affirm a theory and lead to clearer and more refined
articulations of that theory. More precise theories, in turn, lead to new hypoth-
eses, and the cycle starts over again. The process is circular and recursive, with
each cycle ideally spiraling toward a more accurate understanding of the topic
under investigation.
The specific role of statistical analysis is found in the interpretation of our

numerically represented observations. What do the numbers mean? What do
they not mean? For whom do they have meaning? Furthermore, how certain
are we that our conclusions are accurate? On what do we base our sense of cer-
tainty? These are often not easy determinations to make. The central purpose of
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this text is to dissect and explain how this part of the research process works.
The remainder of this introductory chapter will lay out an overview of the
research enterprise.

1.2 The Goals of the Researcher

Scientific researchers set out with earnest intention to study carefully, logically,
and objectively a particular topic of interest. Depending upon what is already
known about the topic, what one wants to learn about the topic, and what
one realistically can learn about the topic, researchers adopt different “goals”
for their projects. Often, the initial goal a researcher has when first addressing
a topic of interest is that of description. Scientific description is the process of
defining, identifying, classifying, categorizing, and organizing the topic of inter-
est. Explicit delineation of the boundaries of the topic is crucial. What exactly
constitutes the topic and what clearly does not constitute the topic? How many
forms can it take? How frequently are these various forms found?
For example, if we were interested in studying the various ways in which peo-

ple take vacations, we would first have to define what a vacation is and what it is
not. Is an afternoon day trip to a community park a vacation? What about an
extra day tacked onto a work-related business trip? It is not a requirement
for all researchers to agree on the same definition of what “is” and “is not” a
vacation, in order for vacations to be studied. However, it is absolutely imper-
ative that the readers know explicitly what we, the researchers, mean when we
say that we are counting days spent on vacation. In other words, concepts must
be operationally defined. An operational definition is a precise verbal descrip-
tion of the concrete measurement of that concept, as it will be used in a given
research project.
Another issue would be to decide how many different ways “vacation” can

take place. For example, someone might suggest that there are fundamentally
two different kinds of vacations: one kind that is designed around relaxation
and focuses on bodily rest and another kind that is designed around engaging
in new and exciting experiences. Another researcher may come along and sug-
gest that there is actually a third kind of vacationing – one that combines the
two and incorporates both time dedicated to bodily rest and time dedicated
to having new experiences (e.g. traveling the country in a motor home). Wide-
spread agreement regarding the particulars of the concept “vacation” is not
required, of course, for it to be studied. The crucial point to be made is that
researchers who are dealing with a topic at this level are going to gather statistics
that reflect the relative frequencies and averages pertaining to the categories of
the topic under investigation, as they understand them to exist. For example,
one researcher might find that only 20% of vacations are of the relaxation
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variety, while another researcher, using a different operational definition, might
find a quite different percentage. Statistical statements, then, can only be prop-
erly interpreted once the larger research context is correctly understood.
Finally, it should be noted that the statistical needs associated with meeting this
initial goal of “description” are usually not too sophisticated.
Another goal of the researcher would be one of correlation (or prediction or

association – these are all analogous terms). Correlation involves a description
of the degree of relationship between the topic of interest and other variables.
For example, in our study of vacations, we might be interested to see if there
were a relationship between the age of the vacationer and the type of vacation
chosen. Here, we would be measuring two variables (the “age of the vacationer”
and the “type of vacation chosen”) and determining if there was a relationship
between them. As a rule, it requires more sophisticated mathematical work to
establish correlations. It is critical to realize that research designed to show cor-
relations does not allow us to draw causal conclusions. For example, if we find
that older individuals, more so than younger ones, prefer to take vacations cen-
tered on rest, we could not justifiably conclude that age causes people to want to
take vacations that are more restful. It could very well be, for example, that older
people simply grew up in a time when vacations were generally understood to be
more restful in nature. As a result, they formed their vacationing expectations
and habits accordingly. On the other hand, another possibility might be that
there simply are not as many exciting and new vacationing experiences geared
toward an older audience, when compared with those available to the younger
crowd. If the set of vacation options were different, then perhaps the numbers of
older vacationers choosing active vacations would increase. Understand this
clearly: One of the most frequently observed critical thinking errors is the ten-
dency to impose a causal interpretation on data that is correlational in nature.
The interpretation of data from studies with a correlational goal must refrain
from causal language. For example, in this case, it would be correct to conclude
only that age and vacationing style are correlated, such that older individuals are
more likely to spend their vacation time being restful, when compared with
those who are younger.
The most ambitious goal of the researcher would be one of scientific under-

standing. This permits one justifiably to draw a cause-and-effect relationship
between the topic of interest and some other variables. There are a myriad of
subtle and yet important issues related tomaking “cause-and-effect” statements.
As such, it is simply impossible to treat adequately the subject of sufficient cau-
sation in this text. At a minimum, one must realize that even when causal state-
ments are warranted by the research process, their explanatory power is rather
limited. A further exploration of these limitations is presented in Section 1.6
near the end of this chapter.
In order to gain even this limited understanding of causality, we will need to

engage in a specific form of research investigation termed an experiment.
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An experiment is a precise term reserved for a research project in which (i) a
high degree of control over the presumed causal variable, (ii) careful measure-
ment of the presumed effected variable, and (iii) complete control over all other
variables are all scrupulously maintained. For example, using the “vacationing”
study, if we think the amount of disposable income was influencing the type of
vacation people chose to experience, then we might (using a generous research
grant!) gift some randomly selected participants $1000 and ask them to choose
between two different but equally expensive vacation packages: one centered
around resting and the other centered around doing. We could then grant other
randomly selected participants $5000 and pose the same question. If different
rates of vacation preferences emerged between the two groups of participants,
the researchers would then be justified in claiming that their findings suggested
the following: The amount of disposable income influenced (or, in some sense,
caused) the type of vacation people chose to experience.
Before going any further into the world of experimentation, we need to step

back and survey the different ways scientific researchers think about variables.

1.3 Types of Variables

In a general sense, a variable is anything that can assume different values –
anything that can vary. In the research process, variables are employed in
different types of roles. The following paragraphs will introduce some of the
major roles played by variables, as well as some of the related terminology.

Independent and Dependent Variables

As previously noted, when designing an experiment, the researcher attempts to
examine how one variable influences another variable. The independent
variable designates the variable that is thought to play the causative role in a
cause–effect relationship. It is selected and manipulated by the experimenter
in order to observe its effect on another variable. By manipulation, we mean
the controlled presentation of that variable. The nature of this manipulation
can be described as being either quantitative or qualitative. A quantitative
independent variable means that participants are exposed to different
amounts of the independent variable. Suppose a researcher hypothesizes that
the time it takes rats to learn a maze depends on the magnitude of reward pro-
vided at the finish line. Three groups of rats are used, with each group receiving
increased amounts of reward: 5 food pellets, 10 food pellets, and 15 food pellets.
In this example, there are three levels of the independent variable, and they are
distinguished from each other quantitatively.
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A qualitative independent variable establishes levels by contrasting differ-
ent kinds of treatments or by the presence or absence of the independent vari-
able. Using the maze-learning example, suppose one group of rats received one
type of food pellet (e.g. salty) at the end of themaze and the other group received
another type (e.g. sweet). The groups do not differ in the amount of the inde-
pendent variable, but rather by the kind of independent variable used. Another
example of a qualitative independent variable using the maze-learning para-
digm would be for one group of rats to receive a food reward at the end of
the maze while rats from the other group receive nothing. The groups differ
by the presence or absence of the independent variable. (Although here it is pos-
sible to think of this difference in quantitative terms, it is most readily thought of
in qualitative terms, like a toggle switch that is either “on” or “off.”)
Note that when a condition is marked by the absence of the independent var-

iable, it is oftentimes referred to as the control group. Conversely, when a con-
dition is marked by the presence of the independent variable, it is oftentimes
referred to as the experimental group. Many research efforts can be described
in brief as “control-versus-experimental” studies. Of course, we could have
more than a single experimental condition being applied. A three-condition
study might have a control condition as well as an experimental I condition
and an experimental II condition and so on.
Finally, note that the term treatment is often used instead of the term

“independent variable” when the procedure introduced might have an effect
on the participant’s behavior. For example, if our independent variable in
the maze-learning study was not food at the end of the run, but rather a pre-
scribed style in which the experimenters handled the rats (e.g. “rough” hand-
ling vs. “gentle” handling), then we might say that the rats are getting
different treatments.
The dependent variable designates the variable that is thought to play the

effected role in a cause–effect relationship. Sticking with our maze-learning
example, either the time it took to finish the maze or the number of errant turns
made by the rat during the completion of the maze (or both) could be assigned
as the dependent variable.
While the independent variable may in reality influence all sorts of other vari-

ables, the dependent variables are only those that are being carefully observed
and measured. For example, suppose a researcher is interested in teaching peo-
ple self-control techniques to improve pain tolerance. First, “pain tolerance”
needs to be operationally defined. Let us say “pain tolerance” is the duration
of time participants can keep their hands submerged in a bucket of ice water.
As such, “pain tolerance” serves as the dependent variable in this experiment,
and “self-control techniques” serve as the independent variable (or treatment).
Participants learn one of two different mental imaging techniques designed to
control their reaction to pain (this would be a qualitative independent variable,
by the way) – and then they aremeasured to see how long they can keep one arm
submerged in the ice water. While the participants maintain their hands in the
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ice water, an array of other behavioral responses may also occur, such as anxiety,
memories of past experiences with cold water, fidgeting, looking around the
room, increased breathing rate, and so on. Are these other behaviors dependent
variables? No, because the researcher is not systematically observing and mea-
suring these responses. If the researcher decided to measure both the duration
of time participants keep their hands submerged in ice water and the number of
breaths per minute, then the study would contain two dependent variables.

■ Question. A psychologist is interested in determining which of two sales techni-
ques is more effective in influencing participants to purchase a more expensive car.
In the “positive condition,” participants are told about the many positive attributes
of Car A compared with Car B, even though Car A costs $1000 more. In the “neg-
ative condition,” another group of participants are told about all the undesirable
attributes of Car B compared with Car A (the pricing remains the same in both
conditions). After the lecture, each participant is asked to state which of the two
cars they would most likely purchase. Identify the independent and dependent
variables.

Solution. The independent variable can be identified by asking, “What variable
is being manipulated by the experimenter and is presumed to play the causative
role in the cause–effect relationship under exploration?” It should be clear that
the “sales technique” is what is being manipulated. To determine the dependent
variable, we can ask ourselves, “What is the particular behavior of the partici-
pants that is being measured?” or “What variable is being affected in the
cause–effect relationship under consideration?” The dependent variable is
clearly specified at the end of the example: “Each participant is asked to state
which of the two cars they would most likely purchase.” Simply stated, one
might call this dependent variable something like “car preference.” ■

As stated earlier, two defining features of an experiment are the careful control
(manipulation) of the presumed causal (also known as “independent”) variable
and the careful measurement of the effected (also known as “dependent”) varia-
ble. There exists, however, a third defining feature in any experiment: the control
of all other variables in the study.With any experiment, there will be several other
variables in play (variables other than independent and dependent variables) that
can be identified and may very well be influential on the outcome of the exper-
iment. For example, in the aforementioned mental imagery and pain tolerance
study, one could imagine several other variables of interest – like the ages, eth-
nicity, and various health indicators of the participants (e.g. resting heart rate) as
well as differences in the experimental environment (e.g. the room temperature,
the presence of other people who might be encouraging the participant, how
much fat deposition or muscular development the arm exhibits, and so on).
Any variable other than independent or dependent variables found in an exper-
iment is referred to as an extraneous variable. These extraneous variables must
be controlled in order to draw accurate conclusions from the results of the study.
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1.4 Controlling Extraneous Variables

Controlling Extraneous Variables by Holding Constant

Several techniques have been developed to impose controls on extraneous vari-
ables; the following paragraphs will look at a few of the most common ones.
When the experimental situation is not controlled, there is the possibility that
some variable other than the independent variable will be (at least partially)
responsible for changes in the dependent variable. This potential interference
by an uncontrolled variable creates confusion, then, regarding what actually
caused the change. An uncontrolled extraneous variable is called a confound-
ing variable. The presence of confounds in an experiment threatens the
researcher’s ability to draw meaningful conclusions from the study. Further-
more, there are no statistical techniques or “fixes” that can be used to salvage
a poorly designed study containing confounds. Statistical analysis rests fully
and firmly on sound research methodology. If the methodology is poor, statis-
tical analyses are helpless to repair the situation. The study is simply a “bust”; the
results are invalid, and no real confidence can be attached to them, for how
could one ever be certain that the uncontrolled confounding variables were
not what was really responsible for the measured outcomes?
Holding constant an extraneous variable involves treating the variable like a

constant, simply not letting it vary. Consider the previous research example in
which different sales techniques were compared. Presumably, one factor that
influences people’s decisions to purchase a car has to do with the visual pres-
entation of the vehicle. How the car is displayed, then, is an extraneous variable
in our example. If this were uncontrolled, it could clearly confound the study.
For example, what if Car A was displayed prominently on a ramp for the parti-
cipants in the “positive” condition but moved, due to incoming new inventory,
and placed blandly amid a row of other cars the following day when participants
were exposed to the “negative” condition? If it were discovered that people in
the “positive” condition opted for Car A more so than those in the “negative”
condition, is there any clear way of knowing that the preference for Car A
was due exclusively to the different sales technique utilized (the actual inde-
pendent variable) and not simply as a result of the differing presentations
(the confounding variable)? The potential causal role of the sales technique
could be confounded by the variable “presentation style.” Imagine, however,
if “presentation”were controlled by holding it constant. Simply doing this would
effectively remove it as a competing explanation. In this way, the confounding
variable is neutralized bymaking the presentation of both Car A and Car B iden-
tical in both conditions.
Consider another example of a confounding variable (see Table 1.1). A simple

psychotherapy study is aimed at contrasting two therapeutic approaches to
depression. One group of depressed participants receives psychoanalysis
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conducted by an experienced psychoanalyst, while a second group of depressed
participants receives behavioral therapy from an equally experienced behavioral
therapist (Diagram A, Table 1.1). Suppose at the end of the study the partici-
pants who received behavioral therapy were, on average, less depressed than
the participants who were treated by psychoanalysis.
What is, perhaps, the most obvious confound? It is possible that the behav-

ioral therapist had some personality characteristics (e.g. warmth, understand-
ing) that were actually responsible for the better results instead of the
behavioral therapy itself. Had the two therapists switched roles, perhaps the psy-
choanalytic approach would have appeared superior. In this example, “thera-
pist” is confounded with “treatment type.” Any difference, then, between the
two groups of participants in terms of their recovery from depression cannot
be unambiguously attributed to the relative effectiveness of the therapy styles.
How could we control this extraneous variable of therapist personality? One
solution, described above (Diagram B, Table 1.1), would be to have half of
the participants in both treatment style conditions treated by each therapist.
This technique used to control extraneous variables is very similar to “holding
constant.” It is called balancing, and it works by representing two forms of an
extraneous variable equally in both conditions. The effect of each therapist
would now be equally represented in the two treatment conditions, thereby
removing any bias toward one form of therapy.1 Since the effect of different

Table 1.1 Diagram A depicts “therapist” confounded with “treatment.” Diagram B depicts
a redesign in which therapist effects are spread equally across treatment conditions.
Diagram C depicts a redesign in which the therapist is held constant.

Diagram A

Behavioral therapy Psychoanalysis

Therapist 1 Therapist 2

30 depressed clients 30 depressed clients

Diagram B

Behavioral therapy Psychoanalysis

Therapist 1 Therapist 2 Therapist 1 Therapist 2

15 depressed clients 15 depressed clients 15 depressed clients 15 depressed clients

Diagram C

Behavioral therapy Psychoanalysis

Therapist 1 Therapist 1

30 depressed clients 30 depressed clients

1 It would be important to ensure that each therapist was equally proficient in conducting both
behavioral therapy and psychoanalysis.
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therapists would be balanced across the conditions, any difference in the
improvement of depression could be attributed to the treatment rather than
the therapist. Another solution (Diagram C, Table 1.1) would be to hold the
troublesome variable constant by using the same therapist for both conditions.2

One downside to controlling extraneous variables by holding them constant is
that the scope of the experiment becomes limited with regard to that variable.
For example, if we decided to control the variable “biological sex” by using only
females in the experimentation, the findings could only justifiably be applied to
females, for how could one know that the same results would extend to males
when they were never studied? Suppose only biological females were used in the
imagery and pain tolerance study; if one imagery technique was found to result
in higher pain tolerance than the other, could it be fairly said that this finding
also pertained to biological males? When a variable is controlled by holding it
constant, the interpretation of the findings regarding that variable is limited, and
any extrapolation to other forms of that variable is subject to debate. We will
have more to say about generalizing the findings of a study when we introduce
the concept of “external validity” presented later in this chapter.

Controlling Extraneous Variables by Randomization

Another method for controlling extraneous variables is by using a technique
known as randomization. A host of potentially confounding variables associated
with (i) differences between the various participants in a study, (ii) differences
between the experimental settings, and (iii) even differences in the stimuli used
can be controlled by careful randomization. It is important to analyze each of
these potential problem areas one at a time, for each illustrates a way in which
the technique of randomization can potentially be applied to control the effect
of extraneous variables. First, consider the numerous differences that naturally
occur between different participants in a study.
Participant variables are characteristics of the participant that are fixed

before the experiment is even begun. This term “fixed” applies to their a priori
existence and not to their inability to be changed (though sometimes, they truly
cannot be altered). One way to categorize participant variables is to consider
them in three distinct groups: physical attributes, demographics, and psycho-
logical traits. Table 1.2 lists many common participant variables in these respec-
tive categories. Obviously, an exhaustive listing of participant variables is
impossible.
Participant variables will create difficulties in an experiment when they are

not adequately controlled. Most problematically, they can become confounding
variables when they are proportionately linked to differing levels of the

2 It would be important to ensure ahead of time that the therapist chosen for the study was equally
proficient in conducting both behavioral therapy and psychoanalysis.
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independent variable. This thorny dilemma, however, can be elegantly over-
come by using the tool of random assignment: the designation of participants
into various conditions within a study such that each participant is equally likely
to be assigned to a given condition. Random assignment is an extremely
powerful tool that can control innumerable participant variables all at the
same time. The following examples indirectly illustrate this power through their
failure to use random assignment, thereby potentially confounding the
experiments.

► Example 1.1 An educational psychologist is interested in evaluating the
effects of a psychological technique that is expected to help college students
becomemore efficient in completing a series of arithmetic problems. Efficiency,
the dependent variable, is defined as the time it takes students to complete one
page of simple math problems. The technique, or independent variable, is the
use of self-motivating statements. A self-motivating statement is a phrase the
student learns to repeat in the event that they become distracted from solving
the arithmetic problems. The experimental group is trained to repeat these self-
motivating phrases, while a second group of students, the control group, is not.
The experiment is conducted in a typical classroom setting. To save time, the

experimenter assigns the first 20 students who arrive for class to the experimen-
tal group. All later arriving students are asked to wait in the hall until the self-
motivational training has been completed. These students in the hallway are
assigned to the control group and brought in later when it is time for everyone
simultaneously to work themath problems. The results of the study showed that
students in the group trained to use self-motivational techniques, on average,
worked much faster than students in the control group.
While it is impossible to know, it is certainly plausible to consider that a par-

ticipant variable (e.g. some psychological trait or demographic trait) was
responsible for the difference in performance. For example, suppose it is true

Table 1.2 Some common participant variables.

Physical attributes Demographics Psychological

Height Income IQ

Weight Family size Need for approval

Handedness Ethnicity Type A personality

Running speed Occupation Trait anxiety

Strength Education Introversion

Sex Religion Dominance
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that mentally disciplined people tend to be bothmore punctual (thus overrepre-
sented in the training group) and faster at working math problems than men-
tally undisciplined people. This psychological variable exists prior to the study.
It is also an extraneous variable that might be confounding our study since it was
notcontrolled.Whileonecouldcontrol it byholding it constant (e.g. onlyusemen-
tally disciplined participants), it could also be controlled by randomization –
by arbitrarily assigning participants to the two conditions. In this example, a
better methodology for placing students into experimental and control groups
would have been to flip a coin to assign each participant to a condition. Employing
a random group assignment strategy like coin tossing would eliminate the
prospects of overrepresenting any specific participant variable in either group.
Clearly, there are hosts of other participant variables simultaneously controlled
by random assignment as well. Potentially important confounds like age, IQ,
motivation, biological sex, and so on would all be neutralized. Notice how all
participant variables can be controlled with one well-executed randomizing
technique.◄

It is critical to realize that a variable is controlled even if it is not perfectly
balanced between the two conditions. For example, suppose one group con-
tained a couple more biological male students than the other; this would not
mean that random assignment had failed to control for biological sex. If an
imbalance occurs through a truly random process (e.g. flipping a coin), then
the resulting disparity cannot confound the study, rather it is just introducing
what is called error. This is not as worrisome as it seems, for it is not the sort of
error that invalidates a study. In reality, it is this kind of error that statistical
methods are well suited to overcome. This will be addressed in more detail later
in the text, but a brief introduction right now facilitates the discussion of
another point that pertains to the control of extraneous variables by random-
ization. This is the concept of group size. Because randomization mechanisms
often do not perfectly balance a particular participant variable between the con-
ditions, it is important to have groups that are large in number to help correct
the problem. A thought experiment will help to explain why. Imagine someone
flipping a coin 10 times and noting how many heads are found. Now imagine
them doing these sets of 10 flips repetitively. On average, they will get 5 heads
for each series of 10 flips, but sometimes they will get a few more or a few less.
Periodically they may even get as few as 1 or 2 heads or as many as 8 or 9. This is
a big difference, particularly if we consider heads and tails as representative of a
binary participant variable like biological sex. Now, imagine the investigator
flipping a coin 1000 consecutive times. Further, imagine this being done repet-
itively in sets of 1000 (thankfully, we are just imagining this). On average about
500 heads will be found for each set of 1000 flips. A fewmore or a few less would
likely be found each time, but the rough percentage of both outcomes would
hover around 50%. Very rarely would less than 450 ormore than 550 be recorded.

14 1 Basic Concepts in Research



Therefore, it would be exceedingly infrequent to find the sort of large percentage
differences between heads and tails that was seen in the 10-coin-flip scenario.
This illustrates how larger sample sizes minimize the error that accompanies a
randomization process. This is one of the profound advantages that large group
size affords. The probabilistic benefits attached to large samples will be revisited
in more depth later in the text.
Consider another example – this one based on a well-known study in the area

of psychosomatic medicine.

► Example 1.2 One of the earliest experimental demonstrations of the devel-
opment of ulcers was conducted by Brady and others (Brady, 1958; Porter et al.,
1958). Pairs of monkeys were exposed to electric shocks, which could only be
avoided if one of the monkeys pressed a lever. The same monkey was always
responsible for working the lever and was labeled the “executive” monkey. If
the executive monkey failed to respond in time, not only they but also the “con-
trol”monkey would receive the electric shock. Therefore, while the numbers of
shocks received by the executive and control monkeys were the same, the exec-
utive monkey was always responsible for managing the onset of the electric
shock. Within two months, all of the executive monkeys either had died or
had become too incapacitated to continue in the study. Autopsies performed
on the executives showed extensive gastric lesions. In contrast, the stomach lin-
ings of the monkeys who were not given responsibility over shock delivery were
discovered to be free of any significant lesions. Brady suggested that the stress
associated with having responsibility and control led to the development of fatal
ulcers in the executive monkeys.
Other researchers had difficulty replicating these findings. Ultimately, it was

discovered that a participant variable was responsible for the ease with which
Brady’s executive monkeys developed ulcers. When designating which of the
two monkeys would be assigned the executive role, Brady selected the monkey
who learned how to press a lever to avoid shock the fastest. Subsequent research
has revealed that animals can be selectively bred who are susceptible to the
development of ulcers (Sines, 1959). One characteristic of ulcer-susceptible ani-
mals is that they are more emotional and, as a result, learn avoidance responses
more quickly (Sines, Cleeland, & Adkins, 1963). Without realization, Brady had
inadvertently assigned the more emotional monkey to the executive position,
thereby confounding a participant variable with the treatment condition and
rendering the study uninterpretable. ◄

In the previous two research examples, the investigators could have con-
trolled for participant variables by applying a randomization procedure. If
the participants had been arbitrarily assigned to the conditions, participant vari-
ables would have been eliminated as confounds. However, in both cases the
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researchers applied a rule to help create the two groups. (Example 1.1: First stu-
dents to arrive. Example 1.2: First monkeys to learn how to press a lever to avoid
a shock.) This is always dangerous because it introduces a systematic approach
to creating the groups (see Box 1.1 for more on this important topic).
As noted earlier, the technique of randomization can also be used to control

differences related to the setting in which an experiment takes place. For exam-
ple, suppose a drug manufacturer wanted to see if their newest product to con-
trol blood pressure worked better than the current leading medication. When
testing this, themanufacturer would be wise to not only control participant vari-
ables by random assignment but also control setting differences by a random-
ization procedure. For example, if the pharmaceutical company chose to only
use their new drug on patients being treated in small private hospitals and then
compared their numbers with outcomes of patients from large public hospitals
who were being treated with the leading medication, might a critic of the
research properly suggest that the level of care may be different in these two
types of hospitals, thereby confounding the study? Randomly assigning not only
the participants but also the study setting will solve this problem.
Random assignment can also be used to control for different stimuli used in a

study. For example, in the first illustration, students solved math problems and
were timed for speed. We could design the study to hold the specific math pro-
blems constant and have students in both groups working to solve the same
ones. However, suppose there was a problem with that arrangement. Imagine
there was not enough privacy in the classroom and students could see the pro-
blems and answers on other students’ papers if they glanced around. To neu-
tralize this confounding possibility, the selection of the problems themselves
could be controlled by randomly assigning math problems from a pool of
acceptable problems to the individual pages being handed out to the students,
therebymaking each page of problems unique and different from the others.We
might be concerned that some problems are simply easier to solve than others,
but even if this were the case, it must be remembered that the ratio of easy to
hard problems will tend to even out across the pages, as the list of problems to
be solved grows and as the number of students solving problems grows. Any
aggregate differences in difficulty between the pages of problems to be solved
would not constitute confounding error, but rather the kind of error that sta-
tistical techniques are designed to handle.
There are techniques other than “holding constant,” “balancing,” and “random

assignment” that can be used to control extraneous variables, but these are the
onesmost often employed. To learnmore about controlling extraneous variables,
a textbook on researchmethodology can be consulted (e.g.Marczyk,DeMatteo,&
Festinger, 2005). Failure to control all extraneous variables coupled with a failure
to recognize or acknowledge this lack of control can lead to the spread of misin-
formation. The box below discusses how this very topic plays a vital part in the
current conversation surrounding the erosion of public trust in science.
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Box 1.1 Is the Scientific Method Broken? The Wallpaper Effect

The public has recently been informed about a troubling discovery in the world
of social and medical science investigation – the nonreproducibility of many
scientific findings. Titles like “Scientific Regress” (Wilson, 2016), “Does Social Sci-
ence Have a Replication Problem?” (Tucker, 2016), and “Over Half of Psychology
Studies Fail Reproducibility Test” (Baker, 2015) seem to be popping up all over
the place. The titles are unnerving and the issues that are raised are both real
and serious. Briefly stated, an alarming amount of published research does not
produce, when attempts at replication of the study are performed, the same
findings that were stated in the original publication. Upon learning this, it is
quite natural for people to wonder if there is something fundamentally wrong
with the scientific method or the conduction of scientific research.

There are many aspects to this problem. This box attempts to analyze one
such aspect. (Several others will be featured in boxes found throughout the rest
of the textbook.) Many suspect that a leading reason for replication failure is the
inability of the replicating researchers to reproduce accurately, fully, and com-
pletely the precise conditions under which the original study was performed.
Even though the replicators faithfully follow every aspect of themethodological
situation as recorded by the original researchers, it is proposed that there are
other features of the original study that perhaps went unnoticed or were simply
not deemed adequately important to note in the write-up of the initial exper-
iment, but nonetheless may have partially determined the recorded outcomes.
Perhaps an extraneous variable thought to be negligible or to have been
controlled was, in actuality, not controlled and influential. These differences
are colloquially referred to as “wallpaper effects” – a tongue-in-cheek way of
suggesting that the original experimental situation must have been influenced
by the color of the wallpaper in the room. If this were the case, then the original
study findings and the replicated study findings may not be in genuine conflict
with each other; both may be accurate reflections of reality. The different out-
comes, then, would be explained by the effect of some, as of yet, unidentified
other variable responsible for causing the difference. Unfortunately, because
this subtle influential variable has not been identified, neither finding can be
interpreted with any confidence. The interpretations of these studies, then,
are best left as incomplete – to be explained at some later time when further
light can be shed on the topic.

Look for other boxes in this series (Is the Scientific Method Broken?) peppered
throughout the textbook. Each addresses a different aspect of the nonreprodu-
cibility problem.
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1.5 Validity Issues

Internal Validity

Much of this chapter has focused on the importance of and the means by which
definitive conclusions can be made regarding the effect of the independent var-
iable on the values yielded by the dependent variable. As we might imagine,
some studies do a better job than others of making this connection clear and
unambiguous. We use the term internal validity to capture this idea. That
is, to what degree can one unambiguously attribute changes in the dependent
variable exclusively to the action of the independent variable? As our certainty
grows, internal validity goes up. As we realize more and more competing expla-
nations for changes in the dependent variable, our internal validity goes down
(Shavelson, 1988). We might want to think of the internal validity of a study as a
measure of how logically “tight” and “tidy” are the inner workings of the
research effort. Various kinds of reasons can account for a lack of internal valid-
ity. For example, real-world constraints may impose inescapable limitations on
the experimenter’s ability to fully control all extraneous variables, properly
manipulate the independent variable, or carefully measure the dependent var-
iable. All causes of diminished internal validity are not however inevitable.
There are also many avoidable causes that are actually just instances of poor
methodological thinking or poor methodological execution.
Thankfully, we can often learn from ourmishaps. In fact, frequently the critique

of an initial study can reveal an unconsidered rival explanation for the findings,
and this, in turn, will open up the door to a new and fruitful study.What was found
to be a confounding variable in the initial experiment can then be used as an inde-
pendent or dependent variable in a follow-up study. For example, let us revisit our
research on the relationship betweenmental imagery and pain tolerance, but now
we will introduce the variable “anxiety.” Evidence from past research suggests that
highly anxious people tolerate pain poorly (Barber &Hahn, 1962). Suppose that in
our study we unintentionally varied anxiety systematically with the imagery con-
ditions. For example, perhaps close analysis of the experiment would reveal that
we had participants in the second imagery condition waiting longer in the recep-
tion room before their pain tolerance was measured, compared with those in the
initial imagery condition. This delay in time could have allowed more anxiety to
build. When a reviewer alerts us to this potential confound, not only could we
rerun the study correcting this confound, but we might also decide to add anxiety
as a new independent or dependent variable to explore.
As previously noted, a tightly controlled study, one having high internal valid-

ity, can provide the researcher with evidence that a cause–effect relationship
exists between the independent and dependent variables. Conversely, studies
that are not tightly controlled and have low internal validity will not justifiably
merit the claim of causality. Box 1.2 presents a published study in which a
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Box 1.2 Feeling Good and Helping Others: A Study with a Confound

The topic of generosity and helpfulness has long been a popular topic in psy-
chology. Discovering the circumstances that encourage and discourage helpful-
ness increases our understanding of this important behavioral phenomenon
and may suggest ways in which we can facilitate prosocial behavior for the bet-
terment of society (Kanfer & Grimm, 1980). Some of the factors that influence
helpfulness include the observation of a charitable model (Rosenhan & White,
1967), the relationship between the helper and the recipient (Goranson &
Berkowitz, 1966), a predisposition to value the welfare of a person in need
(Batson, Eklund, Chermok, Hoyt, & Ortiz, 2007), and past help received by the
would-be helper (Berkowitz & Daniels, 1964). Based on an intuitive formulation
(i.e. a hunch), Isen (1970) predicted that the positive feelings one experiences
after success (the warm glow of success) would promote generosity. Partici-
pants were randomly assigned to experimental conditions in which half of them
received success feedback after completing perceptual–motor tasks and the
other half were told that they had failed at the tasks. After the experimental
manipulation (success or failure feedback), a confederate entered the room
and casually placed a canister on a nearby table for donations toward a school
project. (A confederate is someone who, unbeknown to the participant, is really
part of the experiment and has a prescribed role to play in the study.) The
dependent variable was the amount of money participants donated. Consistent
with the hypothesis, those participants experiencing the positive feelings of
success donated almost twice the amount of money as did those who had been
told they had failed at the task. What is the confound?

The researcher asserted a causal connection between a positive emotional
state and generosity. The question to ask is: “Did the experimental manipulation
(success/failure feedback) only alter the emotional states of the participants?”
The answer is likely “no.” Participants’ self-perceptions of competence were
probably also altered by the success or failure feedback. “Success” participants
were not only in a better mood than “failure” participants but may have also
seen themselves as more competent than those who failed. And so, was it
the participants’ emotional state that determined generosity (as the researcher
intended to show), or was it their perceptions of competence? The variables
competence and emotional state were confounded, each varying systematically
with the other. This created a problem when it came to interpreting the finding.
Thankfully, in a subsequent experiment, the researcher was able to induce a
positive mood in participants through an experimental procedure that did
not affect self-perceptions of competence, thereby isolating “mood” as a causal
variable. The results of this second study showed that a positive affective state
did enhance helpfulness (Isen & Levin, 1972).
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confounding variable reduces the internal validity of the study and presents a
rival explanation for its results.
When real-world constraints do not allow for full control of all variables, a

researcher may still choose tomove forward with a study, even though the inter-
nal validity may be compromised. For example, a professor who wanted to see if
a new teaching tool (e.g. a new type of review game) was effective in the class-
room might expose one section of the class to this new teaching tool but leave
another section unchanged and then compare test performances over the rel-
evant material. Please note that students were not randomly assigned to the
classes rather they signed up for the class they wanted or that best fit into their
schedule. This opens up the possibility that one class may represent a different
type of student population than the other. Imagine that perhaps one class meets
at 8:00 in the morning and the other at 2:00 in the afternoon. These classes,
although they are both composed of students from the same institution and
may have many other similarities, may represent quite different subgroups of
students, namely, those who prefer morning classes and those who prefer after-
noon classes. Furthermore, during the course of the experiment, each class may
experience other unique events that only occur in that class (e.g. a fire drill, pro-
blems with the classroom technology). Since these other events are not the inde-
pendent variable, they now compete with the new teaching tool to explain any
difference in the outcomes between the classes. These are not ideal experimen-
tal situations; however, oftentimes they are the only viable method available to a
researcher attempting to establish a causal relationship. Such designs are called
quasi-experiments because they share many of the same characteristics with
true experiments and yet the participants are not randomly assigned to
conditions.

External Validity

A researcher must also analyze the extent to which the experimental findings
can be justifiably generalized, thereby reaching beyond the limited context of
the study. After all, no one would be interested in learning about the relation-
ship betweenmental imagery and pain tolerance if it is believed that the findings
only pertain to those participants involved in the study and to only the specific
relationship between a particular form of mental imagery and the act of holding
ones’ hand in ice-cold water. Obviously, the value of the study only emerges
when we consider the finding in a more generalized context – people in general
and pain tolerance in general. The degree to which our study legitimately
applies to these broader external categories is of critical importance. Stated for-
mally, “External validity asks the question of generalizability: To what popula-
tions, settings, treatment variables, andmeasurement variables can this effect be
generalized” (Campbell & Stanley, 1963, p. 5). The external validity of a study
can be very difficult to judge and is often subject to intense professional debate.
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Strictly speaking, there is no way, without running numerous other studies, to
determine whether the results of a research study would be replicated if the
experiment were conducted with different participants, in a different location,
using a slightly different independent variable or measuring a slightly different
dependent variable. Thankfully, there are ways to think about these applicability
issues that do not require the running of an endless series of near-identical
studies.
Let us look at the problem of different participants first. One’s confidence in

generalizing to others not involved in the study can be increased by the method
used to select participants for the study. Random sampling is the “gold stand-
ard” for sampling participants. It occurs when the means of selecting partici-
pants for a study is such that each participant in the population has an equal
chance of being included in the sample. (Note that this is different from “ran-
dom assignment.” Random assignment is a technique used to assign already
selected research participants to the various conditions of a study. Failure to
assign randomly affects the internal validity of the study, not the external valid-
ity.) A biased sample may occur whenever each member of a population does
not have an equal chance of being included in the sample.
Before moving on, let us clarify a few new terms that have just been intro-

duced: populations, sampling, and samples. A population can be simply defined
as “every member of a given group.” For example, imagine we want to study the
effectiveness of a new teaching technique designed to help adults learn how to
read English. We can label our population, then, as adults who are engaged in
learning how to read English. Of course, we cannot include every single person
in this entire population in our study; rather, we will select a subset of indivi-
duals from that population to investigate. The process of selecting participants
is called sampling; and the group of individuals, once selected, is called a
sample.
Let us return to the issue of participant variables. Within any given popula-

tion, there will be a host of participant variables distinguishing one participant
from another. Just as random assignment creates groups within a study that are
roughly similar across all of these participant variables, random sampling cre-
ates a group of participants that roughly captures the blend of participant vari-
ables found in that population. This is important because it allows the
researcher justifiably to claim that findings obtained from their study should
also pertain to the population as a whole. This gives us good reason to presume
our findings are externally valid and applicable to other participants in our pop-
ulation. Conversely, if a sample is not randomly gathered, certain participant
variables may be overrepresented, and other participant variables may be under-
represented. When this is the case, confidence regarding the external validity of
the findings falters. For example, if we tested our new teaching technique only
on new immigrants coming from countries using the Roman alphabet (the same
letters we use in writing English), we should be cautious about concluding that
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our findings will pertain to immigrants coming from places where alphabets
employing different characters (i.e. Chinese characters) were used. Our sample
does not “represent” adequately this larger population. Logically, if this were the
case, we should realize that the population we have actually sampled from is not
adults learning how to read English, but rather adults learning how to read Eng-
lish who came from countries using the Roman alphabet. Clearly, this is a much
smaller population, and the external validity of our findings necessarily becomes
more suspect as we extrapolate to people outside the population from which we
sampled.
It is important to realize that even though random sampling is the gold stand-

ard for achieving representative samples, rarely is it employed. Take the exam-
ple we used above: How could one perfectly select a truly random sample of
adults learning how to read English? While the population can be easily
described in the abstract, it is functionally impossible to gain access to it for
the purpose of random sampling. Fortunately, many other less-than-ideal-
but-more-or-less-adequate sampling procedures can be employed when doing
social science research. The specifics of these techniques are usually treated
with greater detail in methodology textbooks. In a similar vein, there is the issue
of sample size. What is the minimally acceptable number of participants nec-
essary for a sample to be considered representative of its parent population?
This can be a complex determination and is customarily discussed with greater
precision in textbooks focused on research methodology.
Let us now return to the concept of external validity regarding slightly differ-

ent locations, independent variables, and dependent variables. Determining the
external validity of findings in these situations is much more a matter of rea-
soned argumentation than one of calculating probabilities and likelihoods.
For example, sometimes the findings generated by a study will naturally prompt
researchers to think of other similar settings and variables for which these find-
ings might apply. A good example of this is a study by Baddeley and Longman
(1978) that compared mass practice with distributed practice for learning the
new skill of typing. The basic question was this: How is practice time best spent
if one is learning to use a typewriter with a new arrangement of keys? One group
practiced in mass (i.e. long practice sessions within a short window of time),
while another group distributed their practice (i.e. shorter practice sessions
spread out over a longer stretch of time). Both groups actually spent the same
total amount of time typing on the new keyboards. The findings showed quite
convincingly that those who had a more distributed set of practice sessions
ended up typing more quickly and with fewer errors. Many theorists correctly
suspected that Baddeley and Longman demonstrated a more general principle
regarding the relationship between mass and distributed practice (for example,
see Box 1.3). The external validity for Baddeley and Longman’s findings appears
to be high.
The external validity of a particular finding is best judged by examining the

body of existing research to see if a similar finding has occurred with
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participants from different populations using different experimental procedures
and different measures of the dependent variable. Findings that hold up under a
wide range of circumstances (like the “distributed over mass practice” finding)
are termed robust. Oftentimes a researcher, who has uncovered an interesting
finding, will go on to conduct a series of related studies in which they system-
atically alter populations, settings, and related variables in order to establish the
robustness of their finding. This is oftentimes referred to as conducting a line of
research.
Internal and external validity are only two among many different kinds of

validities. They are all important to the research process, and much fuller treat-
ment of these concepts can be found in various methodology textbooks.

1.6 Causality and Correlation

Earlier (in Section 1.2), the limited way in which social scientists think about
causality was mentioned. Let us develop this a bit more here. To say that “X”
causes “Y” in the behavioral sciences is not to suggest that X is the necessary

Box 1.3 A Strategy for Studying Statistics: Distributed over Mass Practice

Remember the research on mass versus distributed practice by Baddeley and
Longman (1978) that was mentioned earlier in the chapter? The finding that
“distributed practice is more effective than mass practice” is actually a very
old one, first uncovered by one of the pioneers of psychology, Hermann
Ebbinghaus (1885), when conducting his famous studies on memory. It is also
one of themore robust findings of psychology shown to apply to the acquisition
of a variety of both neuromuscular skills like archery (Lashley, 1915) and cogni-
tive abilities like face recognition (Mammarella, Russo, & Avons, 2002). Karl
Lashley (1915) concisely states the core finding when writing, “[a] close corre-
spondence exists between the distribution of practice and the amount of
improvement appeared, a given amount of practice being more efficient when
distributed through many short periods than when concentrated in a few long
ones” (p. 127). Given the demonstrated external validity of this finding, the impli-
cations for studying material in this text should be clear. It is far better to spend
a small but meaningful amount of time each day studying statistics than it is to
set aside a few large blocks of time to cram just before a test. The challenge to
the student is to discipline themselves to find time every day, or at least every
other day, to review recently covered material, run through a few practice pro-
blems, and read a little bit ahead in the textbook. Research suggests it will be
the best way to spend the time one allocates to learn the material in this
textbook.
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and sufficient reason for Y coming about. After all, there may be many other rea-
sons why Y has occurred or can change in amount. When we say “X causes Y,”
we aremerely saying that if we placeX in this particular situation, wewill getmore
Y than if we had not placed X there. This understanding of causality is indeed
helpful, but it is clearly limited. Saying that the utilization of a mental imagery
technique can increase one’s pain tolerance is not saying that it is needed for
any amount of pain toleration, nor it is to say that this is the only means of chan-
ging pain toleration. Rather, this causal statement is merely saying that if one uses
a certain form of mental imagery (X), one can expect to experience more pain
tolerance (Y) than if one had not. Finally, causality statements in the behavioral
sciences do not necessarily imply that anything whatsoever is known about the
much more profound question as to why reality is such that if we place X in this
situation, we will get more Y.
Nonetheless, the term cause, if understood modestly, can be appropriately

used in the behavioral and social sciences. However, other modest phrases
are also employed to designate the causal influence of one variable upon
another. For example, some causal relationships might be described in phrases
like “X increases the probability that Y will occur” or “X tends to bring about a
change in the occurrence of Y.” In fact, many different action verbs can be found
in the social and behavioral science literature.
Scientists highly value discovering causal relations because they help to bring

about a deeper sense of understanding. Recall that this is the highest goal of the
researcher (see Section 1.2). It is critical to see, however, that causality is not the
only way in which a relationship between two variables can be described. If two
different variables tend to change reliably in association with each other, they
are said to covary. Variables that covary are correlated variables. This more lim-
ited description of relationship meets the second goal of the researcher: corre-
lation (or prediction, association). Height and foot size, for example, tend to
covary. They are correlated: taller people usually have larger feet, and smaller
feet tend to be attached to shorter people. When data are gathered nonexper-
imentally (i.e. without manipulation), two variables may be observed to covary,
and this covariation can be quantified. And yet, this covariation does not imply
that a causal relationship exists between the variables, let alone the exact nature
of a causal relationship (for instance, might X cause Y, or Y cause X, or might
some other variable, Z, cause both X and Y?). The manner in which the data are
collected will determine the type of interpretation allowed. Causal relations can
only be established in an experimental setting when a manipulated variable is
observed to influence another variable. Methods of gathering data without
the use of manipulation are called correlational designs. (These designs as well
as experiments, and quasi-experiments, comprise the three most frequently
used designs that employ statistical analysis.) A prototypical example of a cor-
relational design would be the survey. There is no independent variable, nothing
is being manipulated, and no causal statements can be made. Data is gathered
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simply as it presents itself to the researcher. In this way, it is correct to say that
data gathered from “correlational designs do not imply causation.” (This topic
will be covered in much greater detail in Chapter 15.)
Research on clinical depression demonstrates how variables can be found to

covary without knowing the precise causal relation between them. Depression
has many characteristics, and the reasons why people become depressed are
many: The phenomenon is not exhaustively understood. One view maintains
that people feel depressed because of negative thinking. They are pessimistic,
are self-critical, and do not praise themselves when they do something well.
This perspective strongly implies that these cognitions have some causative
role in depression. However, it is also quite possible that when people become
depressed, they are more likely to think in a negative fashion. In Figure 1.1,
question marks reflecting this interpretive problem are drawn above the
arrows between negative thinking and depression.
However, even though negative thinking and depression may correlate, it is

possible that neither variable causes the other. They may covary because
some third variable, like “loss of control” for example, causes both negative
thinking and depression. The question marks over the arrows in Figure 1.1
pointing from loss of control to negative thinking and depression reflect this
possibility.
Unfortunately, some important research questions are, for ethical, logical, or

logistical reasons, not amenable to experimentation. The relationship between
negative thinking and depression is a good example. Even if we discovered a
means by which researchers could manipulate “depression,” it would seem to
be unethical to do so. Likewise, it is hard to imagine logistically how one could
manipulate, for a sustained period of time, the degree of negative thinking a par-
ticipant experiences. Some questions, it appears, are restricted to merely a cor-
relational analysis.

Loss of control

Negative
thinking

Depression

?

?

??

Figure 1.1 “Negative thinking” and “depression” are correlated, but which one causes
the other? It is also possible that a third variable, “loss of control,” causes both “negative
thinking” and “depression.”
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1.7 The Role of Statistical Analysis and
the Organization of the Textbook

The role for statistical analysis may not yet be very evident from this brief over-
view of the basic concepts of research. Jones (2015), in fact, suggests there are 9
discrete steps to the research process, only one of which involves statistics.
According to Jones the sequential steps are (1) topic selection, (2) literature
review, (3) theoretical/conceptual framework development, (4) research ques-
tion/hypothesis clarification, (5) setting the research design, (6) data collection,
(7) data analysis, (8) drawing conclusions, and (9) disseminating results.
It is true that the research process is, in fact, much bigger than a statistical

analysis; and this first chapter has helped, hopefully, to underscore this point.
That being said, the statistical process is nonetheless crucially important. There
is simply no way to go from step 6 (data collection) to step 8 (drawing conclu-
sions) without proper and careful statistical analysis. Despite the limited role for
number-crunching analyses, they are absolutely necessary to make sense of any
study based on data. Additionally, although the actual statistical work is
restricted to step 7, statistical knowledge will help the researcher in steps 5
and 6. In terms of research design (step 5), just as a woodworker needs to know
what their tools can and cannot do before they design a table, so the researcher
needs to knowwhat their statistical “tools” can and cannot do before they design
a study. Similarly, when gathering data, awareness of the capacities of various
statistical tools will influence which variables are measured and how. Knowl-
edge of research methodology and statistical analysis will always walk hand
in hand.
Once data has been carefully and properly gathered and the research situation

is fully understood, the researcher will use statistical analysis to help make sense
of the observations. Descriptive statistics are techniques designed to describe
and summarize data in an abbreviated form. Frequency counts, distribution
shapes, measures of centrality and variability, and standardized scores are all
statistical tools that can be used to help describe the basic features of that which
is being measured. Part 2 of the text is set aside to address these statistical con-
cepts. Additionally, analyses that are more sophisticated allow the researcher to
test hypotheses, quantify covariation between variables, and determine causal
relationships by analyzing samples of data. This branch of statistical analysis
is referred to as inferential statistics since it grants the researcher the ability
to draw valid conclusions about the characteristics of populations from with-
drawn samples.
The concepts found in Part 2 regarding descriptive statistics are foundational

and must be mastered before inferential statistics can be addressed. Part 3 is
composed of two chapters designed to introduce some important theoretical
underpinnings for inferential statistical analysis, namely, elementary probability
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theory and the basics of hypothesis testing and sampling distributions. Parts 4–7
cover four different groupings of inferential statistical analyses. Part 4 deals with
the basic set of z and t tests as well as the important concepts of decision errors
and statistical power. Part 5 examines three basic “analysis of variance” tests
including the very important interpretative concept of interactions. Part 6 intro-
duces bivariate data, as well as the fundamentals of some statistical techniques
developed to analyze them: the Pearson correlation coefficient and linear
regression. Part 7, the last part, addresses a common set of nonparametric tests
including two different chi-square analyses. It is possible to rearrange the order
of progression starting with Chapter 8 (Part 4); however some concepts needed
for full comprehension of material in Parts 5, 6, and 7 are covered in Part 4.
Each chapter will conclude with a summary, a collection of all of the relevant

formulas and keywords introduced in that chapter, and a series of questions and
exercises to be used by students to practice their skills and for self-assessment.
Each part (starting with Part 4) will conclude with additional work problems
designed to challenge the student’s ability to determine which of the previously
covered statistical tests apply to a given research analysis situation. The appro-
priate analyses may be a test found in the present part or any of the preceding
parts. This feature is included to address a fundamental problem with textbook
learning, the tendency for end-of-chapter exercises to be solved by making use
of only concepts found within that given chapter. By incorporating all the pre-
viously introduced concepts and tests, the exercises at the end of each part will
better simulate and assess the student’s ability to make sense of real-world pro-
blems through the application of an increasingly wider assortment of concepts
and statistical tools.
The textbook addendums contain three appendices: The first is a collection of

tables to help determine critical values for the various statistical tests, the sec-
ond houses the answers to all of the work problems found at the end of each
chapter and part, and the third holds the general instructions for how to use
two software programs that are capable of running various statistical analyses.
Finally, the text contains a glossary with definitions for all key terms, a list of
references, and an index of keywords, terms, and concepts.

Summary

This chapter presented an overview of the basic concepts in research. The sci-
entific method is a three-step cyclical process where theories lead to hypotheses
that lead to observations that lead back to theories. Statistical analyses are used
to interpret the observations in light of the theory being tested.
Researchers develop methods of studying topics of interest that are designed

to answer a particular type of question. Some studies are designed to create a

Summary 27



better explanation of the basic features of the target of study. These are called
descriptive studies. Other research methods, termed correlational studies,
explore the strength of relationship between a variable of interest and other vari-
ables. Another subset of scientific investigations, marked by the controlled
manipulation of one variable, allow researchers to gain a better understanding
of what causes another variable to present itself or change. Studies that feature
this controlled manipulation are called experiments.
Basic research terminology involves familiarity with different types of vari-

ables. Independent variables are the hypothesized causal variables within
experiments; they are the variable manipulated by the experimenter. Dependent
variables measure the hypothesized effect of the controlled presentation of the
independent variable. All other variables are extraneous and must be controlled
so as not to confound the study. Holding constant, balancing, and randomiza-
tion are some of the mechanisms used to control extraneous variables.
The degree to which a study controls all extraneous variables is a measure of

internal validity. Sometimes internal validity is sacrificed in order to study a var-
iable that is not easily manipulated or controlled. These designs are described as
quasi-experimental. Quite separately, external validity describes to what extent
the findings of a study are generalizable to other populations, settings, and sim-
ilar variables.
When researchers are interested in measuring the degree of relationship

between two variables, they use correlational designs. These designs do not
involve manipulating an independent variable, but rather the careful measure-
ment of two variables as they present themselves to the researcher.
Although the role of statistical analysis is limited in the grand sequence of the

research process, it is vitally important such that its absence would render most
empirical studies meaningless. The remainder of the text will examine various
descriptive and inferential statistical concepts and tools designed to help the
researcher interpret data.

Key Terms

Theory
Hypothesis
Observation
Description
Operational definition
Correlation (or prediction or
association)
Understanding
Experiment
Independent variable

Manipulation
Quantitative independent variable
Qualitative independent variable
Control group
Experimental group
Treatment
Dependent variable
Inferential statistics
Extraneous variable
Confounding variable
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Holding constant
Balancing
Participant variable
Random assignment
Internal validity
Quasi-experiment
External validity

Random sampling
Biased sample
Population
Sampling
Sample
Correlational design
Descriptive statistics

Questions and Exercises

1 Identify each of the following phrases as a theory, hypothesis, or observation.
a 20 out of 25 basketball players improved their free-throw shooting

percentage.
b More positive reinforcement by the professor will improve test scores.
c Human interactions are best thought of in economic terms; our actions

seek to maximize gains and minimize costs.
d “Chickens” come before “eggs.”
e More people choose Car A over Car B.
f When giving names in a circle, people will not recall ones given just prior

to theirs.

2 Which of the following descriptions is the clearest operational definition for
the concept “vacation?”
a An extended period of recreation, especially when spent away from home.
b Release from obligation, business, or ordinary activity.
c A stretch of time set aside to relax or travel for pleasure.
d The number of days in a year a person spends not working and away

from home.

3 A researcher has just begun to start to study the “tiny house” trend in home
construction. Think of two researchable questions that line up with each of
the three different goals of the researcher: description, correlation, and
understanding.

4 Identify the independent and dependent variables in the following four studies.
a A psychologist is interested in the effects of vitamin E on physical

endurance. One group of participants receives 20 units of vitamin E,
another 60 units, and a third gets a placebo. Endurance is assessed by
the length of time participants can ride a stationary bicycle. (Also, how
many levels are there of the independent variable?)
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b A teacher evaluates the effectiveness of different educational programs
on reading speed and comprehension.

c A social psychologist hypothesizes that attitude change will be greatest
when people do not have sufficient justification to explain their counter-
attitudinal behavior compared with when they do have sufficient justifi-
cation. (Imagine a person opposed to watching a scary movie but who is
compelled to do so by social pressure. In one condition, they are paid $1
as compensation and in the other $50.)

d An industrial psychologist hypothesizes that the amount of natural light
in the work setting will increase productivity. For 15 days of a month, the
blinds are drawn, and indoor lighting is the only source of light. For the
other 15 days of themonth, the shades are left open. Productivity is meas-
ured by the number of widgets made.

5 Imagine an experiment investigating the effectiveness of different rewards
used by parents to “potty train” their children. Identify several different
types of quantitative and qualitative levels for the independent variable.
Also, describe how to use the technique of “holding constant” to control
at least one potent extraneous variable.

6 Identify a confound affecting internal validity in the following four studies.
(Hint: Some studies may not be confounded.)
a An independent marketing company has been hired to assess people’s

preference for A&W root beer versus Stewart’s root beer. To prevent
bias, all of the test cans are covered with paper, with the letter A placed
on the A&W cans and B placed on the cans of Stewart’s. The order is
counterbalanced such that half of the participants experience A&W first
and then Stewart’s and the other half experience the other order. The
results show that the participants prefer A&W over Stewart’s by a
2:1 ratio.

b An experimental psychologist claims to have discovered an important
cause of bizarre behavior. Laboratory mice are taught to discriminate
between two geometric designs. The mouse is required to jump from
a ledge through a trap door, which has one of the designs painted on
it. If the mouse leaps through the door with the correct design, it lands
on a table with food. If the wrong door is chosen, the mouse falls 3 ft onto
a net. (Falling 3 ft onto a net may be fun for kids, but it is rather unnerving
for a mouse.) Eventually all the mice in the study pick the door that has
the correct design painted on it. A discrimination has been formed. To
test the intelligence of each mouse, the researcher changes some aspects
of the geometric designs so that they look much more alike than they did
originally. Now the mice hesitate and many refuse to jump. To observe
which door themice will choose, the psychologist forces them to jump by
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blasting a loud noise. Faced with such a difficult discrimination, the mice
begin to exhibit unusual behavior. They run in circles, jump up and
down, and fall into a catatonic state. It is concluded that the stress pro-
duced by having to choose between two very similar stimuli when the
consequences of the choice are extremely important leads to abnormal
behavior.

c A particular stretch of highway is noted for an excessive number of traffic
fatalities. The city council decides to reduce the allowable speed limit, since
evidence from national statistics clearly shows that traffic fatalities are cor-
related with speed limits. To make sure that the proper speed limit is
observed, radar units are positioned every 5miles along the highway.
Not only did accidents significantly decrease, but also because of the
increased surveillance, more motorists were following the speed limit.
Obviously changing the speed limit has led to a decrease in accidents.

d Evidence shows that our reactions to pain are, in part, due to psycho-
logical factors. A dentist offers headphones with the patient’s choice of
music to listen to during procedures involving moderate discomfort.
Since some patients may prefer the novocaine, that option is also made
available. Patients are not allowed to listen to music and use the anes-
thetic. Patients are free to choose which method they want. At the end
of the study, the dentist finds that those patients using the headphones
reported less anxiety and less pain than those patients who opted for the
novocaine. To address a potential confound, the dentist went back and
checked records to see that the type of dental procedures was, on average,
similar between the groups.

7 A popular theory of emotion asserts that we label our emotional states based
on the perception of our own physiological arousal and the situation within
which we find ourselves. However, one could question whether the presence
of physiological arousal is really necessary. Maybe all that is required is the
belief that we are aroused. A study is conducted with biological male under-
graduates where 20 slides of different biological females are sequentially
presented for 30 seconds each. The participant wears earphones and hears
what is believed to be their own heart rate; but in fact, it is a recording. The
participant hears an increase in heart rate for some slides and a decrease in
heart rate for other slides. The assignment of heart rates to pictures is ran-
dom and different for each of the numerous biological male participants
involved in the study. The dependent variable is the participants’ ratings
of attractiveness made after each slide. The psychologist finds that the
females observed when the tape-recorded heart rate was high were per-
ceived as more attractive than the females viewed during decreased heart
rates. Therefore, belief in arousal influences perceptions of emotion. Does
this experiment have a threat to internal validity?
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8 “Controlling extraneous variables” is to “generalizability” as:
a Independent variable is to dependent variable.
b Internal validity is to external validity.
c Correlational design is to experiment.
d Random sampling is to random assignment.
e Population is to sample.

9 Professors may exhibit a good deal of subjectivity when grading papers. For
instance, some prefer title pages, while others do not. Suppose we conduct
a study in which we obtain the grades for a paper submitted by everyone in
class. Since this professor does not specify whether the assigned paper
requires a title page, we are able to find a similar number of papers that
do and do not have them. Our results show that the average grade for
the “title-page” papers is higher than for papers not containing them.
Should we conclude that our professor prefers “title-page” papers? What
other interpretation of the results can we make?

10 Which of the following means of assigning participants to two experimen-
tal conditions in a psychological study represent “random assignment?”
a Flipping a coin right before each participant is due to arrive at the lab.
b Looking at a students’ ID card and putting numbers that end in an

odd number in one group and those that end in an even number in
the other.

c Assigning students who signed up in class to the experimental condition
and those that signed up online to the control.

d Asking each student to choose which color they prefer – those that
choose “red” go to one condition and those that choose “blue” go to
the other.

e Asking participants their age. Even ages go to one group, and odd to
the other.

11 Which of the following selection procedures represent the “random sam-
pling” of students at a university campus?
a Standing outside of the cafeteria and asking every third person who

walks in if they will participate in a study.
b Asking the registrar to give us the name of every twentieth person going

alphabetically through the university enrollment list.
c Sending out an email to the entire campus asking for volunteers.
d Getting permission from our professors to stand up in front of class to

ask our fellow classmates.
e Cutting out each name from the university directory, putting them into a

basket, and then blindly drawing names.
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12 For each of the following research questions, design a study that addresses
the question with a controlled experiment. Redesign the study using a cor-
relational methodology. (Hint: It is possible that one or more questions
cannot be investigated by controlled experimentation.)
a Is there a relation between pain and anxiety? (For the experimental

design, pain is the independent variable.)
b Is there a relation between how often a person exercises and resting

heart rate?
c Is there a relation between need for achievement and hours worked
per week?

d Do children who attend preschool day care show better social skills in
first grade?
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2

Scales of Measurement and Data Display

2.1 Scales of Measurement

The scientific method requires the same variables that are referenced by
theories and operationalized in hypotheses be carefully measured when they
are observed. This is how the process of science comes full circle; the carefully
measured observations shed light on the validity of the theory being examined.
Measurement, simply stated, is the assignment of numbers to attributes,
objects, or events according to predetermined rules. A proper understanding
of the different sets of rules, or scales of measurement, is required to make sense
out of what particular numbers mean within a given context. Four different
measurement scales needed for statistical analysis will be presented in order
of the amount of quantitative information they convey.

Nominal Scales

Our first scale conveys no quantitative information. A nominal scale uses num-
bers merely to distinguish one type of thing from another type of thing or one
event from another event. For instance, the numbers assigned to the members
of a soccer team do not carry any quantitative value. They merely distinguish
one player from the others on the team. Using a “1” for biological males and
a “2” for biological females on a spreadsheet is not meant to suggest that females
are somehow or in some way more than males. Or, think about dividing people
into three groups by having them line up and count off: one, two, three, one, two
three, and so on. The numbers used in these examples do not represent quan-
titative differences between groups, but rather merely qualitative ones. Since
there is no quantitative information being communicated, we are free to
exchange one number for any other currently unused number. For instance,
a midfielder who does not like the number 8 can exchange it for 6, provided
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it is not currently being used. Since the numbers on a nominal scale carry
no quantitative value, it makes no sense to find the average or range of all
the jersey numbers on a sports team. Yes, we could find an average or range,
but the resulting value would not be related to anything meaningful about
the team.

Ordinal Scales

Similar to the nominal scale, ordinal measures also categorize things; however,
ordinal numbers additionally reflect a quantitative relationship between the
various categories. Stated more succinctly, an ordinal scale consists of a set
of categories organized quantitatively. The degree of quantitative information
communicated, however, is very limited – merely the relative position of one
event compared to others. For instance, observing that “Jim is less trustworthy
than Pam,” “Corvettes are faster than Accords,” and “Muhammad Ali was the
greatest of all time” are all measurements of relative position.
It may also help to think of the commonly used notion of ranking. Rankings

reflect more or less of something, but not how muchmore or less of something.
The difference between the winner and runner-up in a pie-baking contest may
not be the same amount as the difference between the fourth- and fifth-place
finishers. In other words, the quantitative intervals between adjacent ranks
are not held constant over the entire range of the scale; in fact, the various
interval quantities may not even be known. Consider the house numbers on
a neighborhood street. The numbers mark merely the relative distance a house
is from a given point, say, the center of town. If we are standing at a house
marked 105 Maple, we know that 123 Maple is closer to us than 157 Maple,
but we do not necessarily know howmuch closer. Furthermore, the house num-
bering system could be altered by the city planners if they so wished. The newly
assigned numbers will simply need to increase as the houses sit farther from the
center of town. Relative position information is all that an ordinal scale conveys.

Interval Scales

The next step-up in quantitative information is the interval scale. An interval
scale consists of a set of quantitatively ordered categories but for which all of the
intervals between the categories are held constant (or “conserved”). A good
example is the Fahrenheit temperature scale. The amount of heat needed to
add to a room to move it from 80 to 85 °F would be the same amount of heat
needed to move it from 90 to 95 °F. At each point along the scale, a degree is a
degree. However, interval scales do not possess a true zero point. That is, the
value “zero” is just an arbitrary point on the scale and not the absence of quan-
tity. A room that is measured at 0 °F is not devoid of heat; it could be made
colder. It is also important to realize that any given interval scale does not have
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amonopoly on how the variable is to bemeasured. The degree of heat in a room,
for instance, can be measured using a Celsius scale. Even though the Celsius
scale possesses larger intervals and has a different zero point, both have
conserved intervals across the length of the scale.
The distinction between ordinal and interval scales, however, is not as

straightforward as it may appear, especially in the behavioral and social sciences.
In these areas of study, many scales have been constructed to measure various
psychological concepts – like intelligence, pain, extroversion, authoritarianism,
and so on. The problem with these scales is the difficulty in determining if the
intervals are conserved. For instance, is the intelligence difference between indi-
viduals with IQ’s of 100 and 105 the same as the intelligence difference between
individuals with IQ’s of 45 and 50? The numerical distance between the scores is
the same, but is the difference in the amount of intelligence between the two sets
of scores the same? This is not an easy question to answer. Yet, it is critical
because many statistical tests require data to be measured on a scale possessing
equal intervals across the entire continuum. This is a necessary scale feature
for the important statistical concept of an “average” to be meaningful. This
thorny issue will be discussed more below in Spotlight 2.1 and in Chapter 3
(see Box 3.1).

Spotlight 2.1 Rensis Likert

Use the scale below to respond to the following statement: I enjoy studying
statistics.

○ ○ ○ ○ ○

1 2 3 4 5

Strongly
disagree

Disagree Neither disagree
nor agree

Agree Strongly
agree

If we have ever had to respond to a question in this manner, we can thank the
social scientist, Rensis Likert. Likert, born in 1903 in Cheyenne, Wyoming, first
began his undergraduate studies in 1922 in civil engineering, but then soon dis-
covered that he preferred to study people instead of inanimate objects (Faculty
History Project, 2011). Over the next ten years, he studied a variety of disciplines
including sociology at the University of Michigan and theology at Union Theo-
logical Seminary, culminating with a PhD in psychology from Columbia Univer-
sity. In his dissertation, he presented a measurement tool he developed to
assess how people felt about various topics related to international affairs. This
scale, which asked the respondent to place their attitude on a 5-point scale of
favor to disfavor with a neutral midpoint, was a much simpler procedure

2.1 Scales of Measurement 39



compared with the currently preferred but cumbersome method developed by
another important psychologist named Leon Thurstone (Croasmun & Ostrom,
2011). Since Likert’s scale yielded similar results to Thurstone’s and yet was
much easier to use, Likert’s procedure soon became the method of choice
for measuring personal attitudes on almost any topic across the behavioral
and social sciences. However, there was a price to be paid for the scales’ sim-
plicity; it was unclear if these sequential categories from 1 to 5 were best under-
stood to be characteristic of an ordinal scale or an interval scale. The debate still
goes on today and will be discussed more in Box 3.1.

In 1939, now working for the US Department of Agriculture (USDA), Likert
began to use his scale tomeasure farmers’ reactions and attitudes toward a vari-
ety of President Roosevelt’s New Deal programs that were sponsored by the
USDA (Kish, 1990). Gaining information about people’s perceptions is extremely
important in a democratic systemwhere those who are governing are beholden
to the people they govern. Likert realized this, and over time his measurement
efforts gathered a lot of interest and attracted many professionals from a variety
of other disciplines who were, likewise, interested in assessing the personal atti-
tudes of people regarding all sorts of policies, products, and perspectives. As the
United States entered World War II, his research and measurement team
became involved in the construction of several national surveys designed to
measure American’s attitudes toward many war-related government efforts like
the selling of war bonds, the instituting of price controls, and rationing.

After World War II, Likert and several colleagues, eager to apply their
measurement methods to new problems in a postwar world, started what is
now called the Institute for Social Research at the University of Michigan (see
http://home.isr.umich.edu/). Despite the never-ending challenge to secure
funds for research support, Likert’s unfailing optimism that evaluation research
would become increasing recognized as a needed commodity by academic,
commercial, and government organizations was soon shown to be accurate.
His institute grew rapidly, in just a few years becoming the largest university
organization of its kind.

In addition to Likert’s measurement insights and administrative and organi-
zational talents, he was also a theorist. For instance, he long held an interest in
the study of management styles. While at the Institute for Social Research, Likert
proposed a theory of management-style development arguing that it culturally
evolved through a series of four stages, from “exploitable authoritarianism”
through “benevolent authoritarianism” and “consultative management,” finally
arriving at “participative management” (Hall, 1972). He was a very prolific writer
and thinker authoring several books and over 100 published articles. Looking
over the totality of his life, it is easy to conclude that his influences on the field
of attitude measurement as well as his writings on business, industry, and man-
agement have been unquestionably significant, and yet perhaps ironically, a bit
hard to measure.

40 2 Scales of Measurement and Data Display



Ratio Scales

A ratio scale possesses all of the properties of an interval scale, with the addition
of an absolute zero point. For instance, one could argue that the Kelvin scale of
heat measurement is a ratio scale based on a theoretical state of no energy: 0 °K.
A measure of length is a ratio scale since there is an absolute zero point (i.e. a
point of no length).With an absolute zero point, any number on a ratio scale can
be used to establish its standing relative to any other number on the scale; in
addition, a given number also represents an absolute amount of something.
Could “intelligence” be measured on a ratio scale? No, because an IQ of 0 is
meaningless. Furthermore, it would require us to claim that someone with
an IQ of 100 is twice as smart as someone with an IQ of 50. However, because
the underlying dimension of height has an absolute zero point, a person whose
height is 80 in. is indeed twice as tall as someone whose height is 40 in. Time is
another variable that is often measured with regard to an absolute zero point.
A participant’s reaction time of two seconds is twice as slow as another parti-
cipant’s reaction time of one second. Difference scores using interval scales are
also ratio measurements. For instance, the increase of heat in a room from 50 to
55 °F is half the size of an increase from 70 to 80 °F. Even though the foundation
scale is interval, comparisons of change or difference numbers from that scale
are ratio.
In the behavioral and social sciences, many of the concepts researchers

measure use either ordinal or interval scales. For instance, there are nomeasures
of achievement, aptitude, personality traits, or psychopathology that have a
meaningful absolute zero point. On the other hand, studies that investigate
performance often use a ratio scale – the number (or percentage) of correct
answers, the number (or percentage) of errors, and the amount of time needed
to complete a task are all variables measured on scales with constant intervals
and with a “zero” marking the absence of quantity.

2.2 Discrete Variables, Continuous Variables,
and the Real Limits of Numbers

Discrete Variables

Another important feature of measuring variables concerns howmany different
values can be assigned. A discontinuous (or discrete) variable can take on only
a finite number of values. No meaningful values exist between any two adjacent
values. For instance, an undergraduate student is a freshman, sophomore, jun-
ior, or senior; an adult is single, married, divorced, or widowed; and a roll of a
typical die yields a one, two, three, four, five, or six; there are no “in-between”
possibilities. One cannot claim to be halfway married or roll a die and hope to
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get a 4.5. It is permissible, however, to find statistical features of sets of discrete
data, even if the number produced is not itself an acceptable value. For instance,
it may be true that the average American family size is 2.58 persons, even though
a 0.581 person is not possible. We just need to keep in mind a correct interpre-
tation of this statistic. In this instance, it means that for every 100 American
families, there are, on average, 258 people.

Continuous Variables

A continuous variable can theoretically have an infinite number of points
between any two numbers. Unlike discrete variables, continuous variables do
not have gaps between adjacent numbers. Although 7 and 8 cmmay be adjacent
options on a ruler, there are an infinite number of values between them. Even if
the scale is only marked to the millimeter, there are still an infinite number of
values between 7.3 and 7.4 cm. When the underlying dimension of a scale is
continuous, any number on the scale is an approximation. Even though we
could measure someone’s reaction time down to the tenth of a second, this
measurement could still be refined with a more precise instrument. Therefore,
one can always theoretically increase the precision of measurements for contin-
uous variables. This is not the case when measuring discrete variables. Greater
measurement precision will not alter the fact that, for instance, family members
exist in whole numbers.
Detecting the continuousness of a variable is not as simple as looking at how it

is reported. Age, for instance, is often reported in whole-number years, but the
underlying dimension is clearly continuous. The same point can be made with
respect to psychological measures. Suppose a psychologist administers an
anxiety questionnaire in which scores can range from 16 to 30. Although the
measuring tool may only allow the assignment of whole numbers, the underly-
ing concept is arguably continuous.

The Midpoint of an Interval and Real Limits of a Number

If a variable is continuous, any assigned number is an approximation. When
someone weighs 195 lb, it does not mean that the person is exactly that weight.
A person who weighs 195.1 lb and another who weighs 194.8 lb might both be

1 The use of a “0” in front of a fractional value that is less than one will be the standard practice for
this text. This increases reading clarity. However, there will be occasions when this is not the case, in
particular in situations where the professional reporting of values is being used (as well as in the
tables of Appendix A).
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listed as weighing 195 lb. The number 195 lb is located at the midpoint of an
interval of weights, that is, the balance point of an interval of weights. The upper
and lower boundaries of the interval are called the real limits. The upper real
limit of the number is one-half the unit of measurement above the number, and
the lower real limit is one-half the unit of measurement below the number. If the
unit of measurement is 1, the real limits for the number 13 are 12.5 and 13.5. If
the unit of measurement is 0.1, then the real limits for 13 are 12.95 and 13.05.
Figure 2.1 graphically illustrates the concept of upper and lower limits for num-
bers with different units of measurement.

■ Question The following data set contains the average temperature and
amount of rainfall of several cities for the month of March. For each number,
specify the upper and lower real limit.

Place Temperature (°F) Rainfall (in.)

Acapulco 88 0.1

Chicago 43 2.6

Honolulu 77 3.1

Orlando 76 3.4

Unit of Measurement = 1

Lower 
real limit

Upper
real limit

12.5 13.5

11 12 13 14 15

Unit of Measurement = 0.1

Lower 
real limit

Upper
real limit

12.95 13.05

12.8 12.9 13.0 13.1 13.2

(a)

(b)

Figure 2.1 The upper and lower limits of a score of 13. (a) The unit of measurement is 1.
The real limits are 13 + 0.5 = 13.5 and 13 − 0.5 = 12.5. (b) The unit of measurement is 0.1.
The real limits are 13 + 0.05 = 13.05 and 13 − 0.05 = 12.95.
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Solution The unit of measurement for temperature appears to be 1 °F. The
unit of measurement for rainfall appears to be 0.1 in. Since the boundaries of
a number are one-half the unit of measurement, the upper and lower real limits
of 1° C are 0.5° C above and below the number used to report temperature.
Therefore, the upper and lower real limits for the temperature in Chicago
are 43.5 and 42.5.
Since the unit of measurement for rainfall is 0.1 in., the upper and lower

real limits are specified as 0.05 in. When establishing the upper and lower
real limits, it helps to think of the decimal place that is one notch greater in
precision. If the scale uses whole numbers, the limits will be stated using
the tenth decimal place. If the scale of measurement uses one decimal place
(e.g. rainfall in this example), the upper and lower limits will be reported
using the second decimal place. For example, the upper and lower real lim-
its for the March monthly rainfall of Honolulu are 3.15 and 3.05. The
number 3.1 is the midpoint between 3.05 and 3.15. Table 2.1 presents
the upper and lower real limits for the temperature and rainfall data of this
problem. ■

In most research situations, a list (or distribution) of numbers, called raw (or
original) scores, will be obtained. Unorganized data, though, is hard to inter-
pret. However, if the distribution is presented in a tabular or graphical form,
summaries and important features of the data set can be communicated to
others. The remainder of the chapter presents numerous ways in which data
can be presented in tables and on graphs.

Table 2.1 The midpoint, upper, and lower real limits for average temperatures and amount
of rainfall for several cities in the month of March.

Temperature Rainfall

Lower limit Midpoint Upper limit Lower limit Midpoint Upper limit

Acapulco

87.5 88 88.5 0.05 0.1 0.15

Chicago

42.5 43 43.5 2.55 2.6 2.65

Honolulu

76.5 77 77.5 3.05 3.1 3.15

Orlando

75.5 76 76.5 3.35 3.4 3.45
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2.3 Using Tables to Organize Data

Simple Frequency Distributions

Table 2.2 presents scores from 90 participants who completed a questionnaire
measuring their “need for achievement.” A quick glance tells us very little about
the scores. Indeed, even a longer look only tells us that the values seem to be
between 1 and about 30. It would be nice at least to know howmany participants
received each score.
A simple frequency distribution can accomplish this by systematically list-

ing all of the possible scores as well as the frequency with which each score
appears. Table 2.3 shows a simple frequency distribution for the scores found
in Table 2.2. Note that all possible scores are listed, typically in descending
order, under the heading X. (The letter X is typically used to represent the con-
cept “scores.”) The number of participants that received each score is placed
correspondingly and under the heading f (for “frequency”). Adding up all the
scores under f will tell us the total number of participants in the study. If the
variable being measured is continuous, recall that the X values are actually mid-
points of intervals.

Grouped Frequency Distributions

Some sets of data cover a wide range of possible scores, making the resulting
frequency distributions long and cumbersome. In these situations, researchers
are often willing to exchange the loss of some information to create a table that
is easy to understand. A grouped frequency distribution indicates the num-
ber of scores that fall into each of several ranges of scores (see Table 2.4).

Table 2.2 Unorganized raw data.

15 8 20 16 12 18 14 22 17 5

19 15 18 29 6 13 16 19 10 24

15 3 26 30 13 17 7 16 23 25

1 15 18 14 5 27 16 20 14 6

24 14 20 25 21 15 17 8 23 21

17 14 10 13 18 16 21 9 11 22

15 12 9 16 20 11 13 22 17 13

9 22 16 12 19 17 14 10 19 18

11 16 12 18 13 17 15 14 15 28

Each number is a score from a need for achievement questionnaire.
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Box 2.1 Some Notes on the History of Statistics

Although ancient civilizations like the Egyptians and Chinese used tabulation
and other simple statistics to keep track of tax collections, government expen-
ditures, and the availability of soldiers, the modern use of statistics arguably
began with the Englishman John Graunt (1620–1674). Graunt tabulated infor-
mation on death rates in his hometown of London and noted that the fre-
quency of certain diseases, suicides, and accidents occurred with remarkable
regularity from year to year. This realization, by the way, helped to develop
the establishment of insurance companies. Graunt also found the occurrence
of greater biological male than biological female births. However, due to the
greater male mortality rate (occupational accidents and wars), the number of
men andwomen at themarriageable age was about equal. Graunt believed that
this arrangement was nature’s way of assuring monogamy (Campbell, 2001).

Most early uses of statistics revolved around simple descriptions of data, but
starting around the seventeenth century advances in statistics began to take
place, mostly springing from mathematicians’ interest in the “laws of chance”
as they apply to gambling. The French mathematician Blaise Pascal
(1623–1662) was asked the following question by Chevalier de Méré, a profes-
sional gambler: “In what proportion should two players of equal skill divide the
stakes remaining on the gambling table if they are forced to stop playing the
game?” Pascal and Pierre Fermat (1602–1665), another French mathematician,
arrived at the same answer, although they offered different proofs. It was their
correspondences in the year 1654 that established modern probability theory
(Hald, 2003).

The work of Pascal and Fermat was actually anticipated a century earlier by
the Italian mathematician and gambler Girolamo Cardano (1501–1576). His vol-
ume, The Book on Games of Chance, published posthumously in 1663, contains
many tips on how to cheat when gambling and established some of the origins
of probability theory. Cardano also practiced astrology. Indeed, by using astro-
logical charts he even predicted the year of his death. Upon arriving at that year
and finding himself in perfect health, he decided to drink poison to ensure the
accuracy of his prediction (Gliozzi, 2008)!

Yet more advances in the field of statistics occurred in the nineteenth and
early twentieth centuries. Many of the chapters of this, and every other statistics
textbook, are based on the statistical advances of the period between 1850 and
1930. Sir Francis Galton (1822–1911), among other accomplishments, forma-
lized a method for making predictions of one variable with knowledge of a sec-
ond, related variable (regression analysis) (see also Spotlight 16.1). William
Gosset (1876–1937) ushered in the era of modern experimental statistics by
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Instead of displaying a frequency count for each score, the viewer learns how
many participants obtained scores within a given range. Class intervals are
groups of equal-sized ranges, determined by the researcher and based on
how much information loss one is willing to sacrifice in exchange for

Table 2.3 The simple frequency
distribution constructed from the
unorganized data of Table 2.2.

X f X f

30 1 14 7

29 1 13 6

28 1 12 4

27 1 11 3

26 1 10 3

25 2 9 3

24 2 8 2

23 2 7 1

22 4 6 2

21 3 5 2

20 4 4 0

19 4 3 1

18 6 2 0

17 7 1 1

16 8 0 0

15 8

Table 2.4 A grouped frequency distribution
based on the raw data from Table 2.2.

Lower
limit

Class
interval

Upper
limit Midpoint f

29.5 30–32 32.2 31 1

26.5 27–29 29.5 28 3

23.5 24–26 26.5 25 5

20.5 21–23 23.5 22 9

17.5 18–20 20.5 19 14

14.5 15–17 17.5 16 23

11.5 12–14 14.5 13 17

8.5 9–11 11.5 10 9

5.5 6–8 8.5 7 5

2.5 3–5 5.5 4 3

−0.5 0–2 2.5 1 1

developing analyses that could allow a researcher to make generalizations
based on only a small number of observations (the t test) (see also Spotlight
9.1). Sir Ronald Fisher (1890–1962) made extensive contributions to the field
of research design and developed statistical analyses that can be used to com-
pare the relative influence of several different treatment variables on a depend-
ent variable (the F test) (see also Spotlight 12.1). Contemporary statisticians are
continuing to make advances in statistics, each advance allowing researchers to
ask increasingly complex questions about the mysteries of human behavior.
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simplicity. The class intervals, typically organized in descending order, cover
the full range of scores with no gaps and no overlaps. Each particular score
belongs to exactly one interval. The table on display in this chapter features
class intervals of 3 units.
Class intervals have midpoints, and when depicting continuous variables, they

also have upper and lower real limits. An interval of, say, 20–25, would have a
midpoint of 23, a lower limit of 19.5, and an upper limit of 25.5. In Table 2.4 the
midpoints, lower limits, and upper limits for each interval from the “need for
achievement” data are represented. Rarely are the midpoints and real limits
presented in published research. They are included here for educational
purposes.

Conventional Rules for Establishing Class Intervals

A grouped frequency distribution sacrifices some information by collapsing
numbers into a set of intervals, but it is assumed that this information loss
is inconsequential and perhaps even beneficial. Being able to examine the pat-
tern of scores over the range of potential scores is often more useful than
knowing the frequency of occurrence for each individual score. Table 2.4 uses
11 intervals. As we view the frequency column of the table, we can now easily
see that just a few people received scores in the extreme ends of the distribu-
tion. Most of the scores are in the middle of the distribution, with the greatest
number of scores in the interval 15–17. (This realization is not as easily seen in
a simply frequency distribution.) If too few or too many intervals are used, it
can be difficult to see how the numbers are concentrated. The use of about
10 class intervals is customary; however, the needs of the researcher vary from
situation to situation. The proper number of intervals to use should be deter-
mined by what best illustrates a meaningful pattern or distribution of the
scores.
Common interval sizes, symbolized by i, are i = 3, i = 5, i = 10, or i = some

multiple of 10. There are no fixed rules for constructing a grouped frequency
distribution. However, the following additional guidelines will be helpful:

1) Select an interval size that is suitable. As stated earlier, an interval size that
leads to about 10 class intervals is usually ideal for interpretation.

2) Some graphs of continuous measures require the use of the interval mid-
point. A midpoint that is a whole number makes a graph easier to read.
Try to combine the interval width and the number of intervals in such a
way that the midpoint is a whole number. Using an i that is an odd number
will accomplish this.

3) The first number of the interval should be a multiple of i. If the interval width
is 10, then the first number of the interval should be a multiple of 10. If the
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interval width is 2, then the first number of the interval should be a multiple
of 2. This guideline is sometimes violated when the interval width is 5. For
instance, instead of using an interval of 25–29, with a midpoint of 27, one
may decide to use an interval of 23–27 so that the midpoint is a multiple
of 5 – in this case, 25.

Cumulative Frequency Distributions

A cumulative frequency distribution has an additional column that keeps a
running tally of all scores up through each given interval. Table 2.5 presents
the grouped frequency distribution data found in Table 2.4. The third column
of Table 2.5 lists the cumulative frequencies, abbreviated Cum f. The arrows
in the table show the additive procedure used to find the cumulative
frequency at each interval. It is customary to start accumulating the scores
from the bottom of the frequency distribution. For instance, for interval
15–17, the cumulative frequency is 58. That is the sum of frequencies found
at that interval plus all preceding intervals (1 + 3 + 5 + 9 + 17 + 23 = 58). Note
that the total number of scores in the distribution is the top number of the
Cum f column.

Table 2.5 A cumulative frequency
distribution based on the grouped
frequency distribution in Table 2.4.

Class
interval f Cum f

30–32 1 90

27–29 3 89

24–26 5 86

21–23 9 81

18–20 14 72

15–17 23 58

12–14 17 35

9–11 9 18

6–8 5 9

3–5 3 4

0–2 1 1
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2.4 Using Graphs to Display Data

One of the best ways to display data trends is to summarize them in the form of a
graphic. In this section, we will learn about some of the graphic displays com-
monly used in the behavioral and social sciences and their construction.We will
also learn how to view graphs with a healthy degree of skepticism. Statistical
information in graphical form can be presented in a way that may be technically
correct and yet entirely misleading.

The Axes of a Graph

The typical graph has two axes. The horizontal axis is called theX axis, or abscissa.
The vertical axis is called the Y axis, or ordinate. Larger numbers are to the right
on the abscissa and upward on the ordinate. Smaller numbers progress to the left
on the X axis and downward on the Y axis. Figure 2.2a shows the X and Y axes of a
graph with no negative numbers. Figure 2.2b presents a larger perspective, includ-
ing negative values. Typically the X axis reflects the possible values (X’s), either
quantitative or qualitative, and the Y axis reflects the frequency.

The Frequency Polygon

A frequency polygon plots the number of scores in each of the intervals of a
frequency distribution. The interval width may be 1, as in a simple frequency
distribution, or greater than 1, as in a grouped frequency distribution.
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Figure 2.2 (a) The axes of a group without negative numbers. (b) A graph where the axes
intersect at their midpoints, which allows for the inclusion of negative numbers on each axis.
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Figure 2.3 is a frequency polygon drawn from the grouped frequency distribution
in Table 2.4.Wewill note that in Figure 2.3 (as well as Figure 2.4) the first and last
points of the graph do not meet the horizontal axis. Whether or not to draw the
graph so that the end points meet the X axis is a matter of personal preference.
As we view Figure 2.3, note that the X axis marks the midpoints of the class

intervals. The Y axis is labeled “Frequency” and presents equally spaced num-
bers that specify the frequency of scores. A single point on the graph indicates
the midpoint of a class interval represented on the X axis, and the number of
scores found in the interval is indicated on the Y axis.
The intersection of the X and Y axes usually represents the 0 point for each of

the variables. However, sometimes the first number of a class interval is some
distance from 0, or the first frequency count of an interval is much greater than
0. Should this situation arise, the X and/or Y axes can be truncated (i.e.
shortened where not needed) with broken lines. Figure 2.4 shows a frequency
polygon in which the first midpoint of the lowest class interval is 20 and the first
frequency count is 100. Note the truncation marks at the base of axes. The
truncation technique will be further discussed later in the chapter.
The frequency polygon is a useful graphic for depicting the overall concentra-

tion of numbers. It is easy to construct and it is possible to compare two or more
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Figure 2.3 A frequency polygon of the data in Table 2.4. Points are plotted above each
interval’s midpoint.
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distributions on the same graph (see Box 2.2). However,many suggest frequencies
are easier to read when using a different type of graphic display – a histogram.

The Histogram

The histogram is a graph of vertical bars with shared borders in which the
height of each bar corresponds to the frequency of scores for a given class inter-
val (see Figure 2.5). The width of the bar spans the width of the class interval,
including the real limits. This is why there are no spaces between the bars. The
bars of a histogram are typically colored in to contrast with the background.
The frequency polygon and the histogram are related. If we were to place a

point at the midpoint of the top of each bar of the histogram, erase the bars,
and connect the data points, we would have a frequency polygon. A frequency
polygon has been superimposed on the histogram depicted in Figure 2.5 so that
we can directly compare these two ways to display data graphically.

The Bar Graph

A bar graph is used to represent the frequency of scores associated with cate-
gories. A bar graph looks like a histogram except the bars do not share a com-
mon border. Since the categories represented on the X axis are discrete in
nature, they do not have real limits. Gaps between the bars clearly communicate
this. For example, in Figure 2.6, the scale used on the X axis is nominal.
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Figure 2.4 The X and Y axes are broken between 0 and the lowest scores of each axis.
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Figure 2.5 A frequency polygon superimposedonto ahistogrambasedon thedata in Table 2.4.
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Figure 2.6 The number of undergraduates majoring in psychology (A), sociology (B), history
(C), biology (D), and business (E).
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Psychology, history, and so on are names of different majors. Figure 2.6 shows
hypothetical data depicting the number of undergraduate majors in each of sev-
eral university programs.

Box 2.2 Using a Graph to Provide a Visual Display of Data

Over the past several years, social scientists have been asking Americans how
much confidence they have in specific public institutions. Some interesting
trends have been noted. The recent results of a few of these surveys are sum-
marized in the table below (Confidence in Institutions: Trends in Americans’
Attitudes toward Government, Media, and Business, 2016).

The table below is a useful summary of confidence measurements for three
public institutions. However, to determine if there is a change in confidence
over a recent span of years for any one institution requires careful examination
of each row of the table by scanning back and forth between the columns.
Nonetheless, one can see that the public has much more confidence in
medicine than education and more confidence in both of those institutions
compared with Congress. Representing these findings on a graph, however,
provides a visual display that allows one to observe more quickly these
differences across time.

Percent of the Public Expressing a Great Deal of Confidence in Three Public
Institutions: Medicine, Education, and Congress

2006 2007 2008 2009 2010 2011 2012 2013 2014

Medicine 40 40 39 40 41 40 39 39 38

Education 28 28 29 29 29 28 27 26 26

Congress 13 11 10 10 10 10 8 7 6

The abscissa of Figure 2.7 presents the years. This can be understood as a
discrete variable representing consecutive categories of time. As a result, a
bar graph could have been used. However, by using the line graphs for each
institution, trends in the data can be more easily observed.

Examine the relative heights of the lines to compare the differences among
institutions in terms of the percentage of people expressing confidence. Finally,
do not forget to examine the span of percentages along the Y axis. In this case,
the relative heights of the lines reveal meaningful differences among the three
institutions. However, if there were just trivial differences between the three
institutions, it would be possible to adjust the scale on the Y axis by truncating
it to highlight these minor differences. Whether or not this maneuver would
lead to a misrepresentation of the findings is debatable.
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Graphs Can Be Misleading

Suppose a researcher compares two different methods for enhancing learning. As
it turns out,MethodB produces a relative gain of three points, whereasMethodA
does not have any effect on learning. However, let us suppose that the difference
between no change and a three-point change is actually very modest. Figure 2.8
labels pretest and posttest scores on the X axis. The data points above the pretest
indicate the average number of correct responses for each method before the par-
ticipants are administered any training. The data points above the posttest rep-
resent the average number of correct responses for each method after training.
Note that the line for Method A is parallel with the X axis, indicating no change
in performance as a result of training. The line forMethod B rises slightly, reflect-
ing the modest increase in performance. Since the lines show little divergence, it
appears that the two methods are very similar in their effects on performance.
Now examine Figure 2.9. The same data are graphed, but now it looks like

Method B is vastly superior to Method A. Why? Notice the Y axis. The scale
of measurement has been altered so that an increase of three points spans a
much greater distance along the Y axis. The two graphs are both technically
accurate. However, the second graph is very misleading. In this example, the
Y axis has been truncated, but without including the broken axis line. Further-
more, the highest value on the Y axis is now 14 instead of 30. This leaves the
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Figure 2.7 Data from “Confidence in Institutions: Trends in Americans’ Attitudes toward
Government, Media, and Business, 2016” presented in graphical form.
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Figure 2.8 A graph that shows the relative effects of two training methods on performance.
The lines on the graph indicate that there is little difference between the two methods.
Note the scaling of the Y axis; it appears to start at zero.
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Figure 2.9 The data points of Figure 2.7 are redrawn to create the impression of a vast
difference between the two training methods. Altering the numbers on the Y axis, especially
without signifying that it has been truncated by including a broken line, can give a
misleading picture of the results of the study.



impression on the viewer that participants using Method B virtually topped out
in terms of performance. Together, these techniques serve to amplify the differ-
ences between the data lines. However, this amplification seems tomisrepresent
the actual degree of difference between the twomethods. Viewers should always
pay close attention to not only the data lines but also the scaling of the axes.

Box 2.3 Is the Scientific Method Broken? The Misrepresentation
of Data/Findings

In Box 1.1 we started a series asking whether the scientific method is broken.
Public polling suggests most Americans do not possess a “great deal of
confidence” in the scientific community (Confidence in Institutions: Trends in
Americans’ Attitudes toward Government, Media, and Business, 2016). Part of
the problem might be the misrepresentation of scientific data and findings.

Data misrepresentation can occur in a number of different ways. One way
concerns how science writers interpret scientific findings for the general public.
Since most people get their scientific information from the media, those who
interpret scientific findings for the general public bear a tremendous responsi-
bility to convey accurately the findings of scientific investigators. However,
many writers of science are not sufficiently familiar with the scientific process
or the subtleties of doing and interpreting research. Furthermore, there is no
getting around the fact that there is a financial incentive behind eye-catching
headlines. This situation can often lead to oversimplified descriptions of
findings to the general public. A recent example concerns a team of psychol-
ogists who, in 2013, reported no cognitive improvement for preschoolers
briefly exposed to a music enrichment experience (Mehr, Schachner, Katz, &
Spelke, 2013). It was a limited study designed only to see if effects could be
found in young children with just an initial transient exposure to music. Great
lengths were taken by the authors to clarify the limits of the study. Nonetheless,
headlines soon appeared like this one from the Times of London, “Academic
benefits of music a myth” (Devlin, 2013), clearly overstating the study’s modest
conclusions, not to mention buckingmost people’s strong intuitions to the con-
trary. Indeed, other research performed just a year later suggests children from
disadvantaged backgrounds show improved neuroplasticity and language
development with exposure to community music classes (Kraus, Hornickel,
Strait, Slater & Thompson, 2014). Some of the public’s distrust of science results
from the careless way in which many popular interpreters of science report
findings – “findings” oftentimes shown to have been stated in far too simplistic
terms.

Another form of data misrepresentation concerns the researchers them-
selves, either through data collection or interpretation. Assuming, for the
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moment, the purest of motives, researchers can unintentionally bias participant
responses through the ordering of questions (which question comes first, then
second, and so on), the limited number of response options available, or even
the specific wording of the questions. For example, a 2005 Pew Research survey
(Pew Research Center, n.d.) found that the 51% of respondents who favored
“making it legal for doctors to give terminally ill patients the means to end their
lives” dropped to 44%when asked if they favored “making it legal for doctors to
assist terminally ill patients in committing suicide.” Phrases that may seem iden-
tical to the researcher may be interpreted differently by respondents. In addi-
tion, there are hard-to-answer questions regarding how to treat data that does
not fit and seems like it may have been gathered incorrectly – so called “out-
liers.” (Should it be discarded? What if it really is good data?) Some researchers
also selectively report findings, only publishing relationships that are standout
even though numerous relationships were compared. Sometimes a proper under-
standing of a finding can only be found when placed in a broader context –
a context some researchers choose to leave out of their report. For instance,
would we be impressed by someone if they said they have such mastery over
coin flipping that they can control which side of a coin comes up? What if they
said they once got a coin to end up on “heads” nine times in a row? Seems
impressive, does it not? However, our amazement might be dulled a bit if
we found out their reference to a string of nine heads-in-a-row was dug
out of the middle of a series of 4000 coin flips. Context matters. (This topic
will be explored more in Box 8.1.) Unfortunately, several scientific articles,
many of which misrepresented findings unintentionally, are retracted by aca-
demic journals every year. Retractionwatch.com is an example of one website
that monitors these retractions.

Finally, there is the issue of academic fraud (e.g. Carey, 2016). Science, we
must remember, is not practiced by purely objective robots or angels, but rather
by people – people possessing the frailties, temptations, and pressures com-
mon to us all. Science is also a cultural enterprise, with its own hierarchy of
authority, internal rewarding structure, and value system – a value system that
places a premium on new findings, new ideas, and numerous publications.
Researchers that do not make original discoveries, propose interesting innova-
tive theories, or generate numerous publications often find themselves out of a
job. Given this reality, we should not be surprised to learn that just as the enter-
prise of professional sports, financial investment, politics, and virtually all other
human communities deal with different cheating scandals, this practice can
and does take place within the world of scientific investigation. Thankfully, just
as in these other professions, there are correcting mechanisms in science –
mechanisms designed to ferret out falsehoods and eventually get to the truth.
Nonetheless, when the public finds out that a headline may be incorrect, a jour-
nal article needs to be retracted, the journal itself is fake, or a scientist is found
to be fraudulent, we should not be surprise to learn that to some people it feels
as if “science” is broken.
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2.5 The Shape of Things to Come

Graphs allow us to look at the “forest” of a distribution set instead of the “trees”
of individual data points. As data sets grow in size, the ability to describe effi-
ciently, yet accurately, the features of a distribution becomes more important.
It is interesting to learn that most data sets, whatever the size, can be well
described by identifying just three characteristics: the shape of the distribu-
tion, a measure of centrality, and a measure of variability. The second and
third characteristics will be the subject matter for the next two chapters,
but for now let us discuss several terms and concepts related to the shape
of distributions.

Bell-shaped Distributions

If we were to keep adding numbers to our set of “need for achievement” values
(see Table 2.2) and then graph them, using either a histogram or a frequency
distribution, we would likely see a bell-shaped curve start to emerge. In fact,
with the 90 scores that are given, this shape is already beginning to form (see
Figure 2.5). Many naturally occurring phenomena, when measured and
graphed, begin to cluster in the middle and approximate what is called a normal
distribution. A normal distribution (or normal curve) is a symmetrical, bell-
shaped curved line escalating gradually at first and then more sharply, inflecting
at some point and then tapering to a peak (see Figure 2.10 for one example). We
will learn much more about normal curves in later chapters. Of course, fre-
quency distributions and histograms, even ones possessing large numbers, do
not perfectly take on this flowing curve, but a smooth-lined representation of
the data is certainly invited by the viewer. It makes sense, theorists argue, to
begin to think of many data sets in terms of being normally distributed. This
shape will become exceptionally important to us as we learn more about
descriptive and inferential statistical analyses.

Skewed Distributions

Not all data sets, however, approximate a normal curve. One non-normal curve
type finds most of the scores near one end of a distribution. This is a called a
skewed distribution. Figure 2.11 shows a positively skewed distribution and
Figure 2.12 depicts a negatively skewed distribution. The type of skewedness
can be determined by looking at the direction in which the elongated tail is
pointing. The elongated tail points toward the larger positive numbers in a pos-
itively skewed distribution and toward the smaller or negative numbers in a
negatively skewed distribution.
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Figure 2.12 A negatively skewed distribution. Here, most of the scores are found in the upper
end of the distribution, and the elongated tail is pointing toward smaller or negative numbers.
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Figure 2.11 A positively skewed distribution. Here, most of the scores are found in the lower
end of the distribution, and the elongated tail is pointing toward larger positive numbers.
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Figure 2.10 One type of bell-shaped curve is the normal curve. Note that it is symmetrical
and most of the scores are found in the middle of the distribution.



Kurtosis

Kurtosis refers to the quality of the peak of the curve. The sharpness of the peak
reflects the relative concentration of the scores. In Figure 2.13, most of the
scores are found very close to the middle of the distribution. When the shape
of the curve is relatively narrow and possessing an accentuated peak, the distri-
bution is labeled leptokurtic. In Figure 2.14, most of the scores are spread out
and widely dispersed. When the shape of the curve is relatively broad and pos-
sessing a muted peak, the distribution is labeled platykurtic.
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Figure 2.13 A leptokurtic distribution. Scores are concentrated heavily around the middle of
the distribution with little dispersion among the scores.
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Figure 2.14 A platykurtic distribution. Scores are dispersed widely, and the shape of the
curve is relatively broad.
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The curves drawn to illustrate the concepts of skewness and kurtosis do not
exhaust the myriad of ways in which scores can be patterned. A distribution can
be shaped like a J, a box, a U, or even an M; in fact, distributions can assume
practically any shape. And these shapes matter. In Chapters 3 and 4 we will learn
that different statistical concepts developed to describe data sets should be used
for different shaped distributions.

2.6 Introduction to Microsoft® Excel and SPSS®

Starting with Chapter 2, information will be presented at the end of most chap-
ters designed to help students connect concepts explored in the chapter with the
capabilities of two statistical application programs, Microsoft Excel and SPSS.
Excel was chosen because of its accessibility; it is ideal for students who do
not have access to college or university software programs. SPSS was chosen
because it is commonly available for students who do have access to college
and university computer systems. Appendix C contains general instructions
for using Excel and SPSS, including the inputting of data.
Tables and graphs can be made using Excel. Tables are easily constructed by

creating column headings and then inputting the corresponding data below the
column headings. There are actually three different features within Excel that
can be used to create graphs. The Pivot Table feature is recommended when
working with discrete or nominal categories (e.g. like ethnicity, religion, aca-
demic major, etc.) for the X axis. Either the Histogram Analysis Tool or the Fre-
quency function is recommended when working with continuous variables (e.g.
time, age, etc.) for the X axis. See Figure 2.15 for an example of a table and fre-
quency polygon created using Excel. This data set reflects the frequency and
academic classification of students taking a statistics class in a given year. Excel
is a very sophisticated program possessing numerous options available to the
user for generating customized graphical displays. For specific help using Excel,
students are recommended to either purchase an Excel tutorial manual for sta-
tistics or use available instructional videos easily found on the Internet.
SPSS is an extremely sophisticated but fairly easy-to-use statistical software

analysis tool. For creating tables, use the Custom Tables option. This feature
is not standard on all forms of SPSS. If not available, users will need to export
data into Excel to create tables. For creating graphs, SPSS has the Chart Builder
feature. See Figure 2.16 for an example of a histogram created in SPSS using the
Chart Builder feature. For specific help using SPSS, students are recommended
to either purchase a SPSS tutorial manual or use available instructional videos
easily found on the Internet.
Students need to be aware that different publication forms have specific for-

matting standards. Most written work in the behavioral and social sciences
requires use of the American Psychological Association (APA) writing style
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and format. Information about the specific formatting expectations of the APA,
including the use of graphs and tables, can be found in their publication manual
and on various Internet sites.
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Figure 2.15 A table and graph generated using Microsoft Excel.
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Figure 2.16 A histogram generated using the Chart Builder function in SPSS. The data comes
from Table 2.2.
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Summary

Careful measurement is a necessity for conducting scientific research. This
chapter introduces us to the 4 most useful scales of measurement for social
and behavioral scientists. A nominal scale merely distinguishes one attribute,
event, or thing from another. There is no quantity reflected in nominal num-
bers, and any number can be assigned to any event as long as it is currently unas-
signed. Variables measured on a nominal scale are qualitative.
Ordinal measures also categorize things, but in quantitative relation to one

another. An ordinal scale is used to identify the relative position of an attribute,
event, or object in comparison with others in terms of more or less. The concept
of “ranking” is helpful when considering the ordinal scale.
More specific descriptions of quantity are found in the interval scale. Here all

intervals between units on the scale are held constant. The amount of quantity
needed to go from a five to a six on an interval scale is the same amount needed
for a one-unit movement at any other position on the scale. This additional fea-
ture is necessary for many statistical techniques since it allows averages to
be found.
A ratio scale possesses all of the properties of an interval scale with the addi-

tion of an absolute zero point. This allows ratio statements to be made. For
example, on a ratio scale, 5 is actually half of 10 and 20 is one-third of 60.
A discontinuous or discrete variable is one that typically increments from one

whole number to another whole number. Discrete variables are characterized by
gaps between numbers that cannot be filled by any number. A continuous var-
iable, on the other hand, does not have gaps between adjacent numbers. The
upper and lower boundaries for a unit interval of a continuous variable are
called the real limits. The upper real limit of the number is one-half the unit
of measurement above the number, and the lower real limit of a number is
one-half the unit of measurement below the number.
Using tables and graphs to organize data allows us to view a summary of the

raw scores of the study. A simple frequency distribution lists all the possible
scores and the frequency with which each score appears. A grouped frequency
distribution indicates the number of scores that fall within each of several inter-
vals. Class intervals are sets of equal-sized ranges used to organize data in
grouped frequency distributions. A cumulative frequency distribution includes
a column that shows the accumulation of the number of scores for a given inter-
val as well as all of the preceding intervals.
The typical graph has two axes. The horizontal axis is called the X axis or the

abscissa. The vertical axis is called the Y axis or ordinate. Larger positive num-
bers are to the right on the abscissa and upward on the ordinate.
A frequency polygon uses themidpoint to plot the number of scores in each of

the intervals of a frequency distribution. A histogram represents the frequency
of scores using the real limits of class intervals to create bars with common
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borders. A bar graph is used to represent the frequency of scores associated with
categories. A bar graph looks like a histogram except that the bars do not share a
common border. Viewers of graphs should take note of the scaling on the axes
to avoid misunderstanding the presented data.
Statisticians use terms to describe important features of the shape of distribu-

tions. A normal curve is a symmetrical, bell-shaped line escalating gradually at
first and thenmore sharply, inflecting at some point and then tapering to a peak.
A distribution that has scores that bunch at one end of the distribution is
skewed. A positively skewed distribution has scores that bunch at the lower
end of the distribution with an elongated tail pointing toward larger positive
numbers. A negatively skewed distribution has scores that group around the
upper end of the distribution with an elongated tail pointing toward smaller
or negative numbers. Kurtosis is a term that refers to the quality of the peak
of a distribution. A leptokurtic distribution features a narrow width and accen-
tuated peak, while a platykurtic distribution features a wide width and
muted peak.
Microsoft Excel and SPSS are two programs students may have access

to when learning about statistics. Tables and graphs can be constructed
within both of these programs. While sophisticated, both programs are
easy to use with the help of tutorials. Most behavioral and social science
manuscripts require APA formatting of figures and tables. The APA Pub-
lication Manual is a recommended resource for all behavioral and social
science students.

Key Terms

Measurement Cumulative frequency distribution
Nominal scale Abscissa
Ordinal scale Ordinate
Interval scale Frequency polygon
Ratio scale Histogram
Discontinuous (discrete) variable Bar graph
Continuous variable Normal distribution (or normal curve)
Midpoint Skewed distribution
Real limits Positively skewed distribution
Raw (original) scores Negatively skewed distribution
Simple frequency distribution Kurtosis
Grouped frequency distribution Leptokurtic
Class intervals Platykurtic
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Questions and Exercises

1 Indicate whether each of the following scales of measurement are nominal,
ordinal, interval, or ratio.
a Amount of change in attitudes.
b Attitudes toward nuclear disarmament (for/against).
c Ratings of popularity.
d Amount of time tolerating a painful stimulus.
e Heart rate under stress.
f A measure of need for approval.
g Amount of weight lifted.
h Numbers assigned based on political affiliation.
i Numbers assigned to different types of diagnostic categories.
j Mood disorder versus no mood disorder.
k A listing of tennis players from best to worst.

2 Think of different ways to measure the following concepts using as many
different scales as possible.
a Academic proficiency
b Athletic prowess
c Creativity
d Daily food consumption
e Size of extended family

3 For each class interval, specify the width, the real limits, and the midpoint.
a 1–3
b 5–10
c –4––8
d −2–+2
e 1.50–3.50
f 25–50

4 The data in the following table are from a midterm examination. Set up fre-
quency distributions with:
a i = 1 (simple frequency distribution)
b i = 3
c i = 10
d i = 20
e Include cum f columns for each one

66 2 Scales of Measurement and Data Display



Midterm examination scores

40 98 63 90 70 60 45 43 78

67 56 54 78 87 43 90 81 81

77 80 79 80 81 66 75 88 84

49 63 78 79 80 92 89 84 77

5 For each of the frequency distributions in Problem 4, specify the real limits
of each class interval.

6 Construct histograms for each of the frequency distributions of Prob-
lem 4.

7 Based on the histograms of Problem 6, draw frequency polygons.

8 Think of two variables that may be normally distributed; defend the
rationale.

9 Think of two variables that may be negatively skewed; defend the rationale.

10 Think of two variables that may be positively skewed; defend the
rationale.

11 The amount of sugar per serving in breakfast cereal might be misrepre-
sented on the side of a cereal box. Draw two different bar graphs, both
using the data in the table below: one graph faithfully representing the rela-
tionship between the cereals and the other misrepresenting the relation-
ship in such a way as to suggest Cereal A is far superior to these other
brands in terms of sugar content.

Cereal type A B C

Sugar in grams/serving 12 14 15

Computer Work

12 Use a software package to establish simple, grouped, and cumulative fre-
quency distributions for the following numbers. Also, generate a graphic of
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the following numbers. If the program allows for various graphics, repre-
sent the data in each graphic form (e.g. polygon, histogram, etc.).

15 12 13 14 10 15 30 12 17 15 15 30

16 17 28 19 22 25 10 19 32 11 22 32

14 43 32 20 25 29 19 18 29 10 18 39

30 35 19 29 47 25 25 45 16 75 60 25

74 55 18 70 50 20 40 50 45 60 40 62

62 89 61 72 90 65 85 80 60 45 22 49

35 18 49 25 30 59 50 78 35 60 75 39

60 70 25 53 74 74 43 74 72 70 90 75

75 99 77 75 89 60 67 80 80 64 77 82

68 85 80 63 82 75 48 34 16 17 22 25
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3

Measures of Central Tendency

3.1 Describing a Distribution of Scores

When social and behavioral scientists collect data, they gather up the numeri-
cally represented observations (or “scores”) associated with a given variable. As
we learned in the last chapter, viewing a list of scores associated with a variable
can be rather uninformative. For example, suppose someone has used a tracking
device to record the distance walked each day during an eight-week period. If we
were to ask them what they found, we might find it rather cumbersome and not
particularly helpful if they responded by reciting a 56-item list of daily totals.
Although a lot of information would be communicated, it would be hard to
make much sense out of it. In Chapter 2 we learned ways in which a distribution
of scores could be visually displayed by using various tables and graphs. In addi-
tion to these visual displays, however, a variety of descriptive statistics have
been developed, which are designed to quickly and efficiently numerically com-
municate the basic features of a distribution.
What are the most relevant aspects of a distribution to communicate? In

Section 2.5 we learned that there are three key features of any data set: the shape
of the distribution in terms of the frequency of occurrence for the scores, a
measure of central tendency, and a measure of variability. We introduced some
concepts related to distribution shape in Chapter 2, and more information
about shape will be presented as we go along. This chapter will focus on
measures of centrality and Chapter 4 will focus on measures of variability.
Measures of central tendency (or centrality) are statistical indices designed
to communicate what is the “center” or “middle” of a distribution, and
measures of variability (or dispersion) are statistical indices designed to
communicate the degree to which scores are dispersed around this center or
middle point.
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3.2 Parameters and Statistics

In Chapter 1 we introduced the terms “population” and “sample.” Recall that a
population is defined as every member of a given group and a sample is a subset
of a population. Deciding whether a collection of scores is a population or a sam-
ple can easily change based on one’s perspective. If a researcher gathers test scores
from a class and is only concerned with that class, then those scores constitute a
population of scores. However, if the researcher is interested in their students in
general, then this set of test scores should be considered a sample – a subset of the
larger population of “her students.”Parameters are numerical values that describe
the distribution characteristics of a population. Statistics are those numbers used
to describe the characteristics of a sample. In one case, an average of test scores
equaling a 78 represents a parameter; in the other that same number represents
a statistic. Unfortunately, the term “statistic” can still be confusing. It can refer to a
general field of study (the subject matter of this book), it can be colloquially refer-
enced as a number (“Bob got divorced, now he is just another statistic”), or it can be
a value that summarizes a feature of a sample of scores.
Most studies involve the use of samples since the researcher is interested in

generalizing the findings to people not in the study. The distinction between a
population and a sample is very important in the field of statistics. To help keep
the distinction straight, different symbols are used in formulas to indicate when
a data set is considered a population or a sample. Moreover, some formulas,
such as those used for measures of variability, are actually slightly different,
depending on whether the distribution is considered a sample or a population.
Misunderstanding the way in which a data set is being conceived can actually
cause one to generate a wrong statistical value.

3.3 The Rounding Rule

Before discussing the three main ways to measure central tendency, a brief
digression is in order. Since this is the first of many chapters in which we will
be performing calculations, we should reach some agreement on how precise we
need to be in our calculations. Given that most of the data is centered on whole
numbers, it makes sense to take fractional values out to two decimal places. This
entails completing our computations to the third place to the right of the dec-
imal point and then rounding the value to two places to the right of the decimal
place. For example, 27.534 would be rounded to 27.53. If the third decimal place
is a 5, always round up. So, 34.785 becomes 34.79. Throughout the text, multi-
step computations are illustrated, and interim values are typically rounded to
two places. If our answers to work problems are slightly different than the
answers provided in the text or in Appendix B, it is possible that the difference
is due to rounding errors. These minor discrepancies should not concern us.
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3.4 The Mean

Themean, colloquially referred to as the “average,” is the most frequently used
measure of central tendency. It is also commonly used in formulas designed to
test experimental hypotheses. As a descriptive measure, the mean has some
advantages and disadvantages, which will be discussed later. Formula 3.1a
shows how to find the mean for a population.

Population mean

μ=
ΣX
N

(Formula 3.1a)

where

μ = (pronounced “mew”) the symbol for the mean of a population
X = a score in the distribution
N = the total number of scores in the population (or population size)
Σ = (pronounced “sigma”) a notation that directs one to sum up a set of scores.
Thus, ΣX =X1 +X2 +X3 Xn

The formula for the samplemean is identical to the population formula, with
the exception of two different symbols. These different symbols clarify if the
data set is considered a sample or a population. As different formulas are
presented in the text, we will see that Greek letters are used to represent features
of a population, while Romanized letters are used to represent features of
samples.

Sample mean

M =
ΣX
n

(Formula 3.1b)

where

M = the symbol for the mean of a sample
n = the total number of scores in the sample (or sample size)

■ Question What is the mean of this population of scores?

5, 8, 10, 11, 12

Solution μ=
46
5

= 9 20

Notice that the answer of 9.2 would be the same whether the set of scores is
considered a population or a sample. Although the designation is theoretically
important, it does not impact the calculation of the statistic. ■
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The common practice in many statistics books is to use X (pronounced “X
bar”) to represent the sample mean. This is the more traditional symbol. How-
ever, most recent published manuscripts in the social and behavioral sciences
report sample means using an M. Since students are much more likely to
encounter this symbol in their readings and to use this symbol in their profes-
sional writing,Mwill be the symbol used in this textbook. If we see theX symbol
elsewhere, keep in mind that it also stands for the sample mean.
There are three measures of central tendency discussed in this chapter: the

mean,median, andmode. Eachmeasure is designed to communicate where scores
tend to center or group in the distribution. However, each measure approaches
the concept of “centeredness” differently. In what way does the mean reflect
the center of a distribution? Or stated in other words, what does the meanmean?
Each raw score in a distribution can be thought of as being “off” of some mid-

dle point or deviating from some middle point by a certain amount, even if that
amount is zero. The mean is the value where the sum of those raw score devia-
tions across a data set equal zero. To clarify, let us tackle this a different way.
A deviation score (sometimes referred to as an error score) is the distance
a raw score is from the mean (X –M), and let us symbolize it as x (pronounced
“little x”). Therefore, x =X –M. So, if themean of a distribution is 10, a raw score
of 12 has a deviation (or error) score of 2.
In Table 3.1, the deviation score for each raw score is listed in the fourth

column. Note that a raw score has a negative deviation score when it falls below
the mean and a positive deviation score when it falls above the mean. The sum of
all the deviation scores equals 0; this is how the mean defines the middle or the
center of a distribution. Stated mathematically, Σ(X –M) = Σx = 0. In Table 3.1,
both distributions have identical scores except for Participant 5. A score of 30,
instead of 10, is obtained by Participant 5 in Distribution B. As a consequence,
the M of Distribution B (10) is greater than the M of Distribution A (6). How-
ever, the deviation scores still sum to 0. In a manner of speaking, the mean has

Table 3.1 Deviation scores always sum to zero.

Distribution A Distribution B

Participant Score M X −M (x) Participant Score M X −M (x)

P1 2 6 −4 P1 2 10 −8

P2 4 6 −2 P2 4 10 −6

P3 6 6 0 P3 6 10 −4

P4 8 6 +2 P4 8 10 −2

P5 10 6 +4 P5 30 10 +20

Σx = 0 Σx = 0
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adjusted itself so that the Σx is still = 0. It is in precisely this sense that the mean
is the center of a distribution. For every distribution, no matter what its shape or
number of raw scores, the sum of the deviation scores off of the mean always
equals 0.

The Weighted Mean

Imagine the mean SATWriting and Language scores from three high schools in
one school district are 425, 470, and 410. If we wanted to find the mean SAT
score for the district, would we be justified in taking the mean of the three high
school means? No, not unless each school had the same number of students. For
instance, imagine the school with the highest SAT average has twice the number
of students compared with the other schools. Failing to take that into account
would generate a combined mean that would be too low. We need a system of
taking each mean into account based on the number of scores that were used to
create it. Formula 3.2 accomplishes this task by computing the weighted mean
(or grand mean).

Weighted mean

M =
n1 M1 + n2 M2 + nn Mn

n1 + n2 + nn
(Formula 3.2)

where

n1.n2 = the number of scores in the first group, the second group, and so forth
nn = the number of scores in the last group
M1,M2 = the mean of the first group, the second group, and so forth
Mn = the mean of the last group

■ Question What would be the weighted mean, assuming the following values?

School 1 School 2 School 3

n1 = 220 n2 = 178 n3 = 192

M1 = 425 M2 = 470 M3 = 410

Solution

M =
220 425 + 178 470 + 192 410

220 + 178 + 192

=
255880
590

M = 433 69■
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■ Question The mean blood pressure for three age groups has been recorded.
What is the overall mean blood pressure?

Age

20–39 40–59 60+

Systolic 118 128 145

Diastolic 70 78 82

n 13 12 16

Solution Msystolic = 131 and Mdiastolic = 77 ■

The Mean of a Frequency Distribution

Chapter 2 shows how a distribution of scores can be displayed in a table, which
allows us to ascertain the frequency with which each score occurs. It is an easy
matter to calculate themean of a distribution displayed in such a fashion, whether
it is considered a population or a sample. Simply use the following formula.

Mean of a frequency distribution

μ or M =
ΣXf
Σf

(Formula 3.3)

where

f = frequency with which a score appears

Table 3.2 includes a column of raw scores, a frequency column, and a column
of cross products, Xf. The sums at the bottom of each column are used to find
the mean.
The mean is an attractive measure of centrality not only because it incorpo-

rates every value in a data set but also because it includes each score’s interval
distance away from the center. As we will see, the other measures of centrality
cannot do this. However, this ability is a double-edged sword. In Table 3.1, we
saw that replacing Participant 5’s raw score of 10 with the quite discrepant value
of 30 shifted themean tremendously – from 6 all the way to 10. This highlights a
problem with using the mean; it is very sensitive to extreme scores. This prob-
lem intensifies as data sets get smaller. An extreme score has a greater influence
on the resulting mean as the size of the sample or population shrinks.
To illustrate this, consider Congressman Ezra Windblows. The congressman

is elected on the promise to bring prosperity to the district. During the next elec-
tion Windblows would like to convince the constituents that the promise has
been kept. The definition of prosperity Windblows uses is the mean income
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of families living in the exceptionally small district. When the congressman was
first elected, the mean income in the district was $50 000. Two years later, one
couple moved into the district with a yearly income of $250 000. Everyone else’s
income remained the same. Look what happens to the average family income
when the mean is used as the measure of central tendency.

Family income (beginning of
Congressman Windblows’ term)

Family income (end of
Congressman Windblows’ term)

$44 000 $44 000

$48 000 $48 000

$50 000 $50 000

$52 000 $52 000

$56 000 $56 000

μ = $50 000 $250 000

μ = $83 333

Congressman Windblows could honestly report that the average income per
family had dramatically increased during this short term in office. Since extreme
scores in small samples can result in a mean that does not appear to represent
the middle of a distribution, it is necessary to have an index of central tendency
that is not particularly sensitive to extreme scores. Now imagine what would
happen if that same family moved into a district with about 50 000 families.
Would the mean change much?

Table 3.2 Calculating the mean from a frequency distribution.

X f Xf

7 1 7

6 3 18

5 2 10

4 5 20

3 4 12

2 1 2

1 1 1

n = Σf = 17 ΣXf = 70

M =
Xf = 70
f = 17

= 4 12
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Unfortunately, many distributions possess more than one extreme score.
Skewed distributions, in fact, can feature a moderate percentage of scores trail-
ing well off to one side. If we are interested in accurately communicating where
scores of a distribution are bunched, and the existence of extreme scores would
lead to a misleading impression, then a different measure of centrality is needed.

3.5 The Median

We have learned that the mean defines centrality as the point in a distribution
where the Σx = 0. Themedian defines centrality, however, as the number where
50% of the scores in a distribution fall above it, quantitatively speaking, and 50%
of scores fall below it. In other words, the median divides the distribution based
on the frequency or number of scores above and below a given point. The
median is not algebraically defined, and so for most distributions there is not
an algebraic formula to determine it.

Finding the Median When Given an Odd Number of Scores

■ Question What is the median of this distribution?

1, 4, 6, 8, 40, 42, 43, 45, 47

Solution 40
Themedian is 40 because the same number of scores (four) fall above 40 as fall

below 40. To find the median, we need to position the scores in ascending (or
descending) order and then identify the midpoint of the distribution. ■

Note that in the above example the values of the scores surrounding themedian
are irrelevant. The median is based strictly on the ranking of scores.We could say
that the median is “rank sensitive,” whereas the mean is “value sensitive.” The
median takes care of the problem of extreme scores; they only count as one score,
no matter their distance from the middle of the distribution. But the downside
comes for numbers measured on an interval or ratio scale. Their exact position
carries important quantitative information, and yet it is not factored into finding
themedian; only relative positionmatters. In this example, ameasure of centrality
as high as 40 might seem to misrepresent the concept of “center.” A few illustra-
tive problems will further emphasize this point.

■ Question What is the mean and median of this sample distribution?

2, 4, 7, 9, 12, 15, 17

Solution M = 9.43 median = 9 ■
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■ Question What is the mean and median of this sample distribution?

2, 4, 7, 9, 12, 15, 17, 46, 54

Solution M = 18.44 median = 12 ■

Look closely at the two previous distributions. They are identical with the
exception of two extreme scores added to the second. This has greatly influ-
enced the mean – nearly doubling it. The median, however, was only shifted
one score to the right.

Finding the Median When Given an Even Number of Scores

In the examples provided so far, it was easy to identify the median because there
were an odd number of scores in the distribution. But what do we do in these
situations?

4, 6, 9, 10, 11, 12

1, 2, 4, 6, 8, 11, 14, 18

The median will fall between two scores anytime there is an even number of
scores; itwill typicallybeavalue thatdoesnotoccur in thedistribution.Themedian
may even be a number, like a fraction, that does not seem tomake sense in terms of
what is beingmeasured. For instance, imagine themedian number of traffic tickets
handed out eachmonth for a given city equals 207.5. (What is themeaning of one-
half of a traffic ticket?) Remember that statistical concepts convey a feature of an
entire distribution; it is not a requirement that the statistical value itselfmake sense
asa score in thatdistribution.The followingexampleswill showushowtocalculate
medians when there is an even number of scores in the distribution.

■ Question What is the median of this distribution?

3, 9, 15, 16, 19, 22

Median

Solution 15.50
The median of a distribution having an even number of values is the mean of

the middle two numbers, provided there are not a string of identical numbers in
the middle. ■

Finding the Median When There Are Identical Scores in the Middle of
the Distribution

■ Question What is the median of the following distribution?
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7, 7, 7, 8, 8, 8, 9, 9, 10, 10

Median

Solution
If discrete, the median = 8.00.
If continuous, the median = 8.17.
It may not be immediately obvious why the type of variable matters and why

one answer would be 8.17. Recall from Chapter 2 that discrete variables can take
on only a finite number of values. No meaningful values exist between any two
adjacent values. In situations like this, since the same number is found on both
sides of the middle count, the resulting median is simply that number. However,
for continuous variables, every number of a distribution is considered to be at
the midpoint of an interval; remember using real limits to draw histograms? Ok,
since there are 10 values, we need to have 5 values on each side. Coming up from
the bottom, the three 7’s get us to within two values of the middle. So, we need
2/3rds of the three 8’s to get us to five on each side. Remember that for a con-
tinuous measure the value of 8 is the midpoint of the interval 7.5–8.5. So, we
need two of those three values that are centered on 8 to go to the lower side
of the middle and one of the values centered on 8 to go to the higher side.
But those 8’s cannot be separated since they are stacked on top of each other.
(Look at Figure 3.1.) Ok, so we will have to split those three boxes identically so
that a total of two of them fall to the lower half of the distribution and the
remaining parts of the boxes fall to the upper half. If we drew a line down
through the three boxes such that 2/3rds of each box was to the left and 1/3

3

2

1

6 7 8 9 10 11

2/3 1/3

Median = 8.17

F
re

qu
en

cy

Figure 3.1 A visual representation of how to find a median when there are identical scores in
the middle of the distribution.
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of each box was to the right, that would “do the trick” (7, 7, 7, 2/3rds of the first 8,
2/3rds of the second 8, and 2/3rds of the third 8would all be on the left).Well, what
is 2/3rds of the way from 7.5 to 8.5? Let us add 0.67 to 7.5. That gives us 8.17. ■

■ Question What is the median of this distribution?

7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 10, 10

Median

Solution
If discrete, the median = 8.00.
If continuous, the median = 8.10.
Here is another one where, if the measure is continuous, we will need to split

up the 8’s. Three of them need to go to the lower half of the distribution and two
of them to the higher half. The fairest way to get three of the five 8’s would be to
get 60% or 0.6 of each one. Since the 8’s actually start at 7.5, the answer would be
(7.5 + 0.60) 8.10. ■

Box 3.1 The Central Tendency of Likert Scales: The Great Debate

In Chapter 2 readers were introduced to a critical difference between ordinal
scales and interval or ratio scales – the nature of the relationship between
numerical values. Ordinal scales are a quantitatively organized series of cate-
gories and, as such, make no assumptions about the quantitative distance
between these categories. Interval and ratio scales hold the intervals constant
throughout the measure. In this chapter we learned that the concept of a devi-
ation score is necessary to find amean. Amean is defined as the point where the
deviation scores sum to zero. Deviation scores, however, cannot be found for
numbers on an ordinal scale; the intervals are not held constant. (It would be
like suggesting first- and third-place finishers in a pie bake-off are equidistant
from second. We have no reason to presume that.) Readers were also made
aware of the ambiguity that surrounds how to interpret numbers generated
by a Likert scale – scales that typically offer 5–11 options ranging from strongly
disagree to strongly agree (usually with a neutral point in the middle) that are
used tomeasure the amount of agreement people have with a given statement.
The great debate is this: Is it appropriate to generate means for Likert-scale
data?
It is very important because if we decide the answer is “no,” then we eliminate

all statistical tests that make use of the concept of the mean. Much of the con-
tent in statistics textbooks is not applicable to data measured on an ordinal
scale. An answer of “no” resigns us to use what are called nonparametric tests.

3.5 The Median 79



(Chapters 17 and 18 in this textbook are devoted to nonparametric tests.) These
tests are less powerful (a concept we will explore in Chapter 11) and, therefore,
less likely to help us find meaningful differences between groups.

The conservative approach is to argue that Likert scales have no way to deter-
mine constancy between values and should therefore be considered ordinal. As
a result, data gathered using Likert scales must be analyzed nonparametrically;
end of discussion. Others argue that the line between ordinal and interval is
rather vague, some even calling it “fuzzy” (e.g. Abelson, 1995). If, they argue,
the data from a Likert scale takes on the shape of a normal distribution, and
if there are a good number of options for the respondent to choose from, then
the data can be considered “normal” or “sufficiently close” to normal and ana-
lyzed with more standard statistical techniques.

We do not aim to settle the debate here, but merely raise it as an important
issue. Perhaps it will be a good class discussion topic. As we think about this
issue, keep in mind some recommendations made by Karen Grace-Martin, a
specialist in data analysis. They are paraphrased below (Grace-Martin, 2008):

1) Realize the difference between a Likert-type item and a Likert scale. A Likert
scale is actually made up ofmany items. Collectively, they attempt to provide
a measure of the attitude in question. Many people, however, use the term
Likert scale to refer to a single item.

2) Proceed with caution. Look at the particulars of our Likert-scale data. Would
treating it as interval data influence our conclusions? The fact that everyone
else is treating it as interval data is not sufficient justification in and of itself.

3) At the very least, insist (i) that the item have at least nine points, (ii) that the
underlying concept be continuous, and (iii) that there be some indication
that the intervals between the values are approximately equal. Make sure
the other statistical assumptions for the test are met.

4) When we can, run the nonparametric equivalent to our test. If we get the
same results, we can be more confident about our conclusions.

5) If we do choose to use Likert data in a parametric procedure, make sure we
have particularly strong results before making a claim.

6) Consider the consequences of reporting inaccurate results. Is the analysis
going to be published? Will it be used by others to make decisions?

The hope here is less about bringing readers to some desired position and
more about helping students develop an appreciation for some of the more
subtle and yet important debatable issues related to data analysis. How we
understand what the value of our scores mean is critical, requiring us to first
figure out the type of scale being used. And if we find that we are using Likert
data; well then, welcome to the great debate!
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3.6 The Mode

The third and finalmeasure of centrality is themode. Recall that themean defines
centrality as the point where all of the deviation scores sum to 0 (Σx = 0).
The median defines centrality as the point where half of the scores of the
distribution fall above it and half fall below it. The mode defines centrality as
the most typical or most frequent score in the distribution. It is the easiest of
all three measures to determine. All we need to do is look to see which score
occurs most often.

■ Question What is the mode of this distribution?

100, 101, 105, 105, 107, 108

Solution 105 ■

Some distributions may have two scores that are most typical. Consider the
frequency distribution in Table 3.3. Here, the distribution has two modes:
40 and 34. This is known as a bimodal distribution (“bi,” meaning two).
A distribution with a single mode is termed unimodal (“uni,” meaning one).
The graph of a bimodal distribution has two distinct humps. The humps do
not have to be exactly the same height to be a bimodal distribution. Conse-
quently, two modes can be reported even if the number of observations associ-
ated with each modal score is not identical. In the rare case in which all scores
occur with the same frequency, there is no mode.

Table 3.3 A distribution with two
modes: 40 and 34.

X f

43 1

42 4

40 6

39 3

37 2

34 6

30 1
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3.7 How the Shape of Distributions Affects Measures
of Central Tendency

Chapter 2 introduced us to the notion that distributions can assume different
shapes. A distribution can take on virtually any shape, and there are names for
some of them (platykurtic, leptokurtic, positively skewed, negatively skewed, nor-
mal, etc.). The particular shape of the distribution has implications for the relative
position of the mean, median, and mode. If the distribution is symmetrical, then
all threemeasures of central tendency will be identical. Figure 3.2 depicts this fact.
Note that symmetry is what is important here, not kurtosis (peakedness).
There is one exception to this rule: A symmetrical bimodal distribution, as

shown in Figure 3.3, has identical values for the mean and median, but not

Mean
Median
Mode

Mean
Median
Mode

Mean
Median
Mode

Figure 3.2 Three distributions with varying degrees of kurtosis but with the same mean,
median, and mode.

Mode (Mean, median) Mode

Figure 3.3 A symmetrical, bimodal distribution. The mean and median are the same.
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the mode. Also, note that in a bimodal distribution, the mean and median are
not located in the midst of highly frequent scores. In this instance, the mean and
median do not reflect where scores tend to bunch.
If a distribution is skewed, then the mean, median, and mode will all be dif-

ferent. Figure 3.4 shows two distributions: (a) negatively skewed and (b) posi-
tively skewed. In a negatively skewed distribution, the mean is to the left of
the median. The scores in the elongated tail pull both the median and the mean
to the left, but they pull the mean more so, because the mean takes into account
the actual distance these extreme scores are from the center. In a positively
skewed distribution, the mean is to the right of the median. The scores in
the elongated tail pull both the median and the mean to the right, but they pull
the mean more so, because the mean takes into account the actual distance
these extreme scores are from the center.

3.8 When to Use the Mean, Median, and Mode

Using the mean as an index of central tendency has several advantages. First, as
mentioned earlier, the mean takes into account all scores in a distribution,
including each score’s interval distance from the center. For this reason, the
mean usually captures a distribution’s centeredness well. Second, as the size
of a random sample grows, it turns out to be a very stable estimate of the pop-
ulation mean. This will make much more sense once we learn how to create
sampling distributions (Chapter 7). Third, because of the preceding two rea-
sons, the mean is used in many statistical formulas.
However, there are two disadvantages to using the mean. First, means do not

carry meaningful quantitative information for data gathered from either nom-
inal or ordinal scales. This means that the large numbers of statistical analyses

Mean Mode
Median

Mode Mean
Median

(a) (b)

Figure 3.4 (a) The mean is to the left of the median in a negatively skewed distribution.
(b) The mean is to the right of the median in a positively skewed distribution.
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based on the mean are not available for use with data coming from these scales.
Second, as previously mentioned, the mean is sensitive to extreme scores; when
present they can produce a mean value that does not seem to be well centered.
This disconnect can occur in a couple different ways. Sometimes it only takes
one extreme value in a small distribution set to pull the mean far away from
what appears to be the middle. But even for larger distribution sets, if they
are tremendously skewed (either positively or negatively), the mean may not
appear to be near the bulk of the scores in a data set (see Figure 3.3). Medians,
though also pulled out of the middle by extreme scores, are not pulled out as far
as the mean. For this reason, medians are oftentimes preferred as measures of
centrality for skewed distributions.
Another problematic situation for the mean occurs when the scores of a dis-

tribution are truncated. For example, consider a study on self-control and pain
tolerance by Grimm and Kanfer (1976). In this study the researchers were
interested in teaching a self-control technique for tolerating pain induced
by immersing a participant’s hand in freezing water. As the experiment
unfolded, a few participants kept their hands in the water a very long time.
As a result, the experimenters decided to establish a cutoff time of 300 seconds.
The exact scores of the participants who kept their hands immersed in the
water for the full 300 seconds cannot be known – some may have been ready
to stop right then, but others might have gone on for much longer. Nonetheless,
they all got a score of 300 seconds. Therefore, the mean is likely to be artificially
low as a result of the arbitrary cutoff time. The median, however, would be the
same value whether the scores have been cut off at 300 or not. Since the
median is not influenced by the value of extreme scores, it should be used
when the distribution is skewed, truncated, or has inexact upper or lower cutoff
scores.
The median is also the central tendency measure of choice for data drawn

from an ordinal scale. Neither the ordinal scale nor the concept of the median
makes any assumptions about the uniformity of the intervals between values.
The mode is the least used measure of central tendency. The mode of a sam-

ple, for instance, is never used to infer the mode of a population. In addition,
the mode ignores all the numbers in a distribution except the one score that
occurs most often. The mode does have its place, however. The mode is used
when one wants to convey the most typical score found in a distribution, such
as when students want to know what score on an exam was received by the
most people. And themode is the preferredmeasure to use when working with
nominal data. Recall from Chapter 2 that a nominal scale merely distinguishes
one kind of thing from another. Suppose we ask students at our university to
name their favorite leisure activity. We report that 12% prefer gaming, 50%
report tending to social media accounts, and 38% point to sporting activities.
These three activities are categories on a nominal scale. There is no way to
compute a mean or median, but the mode can be declared to be tending
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to social media accounts. Oftentimes when the data are in the form of how
many (i.e. a nominal scale), the mode is the appropriate measure of central
tendency.
It should now be clear that each measure of central tendency has advantages

and disadvantages. Bear in mind that when using descriptive statistics, the goal
is to communicate the features of a distribution in as accurate a manner as pos-
sible. Further, there is no rule that says we cannot report two or even all three
measures of central tendency.

3.9 Experimental Research and the Mean: A Glimpse
of Things to Come

In Chapter 1, several fundamental concepts of experimentation were presented.
At the most basic level, experimental designs compare the performances of dif-
ferent groups of participants. The typical statistics used to determine whether
the independent variable affected the dependent variable are the means of the
various groups. Some examples of studies in which group means are used to
reach conclusions are presented below.

► Example 3.1 An educational theorist is interested in comparing the
effectiveness of two teaching techniques. Participants assigned to one group
are exposed to educational material via an online teaching experience. Par-
ticipants assigned to another group take part in a traditional classroom
experience. The dependent variable is the amount of material learned.
The mean of the amount of material learned is computed for both groups.
Through the use of statistical analyses (presented in later chapters), the
means of the groups are compared to decide if one teaching method is supe-
rior to the other.◄

► Example 3.2 A social psychologist is interested in learning about the rela-
tionship between different mood states and charitable giving. In one condition,
it is arranged for participants to experience a pleasant interaction with the
experimenter. In another condition, participants are treated in a cold, rude
manner by the experimenter. Soon after leaving the laboratory, a person
approaches the participant and asks for a donation to a homeless shelter.
The dependent variable is the amount of money donated. The means are
computed for both groups and compared to see if mood states influence
generosity.◄
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► Example 3.3 A child psychologist would like to evaluate two treatment
techniques for helping children overcome their fear of the dark. Participants
assigned to one group are taught to imagine themselves as a superhero on amis-
sion during the night. Participants assigned to a second group are told to repeat
over and over, “I’m a big boy/girl.”The dependent variable is the amount of time
the child is willing to stay in a dark room. Means are calculated for both groups
and compared to judge whether one method is more effective than another in
helping children tolerate the dark.◄

This chapter has presented several factors that should guide us in deciding
which measure of central tendency to use when describing a distribution of
scores. As we make our way through the text, we will discover that, when con-
ducting an experiment, the mean is almost always the statistic that serves as the
point of comparison between different conditions.
Box 3.2 presents a study that taught participants how to control their heart

rate. Means were computed for groups of participants at two points in the study.
Statistical techniques discussed in later chapters will show us how to use the
means to compare the two groups of participants and interpret the results.

Box 3.2 Learning to Control Our Heart Rate

For several decades, biofeedback was a popular treatment for many stress-
related physical ailments. In the 1980s researchers started to investigate its
effects. Biofeedback entails the provision of external feedback in the form of
a visual display or varying auditory stimulus, which changes as some physiolog-
ical response changes. Thousands of people have learned how to relax with bio-
feedback training; there is little doubt that most people can achieve an
impressive degree of control over their physiological responses, at least while
they are attached to the biofeedback equipment. But therein lies the problem.
What good is it to learn how to relax if we can only experience that state when
we’re hooked up to a machine? Posed as a research question, we might ask,
“When participants learn how to control one of their physiological responses,
will they be able to transfer learning to control that response during their eve-
ryday activities?” It was this question that led Gloria Balague-Dahlberg (1986) to
conduct the following study.

Study Method

Eighteen participants who scored high on an anxiety questionnaire participated
in the experiment. To assess the participants’ heart rate throughout the day,
they were asked to wear a Holter monitor (a device that continuously records
heart rate). The participants were asked to try to keep their heart rate low while
going about their usual daily routine.
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Half of the participants were seen individually for five biofeedback sessions,
during which time they tried to lower their heart rate as much as possible.
Although biofeedback is always conducted in a relaxed, comfortable atmos-
phere, Balague-Dahlberg reasoned that the transfer of learning to the natural
environment would be augmented if participants initially learned to control
their heart rate in a setting filled with distractions. So with each successive ses-
sion, participants attempted to lower their heart rate amid an increasing level of
distractions. This was procedurally accomplished by having participants sit in a
hard chair while performing a series of mental tasks. As the sessions progressed,
a tape of distracting noises was played: people talking, phones ringing,
machines running, and other “office noises.”

In addition to this experimental group, a control group was included: a group
that received the same instructions but did not have experience with the bio-
feedback equipment. After the training phase of the experiment, all partici-
pants’ heart rates were once again monitored for a 24-hour period.

Results

Thedata from this study are presented in the following tables. The baseline score
(also called a pretest score) is the mean heart rate for the 24-hour period before
training; theposttest score is themeanheart rate during the final 24-hour record-
ing period. A graph (Figure 3.5) is presented so that we can easily see the differ-
encebetween thegroups at eachphase of the study. (Yes, truncationwasused to
highlight this difference. More will be said about this at the end of this box.)

Baseline (pretest) Posttest
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Figure 3.5 Graphical presentation of the results of the Balague-Dahlberg study on heart
rate control.
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Biofeedback group

Participant Baseline Posttest

1 92 92

2 64 70

3 93 86

4 70 71

5 67 69

6 93 74

7 63 62

8 86 93

9 84 79

Mpre = 79.11 Mpost = 77.33

Control group

Participant Baseline Posttest

10 90 95

11 92 99

12 79 82

13 85 86

14 75 73

15 82 84

16 78 73

17 80 83

18 61 63

Mpre = 80.22 Mpost = 82.00

The biofeedback and control groups have similar mean heart rates at the
pretest baseline measure. This was to be expected because participants were
randomly assigned to conditions and had not yet received the different treat-
ments. It is evident from the 24-hour posttesting data that the biofeedback par-
ticipants appear to have learned from the training and were able to keep their
heart rate at a level lower than the control participants. However, one would not
want to conclude anything by merely visually comparing the means. At this
point, the experimenter would conduct the appropriate statistical test to deter-
mine if these differences are unlikely to occur by chance. (We will learn about
these tests later in the text.) If these posttest differences are unlikely to occur by
chance, then tentative conclusions can be made about the superior effects of
biofeedback training. (Furthermore, we can say that the graph does not mislead
the viewer. If, however, the analysis suggests that chance factors can explain the
posttest difference, then some could argue that the graphic appears to mislead
unsuspecting viewers about the effects of biofeedback training.)



Summary

Descriptive statistics are statistical indices that summarize and communicate
basic characteristics of a distribution. Values that communicate where scores
center in the distribution are calledmeasures of central tendency. Measures that
communicate the degree to which scores are spread out around the center of a
distribution are called measures of dispersion or variability. Statistical values
that describe the distribution characteristics of a population are called para-
meters; statistical values that describe the distribution characteristics of a sam-
ple are called statistics.
The mean is the most important and most often used measure of central ten-

dency. Not only can it be used as a descriptive index of central tendency, but the
mean is frequently used in formulas designed to test experimental hypotheses.
The degree to which a score deviates from the mean is X – M. This deviation
amount can be called a deviation score (or error score) and is symbolized as x.
Therefore, x = X – M. The sum of all the deviation scores equals 0. Therefore,

Σ X−M =Σx= 0

Themean has several advantages. First, it takes into account not only all of the
scores in a distribution but also their precise distance from the middle. Second,
it is used in many statistical formulas. Third, as the size of the distribution
increases, the mean becomes a very stable measure of central tendency.
A sample mean is usually a good estimation of the mean of a population. How-
ever, since the mean is sensitive to extreme scores, it is oftentimes not seen as a
good measure of centeredness when the distribution is skewed. Using the mean
as a measure of central tendency can also present a problem when the distribu-
tion is truncated, that is, when one or both ends of the distribution have been
limited by the nature of the measuring instrument.
Themedian is thepoint in thedistributionwhere 50%of the scores fall aboveand

50% fall below it. Since themedian is not affected by the value of extreme scores, it
should be used when the distribution is skewed, truncated, or has scale-limited
upper or lower cutoff scores. The median is also the appropriate measure for cen-
tral tendency when the values in the distribution come from an ordinal scale.
The mode is defined as the most typical or most frequent score. It is the least

used measure of central tendency. The mode ignores all of the numbers in a
distribution except the one value that occurs most often. On the other hand,
the mode is the only measure of central tendency to use when evaluating scores
measured on a nominal scale.
The particular shape of the distribution has implications for the relative posi-

tion of the mean, median, and mode. If the distribution is symmetrical, then all
three measures of central tendency will be identical. In a positively skewed
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distribution, both the mean and median are pulled to the right, although the
mean is pulled farther. In a negatively skewed distribution, both the mean
and median are pulled to the left, although the mean is pulled farther.

Using Microsoft® Excel and SPSS® to Find
Measures of Centrality

Excel

General instructions for data entry into Excel can be found in Appendix C.

Data Analysis
1) Once the data is entered, selectData Analysis and then Descriptive Statis-

tics. Click OK.
2) Highlight only the scores and put those quadrant numbers into the

Input Range.
3) Select a location for the output. Use the Output Range box if needed.
4) Make sure to click Summary Statistics before clicking OK.

This should generate a table with all three measures of centrality.

SPSS

General instructions for inputting data into SPSS can be found in Appendix C.

Data Analysis
1) Once the data has been entered, click Analyze on the tool bar and select

Descriptive Statistics and then Frequencies.
2) Move the column label containing the data we wish to analyze from the left

box to theVariable box. Also, unclick theDisplay Frequency Tables box in
the lower left corner.

3) Before we run it, click on the Statistics box in the upper right corner. Here
we will find boxes labeled Mean, Median, and Mode. Click them and then
click Continue.

4) Now we are ready to clickOK. The first box in the resulting output will give
us these three measures of central tendency.

Key Formulas

Population mean, μ

μ=
ΣX
N

(Formula 3.1a)
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Sample mean, M

M =
ΣX
n

(Formula 3.1b)

Weighted mean

M =
n1 M1 + n2 M2 + nn Mn

n1 + n2 + nn
(Formula 3.2)

Mean of a frequency distribution

μ or M =
ΣXf
Σf

(Formula 3.3)

Key Terms

Descriptive statistics Weighted mean (or grand mean)
Measures of central tendency
(or centrality)

Median

Parameters
Mode

Statistics
Bimodal

Mean
Unimodal

Deviation score (error score)

Questions and Exercises

1 Given a distribution in which M = median, what must be true about the
shape of the distribution?

2 If a distribution of 25 scores that has a mean of 15 is said to be a population,
how will the mean change if the distribution is later claimed to be merely a
sample?

3 Find the deviation scores for the following raw scores in a distribution that
has a mean of 10.
a 12
b 9
c 0
d 10
e –1
f 9.5
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4 Find the deviation scores for the following raw scores from the following
sample of scores: 6, 6, 7, 7, 7, 8, 9, 10, 11, 12, 16.
a 7
b 11
c 0
d 8.5
e −20
f 11.5

5 Identify the mean, median, and mode of these six distributions.
a 3, 3, 4, 5, 6, 8, 8, 8, 9
b 2, 4, 4, 4, 6, 7, 7
c 7, 7, 8, 9, 10, 10, 10
d 1, 1, 3, 4, 4, 5, 9
e 1, 4, 6, 7, 8, 8
f 9, 11, 6, 8, 12, 15, 3, 5, 5

6 For distributions (a) and (b) of the previous problem, identify:
a Σ(X −M)
b Σ(X −Median)
c Σ(X −Mode)

7 What is the (a) mean and (b) mode of this frequency distribution?

X f

12 3

10 4

9 6

7 5

4 2

8 What is the (a) mean and (b) mode of this frequency distribution?

X f

23 1

19 3

16 4

15 4

12 2
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9 What is the median of this distribution?

4, 5, 7, 7, 7, 7, 9, 10

10 What is the grand mean of these four group means?

M n

156 5

199 10

88 11

145 4

11 What is the grand mean of these five group means?

M n

6.5 2

7.5 4

5.0 6

4.0 4

13.0 1

12 What can be said about the shape of each of these distributions?
a Mean = 24; median = 16; mode = 12
b Mean = 123; median = 143; mode = 150
c Mean = 6; median = 6; mode = 6
d Mean = 19; median = 19; mode = 9 and 29
e Mean = 56; median = 66; mode = 70
f Mean = 48; median = 36; mode = 32

13 Think of two ss of variables that may be distributed in such a way that they
might take on a bimodal shape. Defend these choices.

14 A national team of researchers is studying depression among women.
Several samples are taken across the country, and the mean score on a
depression inventory is computed for each sample. The data are summar-
ized in the following table. What is the mean depression score for
all women?
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East Midwest West

M 12 19 14

n 46 29 32

15 A school psychologist obtains the following sample of IQ scores from a
local high school. What are (a) the mean and (b) the median? (c) Is there
a mode?

98 111 101 100 99

99 123 100 134 101

96 102 102 101 105

16 Which measure has the most difficulty with extreme scores? Why?

17 Which measure is the best to use for ordinal data? Why?

18 Which measure is the best to use for nominal data? Why?

19 A population of scores includes 10 numbers (N = 10) and has a mean of
100. One of the scores is changed from an 80 to a 90. What is the value
of the new mean?

20 A sample of n = 9 scores has amean of 12. If one new score with a value of 5
is added, what is the value of the new mean for the new distribution?

21 A sample of n = 17 scores has a mean of 25. After a new score is added to
the sample, the new mean is found to be 26. What is the value of the score
that was added?

22 A sample of n = 6 scores has a mean of 25. If one score with a value of 15 is
removed, what is the value for the new mean?

23 Three friends sampled students at their university to see howmuch time is
spent daily on social media. One asked 25 people and got an μ of 45 min-
utes, another asked 50 people and got an μ of 65minutes, and a third asked
500 people and got an μ of 52minutes. All three attempted to randomly
sample the student body. What is our best guess of the actual population
mean?
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Computer Work

24 The distribution in the following list is a hypothetical sample of IQ scores
from the incoming freshman class at a university. From the data set, plot a
histogram and compute the mean, median, and mode. In what way does
the shape of this distribution influence the relative values of the three mea-
sures of central tendency?

100 100 102 135 143 94 120 114 111 87 95

109 82 94 142 100 97 100 100 101 99 98

167 176 154 100 85 88 124 180 90 96 92

149 103 102 101 104 92 103 103 105 99 92

25 The following hypothetical data set is all the scores obtained by a statistics
class on a final exam. Construct a histogram, compute all the measures of
central tendency, and comment on the relative values of the mean, median,
andmode in the context of the shape of this population distribution. (Treat
“exam score” as a discrete variable.)

35 35 36 50 23 16 22 23 35 35 42 43 47

13 20 9 11 42 23 2 35 40 42 47 22 19

11 8 22 19 8 14 4 28 29 32 41 40 44

2 10 38 33 9 16 22 31 30 35 35 5 20

19 23 35 44 48 34 34 29 33 36 37 37 39

12 35 33 32 33 30 30 29 35 28 39 40 4

11 49 50 35 37 37 38 33 34 35 32 30 28

13 16 17 11 19 18 15 10 35 17 40 41 42
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4

Measures of Variability

4.1 The Importance of Measures of Variability

Chapter 3 discussed the three measures of central tendency: the mean, median,
and mode. Although conveying central tendency is crucial to the description of a
distribution, it is only part of the picture. Measures of central tendency do not
provide information about the degree to which scores are spread out in a distri-
bution. If we were asked to imagine two distributions, each with a mean of 100, it
would be a mistake to form automatically a mental image of two identically
shaped distributions. For example, a platykurtic (mound shaped) and a leptokur-
tic (pointy shaped) distribution may each have the samemean, but their distribu-
tions are very dissimilar. Figure 4.1 shows two very differently shaped
distributions, which nonetheless have the same mean, median, and mode.
To complement our measures of centrality, we need to have statistical tech-

niques designed to convey the degree to which scores are spread out and dis-
persed around a central point. Measures that reflect the amount of variation
in the scores of a distribution are calledmeasures of variability (or dispersion).
Several measures of variability along with their advantages and disadvantages
will be presented and discussed in this chapter.

4.2 Range

The range is the simplest measure of variability to calculate. The range simply
reflects the overall span of the scores in a distribution – from the lowest value up
to the highest value. The range is calculated by subtracting the lowest score of
the distribution from the highest score.

Range

Range = XH − XL (Formula 4.1)
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where

XH= highest score in the distribution
XL= lowest score in the distribution

■ Question What is the range of this distribution?

17, 44, 50, 23, 42

Solution 50 – 17 = 33 (make sure we organize the data so that the lowest and
highest scores can be identified) ■

The next worked problem illustrates one of the main issues that can arise
when using the range as a measure of variability.

■ Question What is the range of this distribution?

2, 4, 5, 7, 34

Solution 32
Do we see how the range can give a misleading impression of dispersion? Most

of the numbers are fairly close together, but there is one extreme score (34), which
generates a large value for the range; this creates the impression that the distribu-
tion of scores is rather spread out. If we are going to use a measure of dispersion
that reflects the span of scores, then it would be nice if we could use ameasure that
is less affected by extreme scores that might lie at either end of the distribution. ■

The Interquartile Range and Semi-Interquartile Range

Every distribution can be divided into four equal sections or quartiles.
A quartile is one-fourth of a distribution of scores. The bottom 25% of the

F
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qu
en

cy

Scores

Figure 4.1 Two distributions with different variabilities yet having the same mean, median,
and mode.
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values in a distributionmake up the first quartile. The second quartile marks the
next 25% of scores in the distribution. The total percentage of scores below the
second quartile is 50%. The median, in fact, is located at the end of the second
quartile of a distribution. The third quartile is located at the value that marks the
bottom 75% of scores in a distribution. The upper 25% of the scores in a
distribution define the fourth quartile.
A percentile is a distribution value corresponding to a certain percentage of

scores that fall below it. Therefore, the 20th percentile is the value at which 20%
of the distribution’s scores fall below. The first quartile ends at the 25th percen-
tile, the second quartile ends at the 50th percentile, and so on.
The interquartile range (IQR) is the span of scores between the first and

third quartiles of the distribution. Stated in terms of percentiles, the IQR is
the span of scores between the 25th percentile and the 75th percentile. This
measure effectively lops off the upper 25% and lower 25% of the distribution.
The two numbers that define the IQR bracket themiddle 50% of the distribution
(see Figure 4.2). In removing the outermost quartiles, the IQR solves the
problems created by extreme scores by only focusing on the middle half of
the distribution.

Interquartile range, IQR

IQR = Q3 −Q1 (Formula 4.2)

where

Q3= the third quartile (75th percentile)
Q1= the first quartile (25th percentile)

The semi-interquartile range (SIQR) is the IQR divided by 2.

50%

25%25%

μ

Interquartile range
(IQR)

Figure 4.2 The interquartile range (IQR) spans the width of the middle 50% of the
distribution.

4.2 Range 99



Semi-interquartile range, SIQR

SIQR=
Q3−Q1

2
(Formula 4.3)

Like the IQR, the SIQR is more stable than the simple range because it is unaf-
fected by an extreme score. Although neither the IQR nor the SIQR is affected by
a single extreme score, they are influenced by distributions with numerous
extreme scores, like skewed distributions.

■ Question The hypothetical “Highbridge Community College Aptitude Test”
has a median of 100. The score that is the 75th percentile is 130, and the score
that is the 25th percentile is 70. What are the IQR and SIQR?

Solution

IQR=Q3−Q1 = 130−70 = 60

SIQR=
Q3−Q1

2
=
60
2

= 30 ■

The family of measures associated with the range can be very helpful mea-
sures of variability. For instance, the IQR and SIQR are commonly presented,
along with other descriptive statistics, when conveying the distribution charac-
teristics of standardized psychological or intellectual tests (e.g. the Wechsler
Adult Intelligence Scale). (Recall that many psychological concepts, like intel-
ligence, are measured on scales that have some ordinal-like properties and some
interval-like properties. In these instances, sometimes researchers choose to use
either the IQR and/or the SIQR to communicate variability.) In these measures,
every number is counted, but the specific distance between a number and the
mean is not taken into account. A more useful measure for interval or ratio data
would be one that takes into consideration the specific distance of every score
from the mean. These measures of variability have become the most valuable to
researchers interested in statistical analysis.

4.3 Mean Deviation

Each raw score in a distribution of interval or ratio scores sits at some distance
from the mean. In Chapter 3 we learned that this distance is called a deviation or
error (X – μ orX –M = x). The degree to which scores deviate from themean is a
direct reflection of the variability of a distribution. Consider these two
distributions:

Distribution A: 11, 12, 13, 14, 15, 16, 17 μ = 14
Distribution B: 5, 8, 11, 14, 17, 20, 23 μ = 14
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Themean of each distribution is 14. However, Distribution B showsmore var-
iation than Distribution A. In other words, in relation to the mean, there is an
overall greater amount of deviation among the scores with respect to the mean.
But how can we arrive at a measure that reflects overall deviation? We cannot
simply sum the deviation scores of each distribution because Σx always equals 0.
This is because the negative deviation scores from below the mean always bal-
ance the positive deviation scores from above the mean, that is, after all, how the
mean defines centrality. However, taking the absolute value of each deviation
score will remove the negative signs and free us from this problem. Taking
the average of the absolute values of all deviation scores will give us a measure
of variability. This arithmetic manipulation is called the mean deviation. For-
mulas 4.4 and 4.5 and the question that follows show how we can calculate this
measure of dispersion.

Mean deviation for population, MD

MD=
Σ X −μ

N
(Formula 4.4)

Mean deviation for sample, MD

MD=
Σ X −M

n
(Formula 4.5)

■QuestionWhat are the mean deviations for the two previously mentioned dis-
tributions having the same mean?

Distribution A Distribution B

Scores μ (X – μ) |X – μ| Scores μ (X – μ) |X – μ|

11 14 –3 3 5 14 – 9 9

12 14 –2 2 8 14 – 6 6

13 14 –1 1 11 14 – 3 3

14 14 0 0 14 14 0 0

15 14 1 1 17 14 3 3

16 14 2 2 20 14 6 6

17 14 3 3 23 14 9 9

N = 7 |X − μ| = 12 N = 7 |X − μ| = 36

Solution

MDA =
Σ X−μ

N
=
12
7

= 1 71 MDB =
Σ X−μ

N
=
36
7

= 5 14 ■
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As we can see in the examples above, smaller deviation values reflect tighter
distributions, and larger deviation values reflect more dispersed distributions.
Any formula that uses deviation scores as a measure of variability has the advan-
tage of using the actual magnitude of the difference between each score and the
mean in its calculations, unlike the range, IQR, and SIQR, which only use the
relative position of each score. The mean deviation, however, has some unde-
sirable properties due to the use of absolute values that preclude it from being
used in the formulas we will be introducing in subsequent chapters.1 What is
needed is a formula that capitalizes on the conceptual basis of deviation scores
but does not have the disadvantages that come with using absolute values. Is
there something else we could do with the deviation scores that would keep
them from summing to zero?

4.4 The Variance

Another way to remove the negative signs when summing deviation scores is to
square them, since a negative number multiplied by another negative number
yields a positive number. This minor change defines the difference between the
concept of a mean deviation and what is called the variance of a distribution.We
can define the variance as the average squared deviation score; it is symbolized
as σ2 (pronounced “sigma squared”; σ is the Greek lower case of Σ) for popu-
lation variances and s2 for sample variances. Please note that the formula for
the variance of a population is slightly different from the formula for a sample
variance.

Population variance, σ2

σ2 =
Σ X −μ 2

N
(Formula 4.6)

where

σ2 = the symbol for the population variance
X = a raw score
μ = the population mean
N = the number of scores in the population

1 The main problem with the mean deviation has to do with estimating the variability of a
population from a sample of scores. The mean deviation of a sample does not bear a consistent
relation to the mean deviation of the population from which the sample was drawn. Since much of
the field of statistics involves using the characteristics of samples to infer the characteristics of
populations, the mean deviation is rarely used.
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Sample variance

s2 =
Σ X −M 2

n−1
(Formula 4.7)

where

s2= symbol for sample variance
M= the sample mean
n = the number of scores in the distribution

The Sample Variance as an Unbiased Estimate
of the Population Variance

Recall that a sample is a subset of scores drawn from a population. Researchers
are always interested in the characteristics of a population; samples are often
used to make inferences about a population. Suppose we want to know the
mean of a population, but a sample of scores from that population is all that
is available. The best estimate of the mean of the population is the mean of
the sample. Usually our estimate will be off; rarely is the sample mean identical
to the population mean. Sometimes the sample mean will be larger than the
population mean, and sometimes it will be smaller. It is important to note that
the sample mean is just as likely to be smaller as it is to be larger than the actual
population mean. Since both types of errors are equally likely, the sample mean
is said to provide an unbiased estimate of the population mean. It would be said
to be biased if one type of error was more likely than the other. Also, please note
that the degree to which the sample mean is off of the population mean
decreases as the size of the sample increases. Larger sample sizes yield more
accurate estimates of population parameters. This observation will prove to
be very useful later on in the text.
In comparing the formulas for the variance of a population and a sample, note

that the denominator of the sample variance is n – 1, instead of N. (Compare
Formulas 4.6 and 4.7). This difference is a correction factor designed to adjust
a bias that occurs when using sample variances to estimate population var-
iances. To show this, suppose we take 100 samples from a population (always
replacing the scores from a drawn sample before taking the next sample) and
compute the variance of each sample, but using the population formula, without
the correction factor in the numerator (Formula 4.6). Assume that we know the
true population variance. What we would discover is that, of the 100 computed
variances, most would be smaller than the true population variance, and only a
few would be larger. If we were to apply the population formula for variance to a
single sample of scores, and then use that value as an estimate of the population
variance, we would most likely underestimate the size of the population
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variance. Dividing by n – 1 provides a correction so that the formula for the
sample variance becomes an unbiased estimate of the population variance – just
as likely to overestimate as it is to underestimate.
Figure 4.3 gives a visual description of why the n – 1 correction factor is nec-

essary when estimating the variance of a population. In this figure, the scores of
the population assume a normal distribution. Since most of the population
scores are found in the middle of the population, a random sample of, for
instance, eight scores would likely come from the middle of the population dis-
tribution. As a result, the spread of sample scores is not as spread out as the
spread of population scores. For this reason, the variance of a sample will tend
to underestimate the variance of a population unless corrected. Placing n – 1 in
the denominator of the sample variance formula effectively increases the value
of the sample variance, providing for a much less biased estimate of the popu-
lation variance. The sample size alsomatters. As the size of the sample increases,
the sample variance better approximates the population variance. (Recall that
this relationship between sample size and statistical accuracy was also true
for the mean.)

■ Question What is the variance of this sample of scores?

3, 4, 6, 8, 9

X X X XX X X X

Sample
scores

Sample
variability

Population variability 

Population
distribution

Figure 4.3 The variability of a sample of scores will tend to be less than the variability
of the population from which the scores are taken. So that the variance of a sample is an
unbiased estimate of the population variance, a correction factor (n – 1) is used in the
denominator of the formula for the variance of a sample.
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Solution

X M X −M (X −M)2

3 6 –3 9

4 6 –2 4

6 6 0 0

8 6 2 4

9 6 3 9

0 0 0 26

s2 =
X−M 2

n−1
=
26
4

= 6 5 ■

Equivalent Formulas for the Variance

If we were to take a random sample of introductory-level statistics textbooks and
turn to the chapters covering measures of variability, we would be surprised, and
maybe confused, by the many different formulas that can be used to compute the
variance of a distribution. All of the formulas will give us the same answer (pro-
vided we note the distinction between a population and sample of scores). Several
formulas for the variance are offered here for two reasons. First, one formula may
be easier to use when performing hand calculations with raw data, and a different
formula may be helpful in reminding us of the conceptual basis of variance. Sec-
ond, by presenting a few formulas for the variance, we will be more easily able to
make the transition to other textbooks. Formulas 4.6 and 4.7 are the basic formu-
las for the variances of the population and sample. They are called definitional
formulas since in reading them, we can be reminded of the concept behind the
measurement: the average squared deviation score. In Chapter 3, we learned that
a single score minus the mean, X – μ, could be expressed as x, (“little x”) a devi-
ation score. Therefore, Formulas 4.6 and 4.7 can be rewritten as Formulas 4.8 and
4.9, respectively. These formulas are called deviation score formulas.

The deviation score formulas

Population variance Sample variance

σ2 =
Σx2

N
(Formula 4.8) s2 =

Σx2

n−1
(Formula 4.9)

The numerators of both sets of variance formulas direct us to sum all the
squared deviation scores. For this reason, the numerator of a variance formula
is referred to as the sum of squares (or SS). Hence, SS = Σ(X – μ)2 or Σ(X −
M)2 = Σx2. Substituting SS in the numerator of the population and sample for-
mulas for the variance defines the SS manner of expression. The SS is a com-
ponent of numerous statistical formulas.
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The sum of squares formulas

Population variance Sample variance

σ2 =
SS
N

(Formula 4.10) s2 =
SS
n−1

(Formula 4.11)

Whenworking with raw scores, a computational (or raw score) formula eases
the calculation task. Formulas 4.12 and 4.13 are used to compute the population
and sample variances, respectively. (Yes, they look more involving, but they are
actually much easier to use when performing hand calculations, especially as
the sample size grows.) When using a computational formula, pay close attention
to the difference between ΣX2 and (ΣX)2! The ΣX2 is found by first squaring each
raw score and then summing all squared values. The quantity (ΣX)2 requires that
we first sum the raw scores and then square the final total. This algebraic distinc-
tion is a frequent component in hand calculations of statistical values.
If calculating by hand, it is recommended to simply create two columns, one

containing the raw data (labeled X) and the other containing the square of each
raw number (labeled X2). Simply sum up both columns. The sum of the raw
score column is (ΣX); by squaring this value we will get (ΣX)2. The sum of
the squared column is ΣX2.

The computational formulas

Population variance

σ2 =
ΣX2− ΣX 2 N

N
(Formula 4.12)

Sample variance

s2 =
ΣX2− ΣX 2 n

n−1
(Formula 4.13)

Keep in mind that all sample formulas lead to the same answer, with any dis-
crepancies accounted for by rounding errors. Of course, all population formulas
also yield the same answer. Table 4.1 presents all of the formulas for the variance.

■ Question Use the computational formulas to determine the variance of this
distribution when it is a sample of scores and when it is a population of scores.

X X2

2 4

4 16

5 25

7 49

9 81

ΣX = 27 X2 = 175
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Solution
Sample Formula

s2 =
ΣX2− ΣX 2 n

n−1

s2 =
175− 27 2 5

5−1

s2 =
175− 729 5

5−1

s2 =
175−145 80

4

s2 =
29 20
4

s2 = 7 30

If the distribution were a sample of scores, the variance would be 7.30. If the
scores were a population, we would use the following formula.

Population Formula

σ2 =
ΣX2− ΣX 2 N

N

σ2 =
175− 729 5

5

Table 4.1 Several equivalent expressions of the population and sample variances.

Variance formulas

Population variance Sample variance

Definitional formulas

σ2 =
Σ X −μ 2

N
(Formula 4.6) s2 =

X −M 2

n−1
(Formula 4.7)

Deviation score formulas

σ2 =
Σx2

N
(Formula 4.8) s2 =

Σx2

n−1
(Formula 4.9)

Sum of squares formulas

σ2 =
SS
N

(Formula 4.10) s2 =
SS
n−1

(Formula 4.11)

Computational formulasa

σ2 =
ΣX2− ΣX 2 N

N
(Formula 4.12) s2 =

ΣX2− ΣX 2 n

n−1
(Formula 4.13)

aUse these two formulas when working from raw data and calculating by hand.
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σ2 =
175−145 80

5

σ2 =
29 20
5

σ2 = 5 84

Viewing the scores as a population, the variance is 5.84. ■

Sometimes an investigator will learn something important about a phenom-
enon when the dispersion of scores is examined. Box 4.1 presents a finding in
which the variability of scores reflects an interesting aspect of aging.

Box 4.1 The Substantive Importance of the Variance

Measures of variation are essential indices for describing the degree of disper-
sion among scores of a distribution. The variance and its square root, the stand-
ard deviation, can both be used as descriptive measures of dispersion; however,
the standard deviation is the more useful measure because it is stated in the
original units of the measured variable. Yet the variance is still used in many
statistical formulas designed to answer research questions.

In experimental research, comparisons are typically made between the
means of two conditions. Evaluating two methods for improving communica-
tion skills would entail a comparison between the group means of some meas-
ure of communication. Discovering ways to help children overcome their
shyness would involve comparing mean ratings of shyness after different treat-
ments. In other words, in the experimental context, investigators examine
group means to determine the effect of the independent variable on the
dependent variable. However, sometimes between-group differences in varia-
bility are important as well. They reveal an important facet of the phenomenon
under investigation. An example in which variability has substantive impor-
tance comes from the literature on aging. Chronological age is intrinsically a
poor predictor of almost any measure of psychological functioning (Woods &
Rusin, 1988). However, as an investigator compares different age groups, they
would find that the within-group variability, on a number of cognitive and phys-
iological measures, increases with age (Krauss, 1980). In other words, older indi-
viduals are more unlike each other than are younger individuals; their
distributions are more spread out compared with the distributions of younger
people. As a result, researchers investigating questions related to the aged need
to pay careful attention to individual differences. A treatment, for instance, that
seems ineffective for some older people may prove highly beneficial to other
older people.
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4.5 The Standard Deviation

The variance measure of dispersion is especially important because it is used in
many statistical formulas. However, it is not the best measure when we want to
communicate variability to others. This is because the variance is a squared
value; it is not stated in the original units of the measured variable. The value
seems inflated when compared with the raw scores or other descriptive statistics
like the mean. For example, if someone told us that a sample mean of IQ’s was
found to be 100 with a variance was 225, we might wonder if there was a small,
medium, or large amount of variation among the scores. To resolve this, we can
take the square root of the variance; it is called the standard deviation. The
definitional, deviation score, SS, and computational formulas for the standard
deviation are identical to the formulas for the variance, with the exception that
the formulas for the standard deviation are under square root signs. These two
important measures of variability are very similar. If we have one, we are one
mathematical step away from the other. The symbols for the population and
sample standard deviation are σ and s, respectively; this makes sense given that
the symbols for the population and sample variance are σ2 and s2, respectively.
Using the distribution in the preceding worked example, the sample and pop-
ulation standard deviations would be

s= 7 30 = 2 70 and σ = 5 84 = 2 42

Table 4.2 presents the same formulas found in Table 4.1. Now, however, each
formula is under a square root sign, thereby making them standard deviation
formulas.

The Standard Deviation and the Normal Curve

In Chapter 5, much more will be said about the characteristics and importance
of the normal distribution. For now, recall that a normal distribution is symmet-
rical and bell shaped. When depicted on a graph, a normal distribution is called
a normal curve. The standard deviation has a very attractive property when
applied to normal curves. This property is one reason the standard deviation
is so useful in describing the variability of a distribution. In a normal curve,
approximately 68% of the scores will fall between one standard deviation below
and one standard deviation above the mean. For instance, if a set of IQ scores
has a mean of 100 and a standard deviation of 15, then approximately 68% of the
scores in that distribution fall between 85 (100 − 15) and 115 (100 + 15). Fur-
thermore, approximately 95% of the scores will fall between plus and minus two
standard deviations from the mean. Finally, nearly all of the scores in a distri-
bution (approximately 99.7%) will fall within plus and minus three standard
deviations of the mean. See Figure 4.4 for a visual depiction of what has been
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0 1 2 3–1–2–3

μ μ + σ μ + 2σ μ + 3σμ – σμ – 2σμ – 3σ X

34% 34%

13.5% 13.5%

2.35% 2.35%
0.15% 0.15%

Figure 4.4 The 68-95-99.7 rule describes approximate areas of a normal curve that are
respectively within plus and minus one, two, and three standard deviations of the mean.

Table 4.2 Several equivalent expressions of the population and
sample standard deviations.

Standard deviation formulas

Population standard deviation Sample standard deviation

Definitional formulas

σ =
Σ X −μ 2

N
s=

X−M 2

n−1

Deviation score formulas

σ =
Σx2

N
s=

Σx2

n−1

Sum of squares formula

σ =
SS
N

s=
SS
n−1

Computational formulasa

σ =
ΣX2− ΣX 2 N

N
s=

ΣX2− ΣX 2 n

n−1

aUse these two formulas when working from raw data and calculating
by hand.
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termed the 68-95-99.7 rule. This figure displays how the percentages of a nor-
mal curve are allocated to areas under the curve in terms of the standard devi-
ation. For instance, the percentage of a normal curve that is between the mean
and a score that is two standard deviations below the mean is approximately
(13.5% + 34%) 47.5%. Chapter 5 will further develop the idea of a normal curve
as a probability distribution.
Please note the standard deviation, or for that matter, any measure of varia-

bility, can never be a negative number. Variation is always based on distance,
whether it is the span of scores or the average distance scores are from themean;
and there is no such thing as negative distance.
Box 4.2 informs us of the origins of the standard deviation concept.

4.6 Simple Transformations and Their Effect
on the Mean and Variance

As recently as 50 years ago, researchers almost always analyzed data by hand.
A single, advanced statistical analysis could literally take an entire week to com-
plete. That same analysis is now performed in a few seconds using modern com-
puter programs. Sometimes the scores of a distribution are very small, for
instance, 0.026 or 0.001, or very large, like 10 054 or 11 123. To make the

Box 4.2 The Origins of the Standard Deviation

Karl Pearson (featured in Spotlight 15.1) proposed the standard deviation as a
measure of dispersion in 1894. Before Pearson, statisticians used a closely
related index of variability: the probable error (pe). Approximately 68% of the
scores of a distribution fall between plus and minus one standard deviation
of the mean. The formula for the pe is

pe= 0 6745
X−μ 2

N

The mean, plus and minus one pe, includes 50% of the scores of the distribu-
tion. (This makes the pe concept very similar to the interquartile range.) Pearson
believed that multiplying by 0.6475 was an unnecessary step in the calculation.
Moreover, as ameasure of variability, there was no compelling advantage to the
pe; both the standard deviation and the pe reflect the degree to which a distri-
bution of scores is spread out. Pearson dropped the multiplier, named the new
measure of variability the standard deviation, and symbolized it as σ. The pe is
still used, although very infrequently.
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numbers easier to work with, researchers sometimes transform them by adding,
subtracting, multiplying, or diving all scores in a data set by the same value. Per-
forming simple arithmetic operations on a distribution of numbers has predict-
able effects on the mean and variance:

1) Adding a constant to every score of a distribution will increase the mean of
the distribution by the value of the constant. For example, if the mean is 0.01,
adding 10 to every score changes the mean to 10.01.

2) Subtracting a constant from every score of the distribution reduces the mean
by the value of the constant. If the mean is 1003, subtracting 1000 from every
score will change the mean to 3.

3) Adding or subtracting a constant to every score in a distribution will not
have an effect on the variance. Adding or subtracting a constant does not
alter the relative positions among the numbers. The variance is based on
the relation each number has to the mean of the distribution. That relation
is not altered when adding or subtracting a constant to every score in a
distribution.

4) When each score in a distribution is multiplied or divided by a constant, the
mean will change by the value of the constant. For example, if the mean is 5,
multiplying every score by 2 will render a new mean of (5 × 2) 10. Dividing
every score by 2 would render a new mean of (5/2) 2.5.

5) Multiplying or dividing each score by a constant will change the variance
exponentially. Multiplication and division will change the relative spacing
among the numbers. If multiplying by a constant, the distribution will spread
out; the new variance will be the old variance multiplied by the constant
squared. If dividing by a constant, the distribution will tighten up; the
new variance will be the old variance divided by the constant squared. For
example, if a distribution has a variance of 20, multiplying every number
by 2 will give us a new variance of (20 × 22) 80, and dividing every number
by 2 will give us a new variance of (20/22) 5.

Table 4.3 shows the effect on the means and variances when each score of a
distribution is transformed by the four basic arithmetic operations.

Table 4.3 The effect on the mean and variance when the scores of the distribution are
transformed by the four basic arithmetic operations.

Original scores +100 −100 ×100 ÷100

μ 105.5 205.50 5.50 10 550 1.055

σ2 9.67 9.67 9.67 96 700 0.000 967
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4.7 Deciding Which Measure of Variability to Use

In Chapter 3 we discussed the relative strengths and weaknesses of various mea-
sures of central tendency to help us select the right measure for a given situa-
tion. Here we will look at some of the issues that influence the selection of
variability measures.

Extreme Scores

The presence of extreme scores in a distribution, depending on the degree of
extremity and the percentage of scores considered extreme, can affect most
of the measures of variability. Researchers often look at extreme scores with
some degree of suspicion, wondering whether they are an accurate measure-
ment. If they are not accurate, then any measure of variability that is influenced
by extreme scores will convey a misleading impression of the actual dispersion
of scores in the distribution. The range is clearly the statistic that is most vul-
nerable to extreme scores. Since only the highest and lowest scores of a distri-
bution are used to compute the range, one extreme erroneous score can lead to
a very inaccurate view of dispersion.
The IQR and SIQR are not much influenced by a small number of extreme

scores, thereby offering a more reasonable statement of variability when
extreme scores are found in a distribution. The variance and standard deviation
are also affected by extreme scores. Since bothmeasures use squared deviations,
an extreme score that is a great distance from the mean will have a dispropor-
tionate effect on the variance, especially for small data sets. We must exercise
caution when using the variance and standard deviation as measures of varia-
bility when there are extreme scores.
Sometimes researchers, who suspect an extreme score is erroneous, consider

discarding that score inaneffort togenerate amore accuratemeasureof variability.
However, what if there are several extreme scores, as in a skewed distribution?
There is no justification for discarding several scores. In these instances, the var-
iabilityof adistribution isbestdescribedby the IQRorSIQRstatistic. Furthermore,
if the scale ofmeasurement does not allow for the calculation of amean (e.g. nom-
inal or ordinal scale), then deviation scores cannot be calculated. This eliminates
the mean deviation, variance, and standard deviation from consideration.

An Arbitrary End Point to the Distribution

Recall the study discussed in Chapter 3 about self-control and pain tolerance
(Grimm & Kanfer, 1976). Participants were asked to place their hands in ice
water and were told that they could remove them whenever they wanted.
The number of seconds that the participants kept their hands in the water
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was the dependent variable. The researchers found that some of the participants
did not remove their hands from the ice water and would have continued to
keep their hands in it for an unknown length of time. The researchers decided
to terminate the task at 300 seconds – an arbitrary end point for the high side of
the distribution.
Another example of an arbitrary end point to a distribution occurs when par-

ticipants are asked to complete a problem-solving task. What score should be
assigned to participants who cannot figure out the answer? At some point, the
researcher has to stop them and assign a score, which is supposedly the time it
took them to complete the problem-solving task. These situations present a
problemwhen we would like to describe the variability of the distribution. Since,
in these two examples, the highest score is arbitrary, any measure of variability
that relies on these scores will be under-representative of the actual variability
and therefore unreliable as a true measure of dispersion. The IQR and SIQR,
however, are relatively impervious to arbitrary cutoffs at the tail end of a distri-
bution, provided there are not too many arbitrary scores.

Common Practice

In common practice, it is rather rare to hear a researcher in the social or behav-
ioral sciences report the IQR or SIQR when describing a distribution. Research-
ers in these academic disciplines simply do not have an “intuitive feel” for these
measures. Telling a colleague that the SIQR of our data is 6 will likely produce a
blank stare. The range, despite all its vulnerabilities, is much more likely to be
identified than the IQR or SIQR. However, in many instances where the range is
presented, it is only indirectly stated; the highest and lowest scores in the dis-
tribution are identified. The variance, despite its essential role in statistical for-
mulas, is also rarely stated among researchers. There is no “intuitive feel” to the
variance, being that it is measured in squared units.
If the data is normally distributed, by far the most commonly reported meas-

ure of variability is the standard deviation, the square root of the variance.
Therefore, if someone says, “The mean was 50,” we can bet that the first ques-
tion asked by another researcher will be, “What was the standard deviation?”
Moreover, articles in scientific journals often include a table of means and
standard deviations. We will rarely see a table of means and variances or other
measures of variability.
Although the standard deviation is the most popular variability measure, we

should not ignore all the other measures. Indeed, researchers may err in relying
toomuch on the standard deviation as themeasure of dispersionwhen describing
a distribution. It is the responsibility of the researcher who has the most knowl-
edge of the characteristics of the data to choose the most appropriate measure of
variability. Finally, there is no rule in the social or behavioral sciences restricting
us to report only onemeasure. If we believe it would be helpful, we should feel free
to report more than one measure of variability or central tendency.
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Box 4.3 Is the Scientific Method Broken? Demand Characteristics
and Shrinking Variation

Throughout the text a series of several boxes are asking whether the scientific
method is broken in light of the nonreproducibility problem currently plaguing
the social, behavioral, and medical sciences. In Box 1.1 we looked at the “wall-
paper effect” and the difficulty in identifying and controlling all extraneous vari-
ables. In Box 2.3 we looked at, among other things, different ways the collection
of data may be biased through wording effects and order effects. In this box, let
us explore some of the problems that occur in the data gathering process.
Sometimes researchers, even those with the best of intentions and who take

precautions to remove their own biases, can influence how others respond
merely by their involvement in the study. In general, these are referred to as
“demand characteristics” or “experimenter effects.” Sometimes the uninten-
tional involvement of the researcher can take a response that might ordinarily
be quite varied in a population and shrink it to almost nothing. Perhaps the
most famous historical example of demand characteristics features “Clever
Hans,” the horse that could do mathematics (Pfungst, 1911). Hans was owned
by Wilhelm Von Osten, a German schoolteacher who had claimed to teach his
horse to add, subtract, multiple, divide, and work with fractions. Hans would
answer a question by tapping out numbers with his hoof; his accuracy, though
not perfect, was remarkable. It was so remarkable that the initial 1904 investi-
gation by a team of academics concluded that it was not a trick. Three years
later, however, a local psychologist, Oskar Pfungst, concluded that Hans was
indeed clever, but was not doing mathematics. Instead, Hans had learned a
“start” cue and a “stop” cue. The “start” cue was the act of being addressed
by Von Osten who then looked down at his hooves. As Hans approached the
proper answer, Von Osten, believing Hans was about to stop stomping, would
make subtle straighteningmovements of the body and head. This served as the
“stop” cue for the clever horse; his reward of food would be forthcoming. Hans
usually landed on the right answer or very close to it. The normal variation of a
horse periodically stomping its hooves was now being unintentionally mana-
ged by cues from the handler such that the variance of stomps less than or
greater than the “right” number shrunk dramatically.
The same problem can take place when researchers are gathering data from

other people. Numerous studies suggest that the hopes, expectations, and fears
of data gatherers can subtly influence people’s responses (e.g. Nichols & Maner,
2008; Rosenthal & Fode, 1963; Rubin, Paolini, & Crisp, 2010), taking what might
ordinarily be a very diffuse set of responses and pulling them tightly together
around the researchers desired or expected response.
Demand characteristics and the role of the experimenter in the data gather-

ing process are potential problems for many issues that social and behavioral
scientists investigate. Even under the best of conditions, responses that may
naturally be quite varied can begin to narrow around a certain response and
mislead us about the true nature of reality. Perhaps those of us in the social
and behavioral sciences need to take the human element intomore careful con-
sideration when gathering and interpreting data.



Summary

Measures that reflect the amount of variation in the scores of a distribution are
called measures of dispersion or measures of variability. The range defines the
overall span of scores. It is calculated by subtracting the lowest score of the dis-
tribution from the highest score. Unfortunately, the range is extremely sensitive
to extreme scores. The IQR avoids this by measuring the span of scores between
the first and third quartile (the 25th and 75th percentile). The SIQR is the IQR
divided by 2.
Another family of dispersion measures takes into account the magnitude of

difference between each raw score and the mean – the deviation scores. For
example, taking the average of the absolute values of all deviation scores is called
the mean deviation. Taking the average of all the squared deviation scores is
called the variance. The population variance formula is used when the scores
represent a population. If our intent is to infer the variance of a population based
on a sample of scores, then the formula for a sample variance is used. It contains
a correction factor in the denominator to make it an unbiased estimate of the
population variance.
The variancemeasure of dispersion is particularly important because it is used

in many statistical formulas. It is not, however, the best descriptive measure of
variability. This is because the variance is a squared value; it is not stated in the
original units of the measured variable. The standard deviation is the square
root of the variance. As a descriptive measure, the standard deviation improves
on the variance by converting the measure back to the original units of the
measured variable.
If the scores are normally distributed, the standard deviation can be used to

analyze probabilistically a data set. The 68-95-99.7 rule states that themean plus
and minus one standard deviation encompasses roughly 68% of the total num-
ber of scores in a distribution; plus and minus two standard deviations include
approximately 95% of the total number of scores; and plus and minus three
standard deviations comprise virtually all scores (99.7%) in a normally distrib-
uted data set.
Transforming the original scores of a distribution by the four basic arithmetic

operations will have a predictable effect on the mean and variance. Adding or
subtracting a constant to each score will alter the mean by that constant. There
will be no effect on the variance. Multiplication or division of every score by a
constant will alter the mean accordingly and will alter the variance by the con-
stant squared or square-rooted, respectively.
Deciding the most appropriate measure of variability to use depends on var-

ious features of the distribution. Factors such as extreme scores, sample size,
arbitrary end points of a distribution, common practices, and the importance
of a stable estimate of the population variability will influence a researcher’s
decision as to which measure of variability is most desirable.
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Using Microsoft® Excel and SPSS® to Find
Measures of Variability

Excel

General instructions for data entry into Excel can be found in Appendix C.

Data Analysis
1) Once the data is entered, select Data Analysis and then Descriptive Statis-

tics. Click OK.
2) Highlight only the scores and put those quadrant numbers into the

Input Range.
3) Select a location for the output. Use the Output Range box if needed.
4) Make sure to click Summary Statistics before clicking OK.

This should generate a table with the sample standard deviation, sample vari-
ance, and range. To get the population standard deviation and variance:

1) Once the data is entered, select a quadrant to receive the value and click the
fx key to the immediate left of the input box. Type in Population variance
and select. There are several similar options. Select VAR.P.

2) Highlight only the scores in the population distribution, and record them in
the Input Range box.

3) Click OK.
4) Repeat for population standard deviation but use STDEV.P.

To find the interquartile range and semi-interquartile range, we will need to do
some calculations. But first, follow the steps below:

1) Click the fx key to the immediate left of the input box at the top of the
spreadsheet.

2) In the Search Box type quartile and hit Go. It should pop up in the box
below. Select it.

3) Highlight only the scores and put the quadrant numbers into the Array box.
4) In the Quart box type in “3” (for third quartile). Record that score.
5) Repeat the process, this time typing in “1” in the Quart box (for first quar-

tile). Record that score.
6) The interquartile range is the third quartile minus the first.
7) The semi-interquartile range is found by dividing the interquartile range

by two.

SPSS

General instructions for inputting data into SPSS can be found in Appendix C.
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Data Analysis
1) Once the data has been entered, click Analyze on the tool bar, and select

Descriptive Statistics and then Frequencies.
2) Move the column label containing the data we wish to analyze from the left

box to theVariable box. Also, unclick theDisplay Frequency Tables box in
the lower left corner.

3) Before we run it, click on the Statistics box in the upper right corner. Here
we will find boxes labeled in the lower left-hand corner under Dispersion
labeled Std. deviation, Variance, and Range. Click on them. In addition,
in the upper left-hand corner, we will find in an area marked Percentile
Values a box labeled Quartiles. Click that box as well, and then click
Continue.

4) Now we are ready to clickOK. The first box in the resulting output will give
us the sample standard deviation, sample variance, range, and some quar-
tiles. The Interquartile range is the 75th quartile value minus the 25th quar-
tile value. Divide the resulting value in two to get the semi-interquartile
range value.

Unfortunately, SPSS does not generate population variances and population
standard deviations. However, we could use SPSS to generate ΣX and
ΣX2 – this will simplify a hand calculation. For ΣX, simply click SUM in
the Statistics Box. To find ΣX2, we will need to create a new variable and
simply square each score – then find the sum of that new variable.

Key Formulas

Range

Range = XH − XL (Formula 4.1)

Interquartile range, IQR

IQR = Q3 −Q1 (Formula 4.2)

Semi-interquartile range, SIQR

SIQR=
Q3−Q1

2
(Formula 4.3)

Mean deviation for population, MD

MD=
Σ X−μ

N
(Formula 4.4)

Mean deviation for sample, MD

MD=
Σ X−M

n
(Formula 4.5)
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The definitional formulas for the variance

Population variance, σ2

σ2 =
Σ X −μ 2

N
(Formula 4.6)

Sample variance

s2 =
Σ X −M 2

n−1
(Formula 4.7)

The deviation score formulas for the variance

Population variance Sample variance

σ2 =
Σx2

N
(Formula 4.8) s2 =

Σx2

n−1
(Formula 4.9)

The sum of squares formulas for the variance

Population variance Sample variance

σ2 =
SS
N

(Formula 4.10) s2 =
SS
n−1

(Formula 4.11)

The computational formulas for the variance

Population variance

σ2 =
ΣX2− ΣX 2 N

N
(Formula 4.12)

Sample variance

s2 =
ΣX2− ΣX 2 n

n−1
(Formula 4.13)

Any formula for the standard deviation is the square root of the variance
formula.

Key Terms

Measures of variability
(or dispersion)

Variance

Range
Definitional formulas

Quartile
Sum of squares (SS)

Percentile
Computational (raw score)
formulas

Interquartile range Standard deviation
Semi-interquartile range 68-95-99.7 rule
Mean deviation
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Questions and Exercises

1 Given two samples, one in which n = 36, the other where n = 60, which dis-
tribution would have the larger variance? Which variance is likely to be
closer in value to the population variance? Which sample is likely to have
the larger range?

2 Assume two samples: M = 78 and M = 155. Which sample would have the
larger variance?

3 A school psychologist wants to inform a teacher about the mean and stand-
ard deviation of the students’ IQ scores. The scores are below; assume they
are a sample.

IQscores 98, 111, 102, 100, 101, 109

a What is the mean?
b What is the standard deviation?

4 Calculate the range, variance, and standard deviation of this sample of
scores.

2, 4, 7, 4, 8, 5, 1, 4, 4, 5

a What is the range?
b What is the variance?
c What is the standard deviation?

5 A researcher who uses heart rate as the dependent variable finds the 75th
percentile to be a heart rate of 111 and the 25th percentile to be at 81.
a Compute the IQR.
b Compute the SIQR.

6 For the following populations of scores, find the mean deviations:
a 5, 7, 9, 9, 13, 14, 15, 16
b 23, 25, 31, 34, 36, 39, 44, 56, 63, 69
c 6, 8, 3, 9, 1, 4, 7, 4, 1, 1, 8, 2

7 Which of the following variance definitions is correct?
a The average of the deviations scored squared.
b The average of the absolute value of the deviations.
c The average of the deviation scores square rooted.
d The average of the squared deviation scores.
e The average deviation score.
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8 What does a distribution with a mean of 50 and standard deviation of zero
look like?

9 For each situation, specify whether we should use s or σ.
a A set of coaches are interested in the variability of their basketball team’s

scores over the season.
b A clinician is evaluating a new treatment for sexual dysfunctions.
c A teacher is interested in providing feedback to students about class per-
formance on the midterm exam.

d A manufacturer takes a sample of light bulbs to estimate the variability
of their life.

10 Why is the formula for a sample variance different from the formula for a
population variance?

11 Calculate the variance and standard deviation for this population of scores.

22, 32, 21, 20, 19, 15, 23

12 Which distribution of sample scores has the larger variance?

Distribution A: 2, 4, 5, 1, 1, 2, 3, 9
Distribution B: 34, 39, 34, 35, 33, 32

13 A negatively skewed distribution has a mean of 500 and a standard devi-
ation of 100. Given what we have learned in this chapter, is it possible to
determine the percentage of scores that fall between 400 and 600? If so,
what is it?

14 What is the main disadvantage in using the range as a measure of
dispersion?

15 As a descriptive statistic, is the variance or the standard deviation a better
measure of variability? Why?

16 What is the standard deviation of this population of scores?

9, 7, 10, 14, 12, 9, 16, 13, 11

17 If a normal distribution has a mean of 50 and a standard deviation of 10,
what scores encapsulate the middle 68% of the distribution? The middle
95% of the distribution? The middle 99.7% of the distribution?
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18 What if a normal distribution has the samemean as in question 17, but had
a standard deviation of 2. What scores would encapsulate the middle 68,
95, and 99.7% of scores?

19 If a normal distribution has amean of 80 and 68% of the scores are between
68 and 92, what is the variance of that distribution?

20 If a normal distribution has a variance of 100 and 95% of the scores are
between the values of 120 and 160, what is the mean?

21 For a set of 10 000 scores that is normally distributed and has a μ of 100 and
a σ of 15, about how many of the scores will be:
a Greater than 130?
b Greater than 115?
c Greater than ±3 σ away from 100?
d Greater than ±2 σ away from 100?

22 If a distribution has aM = 4.5 and s2 = 1.6, what would be theM and s2 if all
the raw scores have 10 added to them?

23 Refer to the data found in Chapter 3, Box 3.2. Compute the standard devia-
tions of the experimental and control groups, for each phase of the study.
a Baseline
b Post-testing

24 An experiment is conducted to evaluate the effectiveness of two different atti-
tude change techniques. The dependent variable is attitudes toward immi-
grants. In the following table, higher numbers reflect more positive attitudes.

Technique A Technique B

Pretest Posttest Pretest Posttest

3 7 2 4

4 4 3 2

5 6 4 5

2 5 3 3

Technique A
Calculate:
a Pretest M
b Pretest s2

c Pretest s
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d Posttest M
e Posttest s2

f Posttest s

Technique B
Calculate:
a Pretest M
b Pretest s2

c Pretest s
d Posttest M
e Posttest s2

f Posttest s

25 Complete the following table. μ = 50 and σ = 5. The constants specified are
used to transform the scores of the distribution.

X + 10 X – 10 X 10 X ÷ 10

μ = ? μ = ? μ = ? μ = ?

σ2 = ? σ2 = ? σ2 = ? σ2 = ?

26 What if a newcomer to American football decided to record the yardage
gained or lost on each play of a football game in terms of feet instead of
the more typical measure of yards; what would the coach need to do with
the data to compare the team’s performance with previous games?

27 Three friends sampled students at their university to see how much vari-
ability there is in daily time spent on social media. One asked 25 people and
got an σ of 10 minutes; another asked 50 people and got an σ of 15minutes;
and a third asked 500 people and got an σ of 25 minutes. All three
attempted to randomly sample the student body. What is our best guess
of the actual population standard deviation?

Computer Work

Determine the range, interquartile range, and semi-interquartile range for each
of the following sample distributions.

28 Scores:

13 5 11 17 8 10 13 12 15

15 18 19 16 14 11 12 11 10

(Continued)
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14 4 5 15 11 10 19 13 14

7 8 5 11 11 9 9 14 15

8 11 17 17 10 9 8 16 14

7 18 6 17 18 18 11 6 13

29 Scores:

43 45 51 27 48 27 43 22 25

45 38 19 26 24 56 42 53 47

54 48 25 39 51 30 29 33 39

27 58 35 33 21 39 35 34 35

18 19 57 51 40 29 28 46 26

37 55 26 47 35 46 53 36 23

Determine the mean, variance, standard deviation, and range for each of the fol-
lowing sample distributions.

30 Scores:

3 5 3 7 9 10 2 12 15

1 8 9 6 4 11 1 11 10

1 4 5 5 3 10 9 13 14

31 Scores:

102 100 99 81 75 113 100

106 114 82 79 88 111 104

100 106 85 99 82 101 100

32 Scores: (For this question only, let us diverge from our commitment to only
go out two decimal places – instead, let us go out four, since the values are
so small.)

0.1070 0.2190 0.1917 0.2120 0.2016 0.1432 0.1939

0.0988 0.2002 0.1859 0.0847 0.1965 0.1492 0.1861

0.0854 0.1656 0.1776 0.1517 0.1942 0.1812 0.1911

(Continued)
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33 Scores:

1020 1000 990 810 750 1130 1000

1060 1140 820 790 880 1110 1040

1000 1060 850 990 820 1010 1000

34 Multiply each value in the data set forWork Problem #32 by three. Find the
new mean, variance, standard deviation, and range.

35 Divide each value in the data set for Work Problem #32 by three. Find the
new mean, variance, standard deviation, and range.

Questions and Exercises 125



5

The Normal Curve and Transformations

Percentiles and z Scores

5.1 Percentile Rank

How did Andrew do on his last exam? This simple question raises the issue of
how best to convey a person’s level of performance. Stating that Andrew
received a score of 35 may not be particularly helpful since it fails to provide
context for the score. Stating that Andrew’s 35 was a B is better because it pro-
vides a rough indication of how he did with respect to some absolute standard.
Stating the mean of the distribution, and perhaps the lowest and highest scores
of the distribution, would be additionally helpful in defining context; however,
this information will not specifically locate his score in the distribution. Locating
the score based on its relation to the other scores in the distribution would
further assist in giving meaning to the score of 35.
One method used to specify the relative position of a score in a distribution

involves transforming it into a percentile rank. The percentile rank of a par-
ticular score states the percentage of scores that fall at or below that score in
the distribution. For instance, if 54% of the scores of the distribution fall at or
below the score of 35, the percentile rank corresponding to the score of 35 is
54%. However, if instead we had a percent in mind and wanted to find the
corresponding score, we will be asking for a percentile. These terms are very
similar.
Perhaps keeping in mind the two different types of questions these concepts

answer will help. One question starts with a score and asks for the percent at or
below it (e.g. “What is the percentile rank for the score of 35?”). The other starts
with a desired percent of the distribution and asks for the corresponding score
(e.g. “What score is at the 75th percentile?”). Formulas related to each of these
questions are below.

Computing the Percentile Rank of a Score

The formula for transforming a score to its percentile rank is very easy to use.
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Formula for finding the Percentile Rank of X, PR

PR of X =
B+ 1 2E

N
100 (Formula 5.1)

where

B = the number of scores below the given score X
E = the number of scores exactly the same as X (if there is only one X score,

then E = 1)
N = the total number of scores in the distribution

■ Question For the following distribution, what is the percentile rank of 16?

12, 13, 13, 14, 16, 18, 22

Solution N = 7, B = 4, E = 1. Using Formula 5.1, we find that

PR of 16 =
4 + 1 2 1

7
100

PR of 16 =
4 + 0 50

7
100

PR of 16 = 0 64 100

PR of 16 = 64%

This means we can say that 64% of the scores of this distribution fall at or
below a score of 16. The score 16 is at the 64th percentile. ■

For small samples like in the example above, the percentile rank concept
becomes a bit fuzzy. On the face of it, we see that the score of 16 is the fifth
number up from the bottom. Since we are looking to find the percent of scores
at or below 16 and there are seven numbers, we should be diving 5 by 7 to get
71%, correct?Well, we need to remember that the score of 16, if on a continuous
scale, is actually at the midpoint of the interval between 15.5 and 16.5. In a larger
sample (with, say, 1000 values), we might have multiple 16’s. These “16’s” are
assumed to be evenly distributed. That is, we would assume that about half
of them, if measured more precisely, would have values between 15.5 and 16,
therefore at or below 16. The other half, if measured more precisely, would
be assumed to have values between 16 and 16.5, therefore above 16. This is
why we use half of this frequency number when calculating percentile rank.

Finding a Score Value Given the Percentile Rank

Suppose we administer an achievement test to a group of students. Formula 5.1
can be used to transform each student’s score to a percentile rank; this, in turn,
allows us to determine how any one student scored on the test with respect to
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the group. However, what if we wanted to work things the other way? Instead of
using a score to find a percentile rank, we would use a percentile rank to find a
score. Formula 5.2 is used to identify the score that is a given percentile rank.

Formula for finding X given a Percentile Rank, Xp

Xp = L+
N P −F

f
h (Formula 5.2)

where

Xp = the score at a given percentile
N= the total number of scores in the distribution
P = the desired percentile, expressed as a proportion
L = the exact lower limit of the class interval
F = the sum of all frequencies below L
f = the number of scores in the critical interval
h = the width of the critical interval

Although Formula 5.2 requires us to determine six values to find the score at
a given percentile rank, determining these values is really quite easy. The compu-
tational steps of Formula 5.2 are specified in the context of the next worked
example.

■ Question Two hundred twenty-four students are administered an achieve-
ment test. The grouped frequency distribution of the obtained scores is presented
in the following table. What score is at the 85th percentile?

Class Interval Frequency Cum f

450–499 15 224

400–449 29 209

350–399 46 180

300–349 65 134

250–299 32 69

200–249 20 37

150–199 9 17

100–149 8 8

Solution
Step 1. Determine N. The highest number in the cum f column is the total
number of scores in the distribution. N = 224.

Step 2. Identify the critical interval within which lies the score at the 85th
percentile. We want to find the score below which falls 85% of the total
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number of scores. Eighty-five percent of 224 = (0.85)(224) = 190.40, or
rounded, 190. The interval 400–449 contains the 181st through the 209th
scores. The 190th score is somewhere in this interval.

Step 3. Determine L. The exact lower limit of the critical interval is 399.5.
Step 4. Determine F. F is the sum of the scores below the critical interval.
Simply look at the cumulative frequency just below the critical interval:
F = 180.

Step 5. Determine f. The number of scores in the critical interval is 29. It is
assumed that the scores within the interval are evenly distributed.

Step 6.Determine h. The real limits of the critical interval are 399.5–449.5. The
interval width, h, is 449.5 − 399.5 = 50.

Step 7. Determine P. P is the desired percentile rank, stated as a proportion.
P = 0.85.

Step 8. Plug the preceding values into Formula 5.2.

Xp = L+
N P −F

f
h

X85 = 399 50 +
224 0 85 −180

29
50

X85 = 399 50 +
190 40−180

29
50

X85 = 399 50 + 0 36 50

X85 = 399 50 + 18

X85 = 417 50 or 418

The score that is at the 85th percentile is 418. Alternatively, 85% of the
achievement scores fall below a score of 418. ■

Notice that inner workings of Formula 5.2 bear a striking resemblance to the
intuitive calculation of the median. This should come as no surprise since the
median is the 50th percentile. If we wanted to find the median of the foregoing
distribution, we would begin by multiplying 224 by 0.50 instead of 0.85. It is
important to note that every percentile rank should be considered an approx-
imation due to the assumption that scores are evenly distributed across an
interval.

Some Characteristics of Percentile Ranks

Consider the following worked example.

■ Question LaMarr and Margaret are in different statistics classes. They each
scored 42 on the midterm. Who did better?
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LaMarr’s Class

50 49 49 47 44 42 42 42 42 41 39 37 37 36

Margaret’s Class

44 44 43 42 41 40 40 39 39 35 32 30

Solution Using Formula 5.1,

PR of X =
B+ 1 2E

N
100

LaMarr's PR=
5+ 1 2 4

14
100 = 50

M argaret's PR=
8+ 1 2 1

12
100 = 71

Even though both students received identical scores, Margaret’s performance
could be considered superior since her percentile rank was higher, that is, if
we are primarily interested in performance as performance relative to others
in a distribution. Of course, we are not always interested in measuring perfor-
mance in this manner. For example, if the tests taken in the two courses were
identical, it might be reasonable to conclude that neither student outperformed
the other. ■

Suppose we had the task of admitting students into our university. It would
probably be a mistake to base our decision for admittance on only students’
percentile ranks taken from high school grade point averages. Surely, some
high schools have different degrees of rigor associated with their classes.
Some data sets, even if they are ostensibly measuring the same thing, may
not be equivalent. This is one reason why undergraduate admission commit-
tees also consider students’ performances on nationally standardized tests
(e.g. the Scholastic Aptitude Test [SAT]). The SAT is the same measure
throughout the country. By using the percentile ranks of SAT scores, a
student from Redding, California, can be compared with a student from
Ypsilanti, Michigan.
However, the manner in which the percentile rank locates scores has an

important weakness. Percentile ranks are based solely on the rank ordering
of scores. (Recall the limitations associated with ordinal scales discussed in
Chapter 2.) Similar to the median, a percentile rank is determined merely by
the relative position of the scores. The magnitude of the difference, if it can even
be determined, is not taken into account. The next worked example highlights
this difficulty.
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■QuestionWhat are the percentile ranks for the score of 80 in both distributions
A and B?

Solution

Distribution A Distribution B

82 90

81 89

81 87

81 82

80 80

60 79

60 79

59 79

58 77

56 76

40 76

Distribution A PR=
6+ 1 2 1

11
100 = 59

Distribution B PR=
6+ 1 2 1

11
100 = 59

Even though the percentile rank of 59% is the same, the distributions are
clearly different. The score of 80 is 2 away from the top and 40 away from
the bottom in Distribution A, whereas it is 10 away from the top and 4 away
from the bottom in Distribution B. If the underlying scale is ordinal, then this
is an unresolvable problem. The percentile rank does accurately communicate
the relative position of the value 80 in both distributions, and no improved
descriptor can be calculated. Percentile ranks only consider the number of
scores below a given value, not the magnitude of differences between those
scores. ■

One clear advantage of percentile ranks is that they are versatile; they can be
used with any shaped distribution, skewed, or otherwise. However, just as an
ordinal scale can communicate relative position but not the magnitude of dif-
ferences between values, so also are the limitations of percentile ranks.
A different system, one that measures how muchmore or less one value is from
another, will need to be employed to locate more precisely a given score within a
distribution of scores.
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5.2 The Normal Distributions

Chapters 2–4 introduced us to the notion of a normal distribution (curve). In
this section, the normal curve will be discussed in much greater detail. From
this point in the text through Chapter 16, the normal curve will be heavily
relied upon and extensively used, so much so that data sets will be assumed
to be normally distributed unless there is specific information to the
contrary.

The Importance of Normal Distributions

Normal distributions are of fundamental importance in the field of statistics
for two reasons. First, it is a very common distribution shape. Measurements
of many naturally occurring phenomena, including psychological concepts
like intelligence, anxiety, mood, and so on, are normally distributed. Second,
if we were to take a sample of scores from any shaped population, calculate
M, then replace the scores and take another sample of the same size, calcu-
late M, replace them, and so on until we had an exceedingly large number of
sample means; those means would be normally distributed. This second
observation forms an important theoretical basis for most statistical ana-
lyses used to test hypotheses. This point will be developed extensively in
Chapter 7.

Characteristics of Normal Distributions

For a distribution to be called normal, it must conform to a certain mathemat-
ical model:

y=
1

2πσ2
e− X−μ 2 2σ2

where

y = the ordinate on the graph, that is, the height of the curve for a given X
X = any given score
μ = population mean
σ2 = population variance
π = the value of pi: 3.1416 (rounded)
e = 2.718 (rounded), the base of the system of natural logarithms

Do not experience “formula shock”; we will likely never use this equation.
However, this formula can be used to make some valid points about normal dis-
tributions. The formula for a normal curve is a general formula; it is not tied to a
specific set of scores. All the values in the equation are fixed, except for X, μ, and
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σ2, which will vary from distribution to distribution. To draw any curve, we need
to know, for each X, how far up on the graph to go to plot a point. This distance
along the ordinate (y) reflects the relative frequency of scores for the given X.
The distance along the ordinate is different for every combination of μ and σ2.
The mean locates the center of the distribution on the abscissa, and the variance
indicates the degree of dispersion among the scores. Once μ and σ2 are specified,
as X scores inserted into the equation increasingly deviate from μ, y becomes
smaller. What this means is that scores close to the mean occur more frequently
(higher on the ordinate) and scores far away from the mean occur with less fre-
quency (lower on the ordinate). It follows that there are an infinite number of
normal distributions since μ and σ2 can take any value. Hence, one refers to
the family of normal distributions. Nonetheless, all the normal distributions in
the family share five characteristics:

1) A normal distribution is unimodal, meaning it has one hump.
2) A normal distribution is symmetrical. This means that the right half of the

curve is a mirror image of the left half. If we were to fold the curve at the
midpoint, the two sides of the distribution would coincide.

3) A normal distribution has the same value for the mean, median, and mode.
This follows from the fact that a normal distribution is unimodal and
symmetric.

4) A normal distribution is asymptotic; the tails of the distribution never touch
the abscissa. This is merely a theoretical point, but dictated by the mathe-
matical model. This means a normal curve will always have some relative
frequency associated with every value of X, even those extremely far away
from the mean. However, just because theoretically any X value can be
placed in the equation does notmean that anyX score can be found in reality.
For instance, if we are plotting the height of adult males, there will be a very
small and yet nonzero frequency associated with the value of 20 ft tall, even
though in reality there is absolutely no chance of ever finding a person of that
height.

5) In a normal curve, approximately 68% of the scores in the distribution lie
between μ ± σ, approximately 95% of scores in the distribution lie between
μ ± 2σ, and approximately 99.7% of scores in the distribution lie between μ ±
3σ. This is the 68-95-99.7 rule mentioned in Chapter 4.

There may be other distributions having some of the characteristics of the
preceding list, but only the family of normal distributions will share all five char-
acteristics. It is easy to forget that there is a family of normal distributions
because all statistics books use very similar drawings to depict a normal curve.
Moreover, a normal curve is often referred to as the normal curve, as if there is
just one. Keep in mind that any curve that possesses all of the foregoing five
characteristics is a normal curve. Figure 5.1 illustrates three “members” in
the family of normal distributions.
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The concept of the normal curve has broad application. Behavioral and social
scientists base many of their statistical analyses on the normal curve, yet the dis-
covery of the normal distribution emanates from a mathematician’s interest in
gambling. Spotlight 5.1 traces some notable historical advances in the use of the
normal curve.

M= –20
s= 15

M= +20
s= 10

M= +25
s= 5

Figure 5.1 Three normal distributions that differ in their M’s and s’s.

Spotlight 5.1 Abraham De Moivre and the History of the Normal Curve

The discovery of the normal curve is usually attributed to Abraham De Moivre
(1667–1754), being traced to a publication of his from 1733 (De Moivre 1738/
1959; English Translation). He was a friend of people like Edmond Halley (of Hal-
ley’s Comet fame) and Sir Isaac Newton and was held in high esteem by the
intellectual class of his time. Apparently, Newton occasionally replied to ques-
tions with, “Ask Mr. De Moivre, he knows all that better than I do” (Walker, 1934,
p. 322). De Moivre’s discovery grew out of his interest in the probability of
chance occurrences, in which an event could take on one of two values. Imagine
we wanted to know the probability of getting between 500 and 600 heads after
tossing a coin 1000 times. Given repeated tosses, if the number of tails is plotted
on the horizontal axis and the probability of obtaining any number of tails is
plotted on the vertical axis, as the number of tosses increase, the graph begins
to take on the shape of a normal curve. HowDeMoivre arrived at the formula for
the normal curve is unclear, since it was the writing style of the day to publish
results and conceal methods. It would be interesting to know De Moivre’s
thought process because he used two constants from areas not associated with
statistics: π, the ratio of the circumference of a circle to its diameter, and e, a
constant that is used in calculating financial growth rates, exemplified by
interest-bearing accounts.

Although the context of De Moivre’s discovery had to do with binomial
events (i.e. two possible outcomes) and gambling procedures, the curve has
extensive application to errors of measurement, a fact that has made it useful
for the work of observing the movements of planets and stars. In addition, the
curve approximates all sorts of raw score distributions, such as the heights of
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adult males in a given homogeneous population, obtained IQ scores for a given
population, some personality variables, and innumerable naturally occurring
variables, including things like the weight of a given species of wild rabbits
and even the widths of foreheads of crabs. It was De Moivre who worked
out the area under the curve for distances up to three standard deviations.
Because he worked out the formula for the normal curve and the areas under
the curve, De Moivre is duly credited with the normal curve’s discovery. How-
ever, other mathematicians deserve credit for popularizing it.

The first person to extend the normal curve to continuous measures was the
English mathematician Thomas Simpson (1755). Suppose we are interested in
determining the position of a star. Each independent observation will yield a
slightly different number. The amount of variation among the numbers would
be a function of the reliability of our instrument. However, which observation
should we trust? It seems obvious today that the best way to handle this prob-
lem would be to minimize the error by taking the mean of all observations.
However, this was not the practice prior to Simpson’s recommendation. He,
however, understood how the normal curve could be used to counterbalance
positive and negative error out of a final judgment.

The idea of the normal distribution was extended even further when the
French mathematician Pierre Laplace (1749–1827) proved the Central Limit
Theorem (a concept we will explore more in Chapter 7). This theorem is the sin-
gle most important theorem in statistics. It allows for the use of sampling dis-
tributions in hypothesis testing. We will learn about the central role of this
theorem in later chapters. In essence, the Central Limit Theorem states that
the means of many samples from a population will be normally distributed. This
allows us to use the normal distribution to figure the probability of obtaining a
mean by chance.

The Germanmathematician Carl Gauss (1777–1855) also popularized the nor-
mal distribution. In fact, the normal distribution is also called the Gaussian dis-
tribution. Gauss was one of the greatest mathematicians who ever lived and
one who showed promise right from the start. For instance, at the age of 3,
it is said he discovered an error in his father’s calculations of employee wages!
Later in Gauss’ life, when working at the University of Gottingen, Napoleon’s
armies were advancing on the city. Laplace is reported to have contacted Napo-
leon, his longtime friend, asking him to spare Gottingen because “the foremost
mathematician of his time lives there” (Dunnington, 1955, p. 251). Gauss’ most
lasting contribution was the use of statistics to relocate an asteroid. With only a
few observations with which to work, Gauss predicted exactly where the aster-
oid Ceres would reappear. He was using the method of least squares, a method
he invented that eventually found its way into modern statistics.

Many mathematical curves today serve as statistical models. However, De
Moivre’s normal curve serves as the cornerstone of descriptive and inferential
statistics.
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Area Under the Normal Curve

We will recall from Chapter 2 that a simple frequency distribution can be
depicted as a histogram or a frequency polygon. The frequency of every value
of X is represented on the graph. Accordingly, we can say that all of the scores in
a distribution fall in the area under the curve. This allows us to begin to think of
a normal curve using terms related to probability or likelihood. Chapter 6 will
focus on probability theory, but for the time being we can understand probabil-
ity to mean the likelihood that a given event (e.g. flipping a coin and getting a
“head”) will occur or not occur. This likelihood is quantified using the range of
0–1. A probability of 0 means the event in question cannot occur, while a prob-
ability of 1 means the event in question is most certain to occur. Probability the-
ory is most useful when thinking about events that may or may not occur. For
instance, an event that is just as likely to occur as it is not to occur (say, getting a
“heads” on a coin flip) has a probability of .50. Since the area under the curve
includes all of the scores of a distribution, the probability that a score from the
distribution will be found under the curve is 1. Furthermore, since a normal
curve is symmetrical, the probability that a score selected at random will be
greater than the mean is equal to the probability that a score selected at random
will be less than the mean. However, since the normal curve is mathematically
so well understood, we will learn how to determine the probabilities associated
with any value found under a normal curve.
Throughout this chapter and those that follow, references will be made to

both the percentage of scores and the probability of a given score occurring.
Please understand that these concepts are used interchangeably such that
any point made about a percentage is true for probability. In this way, saying
that 50% of scores fall above the mean is the same as saying the probability
is .50 of randomly selecting a score above themean. Now that the basic concepts
of a normal curve have been addressed, we can turn our attention to a transfor-
mation method that allows us to locate precisely the position of a score within a
normal distribution

5.3 Standard Scores (z Scores)

It is difficult to overstate the importance of standardizing scores to the practice
of statistical analysis. The ability to standardize allows us to take data from any
set of normally distributed scores, no matter the particular value of the mean or
the variance, and think about that distribution in a similar way as any other nor-
mally distributed data set. Some may argue it even allows us to compare apples
with oranges. (See Box 5.1 for further development of this concept.) The con-
cepts covered in this section of the text are critical for full comprehension of
later material.
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A z score is a measure of how many standard deviations a raw score is from
the mean of the distribution. Given a normal distribution, suppose the mean is
20 and the standard deviation is 4. A score of 24 is one standard deviation above
the mean. Consequently, a score of 24 would be 1 z score above the mean

Box 5.1 With z Scores We Can Compare Apples and Oranges

Is he taller than he is heavy? This question, at first glance, seems to be nonsen-
sical, like comparing apples with oranges. The reason the question appears to
be unanswerable is that height andweight are different variables andmeasured
in different units. How can we say that 6 ft 2 in. is more or less than 145 lb? How-
ever, in the world of statistics we can compare the relative position of scores in
different distributions by using standardized scores. The z score transformation
will convert original scores, from different scales, to a common unit. The com-
mon unit is the z score, which is the number of standard deviations a raw score
is from themean of a given distribution. Now if we were told that aman’s height
transforms to a z of +1.3 and his weight to a z of −.42, could we answer the
question, “is he taller than he is heavy?” If we first qualified our statement by
saying that we are comparing two values relative to the distribution from which
they came, then “yes”; we could answer affirmatively. When his height is trans-
formed into a z score, the mean and standard deviation of a distribution of
heights is used to make the transformation. His weight is transformed into a
z score using the mean and standard deviation from a distribution of weights.
In this way, to say that he is taller than he is heavy is to say that his transformed
height value locates him higher on the z distribution of heights than his trans-
formed weight score locates him on the z distribution of weights.

We can also use z scores to compare things like test performances on two
different tests. Suppose a roommate is gloating a bit because they scored an
88 on a history exam while the other roommate only scored an 82 on their psy-
chology exam. However, we suspect that the history exam was much easier
than the psychology one. If we knew themeans and standard deviations of both
exams (and if we can assume both sets of tests were normally distributed), we
could see which of the roommates performed better in relation to the rest of
their respective classes.

This way of comparing scores from different scales of measurement is very
useful in the social and behavioral sciences as well as in the field of education.
We can ask, for instance, if a person is more depressed than anxious, more par-
anoid than manic, or better at math than at reading. Although the scales of the
tests are designed to tap different traits and abilities, and each scale has its own
mean and standard deviation, by standardizing the raw scores an examiner can
easily make cross-scale comparisons.
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(z = +1). What z score would be assigned to a score of 16? Since 16 is one stand-
ard deviation below the mean (20 − 4), a score of 16 would transform to a z score
of −1.
A z score is also called a standard unit or standard score. When all of the raw

scores from a normal distribution have been transformed into z scores, the
resulting distribution is called the standard normal distribution. The standard
normal distribution is a special distribution; it has a mean of 0 and a standard
deviation of 1. This point is so important – it bears repeating; any normal dis-
tribution of raw scores if converted into z scores, no matter the mean or the
standard deviation, will take the shape of the standard normal distribution, hav-
ing a mean of 0 and a standard deviation of 1. This makes the standard normal
distribution very special.
Two z score formulas are provided; one is used to transform the scores of

a population, while the other is used to transform the scores of a sample.

Formulas for transforming an X Score into a z Score

Population Sample

z =
X−μ

σ
z =

X−M
s

(Formula 5.3a) (Formula 5.3b)

where

X = the raw score to be transformed
μ = the mean of the population
σ = the standard deviation of the population
M = the mean of the sample
s = the sample standard deviation

■Question For a distribution with μ = 4.80 and σ = 2.14, what is the z score of a
raw score of 6?

Solution

z =
X−μ

σ

z =
6−4 8
2 14

= 0 56

Given the characteristics of this distribution, a score of 6 is 0.56 standard
deviations above the mean. ■

The following table lists several characteristics of z scores and the standard
unit normal curve.
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Important Facts About z Scores

1) A z score distribution is established by transforming every raw score into a
z score.

2) A z score distribution always has a mean of 0 and a standard deviation of 1.
3) All raw scores that fall below the mean have some z value that is neg-

ative; all raw scores that fall above the mean have some z value that is
positive.

4) A raw score that is one standard deviation from the mean has a z score of
either ±1, depending on whether it is above or below the mean.

5) A raw score that is the same as the mean has a z value of 0.
6) The z score distribution will have the same shape as the raw score

distribution.

Area Under the Curve and z Scores

All of the scores in a distribution are contained in the area under the
curve. When the distribution is normal, half the scores are above the mean
and half the scores are below the mean. In Chapter 4, we learned that
approximately 68% of the scores in a normal distribution fall between plus
and minus one standard deviation of the mean. In the standard normal
distribution, approximately 68% of the z scores will fall between a z score
of ±1 (see Figure 5.2). Statements of percentages can be translated to
probability statements. For instance, the probability that a score selected
at random will have a positive z score is 0.50. The probability that a ran-
domly selected raw score will correspond to be z score between ±1 is
approximately 0.68.

0–1
z z z

+1

~68%

Figure 5.2 Approximately two-thirds of the scores of a normal distribution fall between
z scores of ±1.
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It is mathematically possible to specify the probability that a score will be
drawn from a specified range of scores under the curve. However, we have been
mercifully spared the arduous task of calculating these probabilities. We can
simply make use of the z table found in Appendix A (Table A.1). With the
aid of this table, we can answer such questions as “What percentage of scores
fall below a given X score?” or “What is the probability that a score taken at ran-
dom will fall between any two scores?” The z table, however, can only be used
when working with data from a normal distribution.

Using the z Table

The following is a portion of the z table found in Appendix A (Table A.1).

(A) (B) (C)

z

Area
Between
Mean and z

Area
Beyond
z

1.00 .3413 .1587

1.01 .3438 .1562

1.02 .3461 .1539

1.03 .3485 .1515

1.04 .3508 .1492

Column A of the table lists z scores. Column B provides the probability that a
single score will fall between the mean of the distribution and the z value in col-
umn A. By moving the decimal point two places to the right, the numbers in
column B would represent the percentage of scores falling between the mean
and a given z score. Column C specifies the probability that a score will fall
beyond a particular z score, that is, between that score and the end of the dis-
tribution on whichever side the z score in question falls. In this way, Columns B
and C serve to cut one side of the distribution into sections with the sum of the
area of the two sections always equaling 0.50. This means that for any z value,
the corresponding areas found in column B plus column C will sum to 0.50.
Finally, notice that the z table does not depict negative z scores. Recall that a
normal distribution is symmetrical, and, therefore, the area between the mean
and a z score of, say, +1 is the same as the area between the mean and a z score
of −1. Having a table depicting probabilities for only one-half of a perfectly
symmetrical distribution is sufficient.
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Figure 5.3 shows a more precise measurement of the percentages of scores
falling between various points of a normal distribution. Several worked exam-
ples will follow in order to familiarize us with the use of the z table.

■ Question What is the probability that a randomly selected score will fall
between the mean and a z score of 0.39 (Figure 5.4)?

0
μ

–1 +1–2 +2

47.72% 47.72%

z scores

F
re

qu
en

cy

34.13% 34.13%

13.59% 13.59%

2.28% 2.28%

Figure 5.3 The percentage of scores that lie between various points of a normal distribution.
This figure represents a more precise representation of the 68-95-99.7 rule presented in
Chapter 4.

0

0.1517

+0.39

Figure 5.4 The probability that a randomly selected score will fall in the shaded area is 0.1517
or 15.17%.
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Solution 0.1517 ■

■ Question What percentage of scores fall between the mean and a z score of 1
(Figure 5.5)?

Solution 34.13% ■

■ Question What percentage of scores fall between ±1 z score (Figure 5.6)?

Solution 34.13 + 34.13% = 68.26% ■

■ Question What is the percentage of scores that fall between a z score of +0.25
and +1.20 (Figure 5.7)?

0

34.13%

+1

Figure 5.5 The shaded area includes 34.13% of the scores.

0

68.26%

+1–1

Figure 5.6 Just over 68% of scores fall within ±1 z score.
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Solution The percentage of scores between the mean and a z of +1.20 is 38.49.
This also includes the unwanted area between the mean and the z of +0.25. Sub-
tracting the percentage of scores falling between the mean and +0.25 from the
percentage of scores found between the mean and a z value of +1.20 will isolate
the proper area:

38 49 −9 87 = 28 62 ■

■ Question What is the total percentage of scores that fall above a z score of
+1.96 and below a z score of −1.96 (Figure 5.8)?

SolutionUse the third column of the table when looking up 1.96. There is 2.50%
of scores in each tail of the distribution beyond a z of 1.96. Therefore, the total
percentage of scores is 5%. Stated differently, the probability that a score drawn
at random will fall beyond a z score ±1.96 is .05. Moreover, 95% of all scores fall
within the boundaries of ±1.96 z scores. ■

0

28.62%

+0.25 +1.20

Figure 5.7 The shaded area contains 28.62% of the scores.

0–1.96 +1.96

2.50% 2.50%

Figure 5.8 The shaded areas contain a total of 5% of the scores.
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■ Question Find the z score cutoffs within which fall 90% of the scores of a dis-
tribution (Figure 5.9).

Solution First, enter the second column of the table. Next, find the z score in
column A that comes closest to the probability value of .4500. The z score we
need is between 1.64 and 1.65. We could use either 1.64 or 1.65 and simply note
that the area identified will be either slightly smaller or slightly larger than 90%.
Alternatively, since the two values seem to be equally close to .4500 (in actuality,
because we are talking about the area under a curved line, they are not exactly
equally close), we could take the midpoint between 1.64 and 1.65 and state that
approximately 90% of the scores are within ±1.645. ■

Using the z Score Formula

■ Question Given a distribution in which M = 25 and s = 5, what percentage of
scores fall between 25 and 32?

Solution To use the z table, the raw scores of 25 and 32 must be transformed to
z scores. Using Formula 5.3b (the symbols M and s should tip us off that the
scores are from a sample), we find

z =
X−M

s
=
25−25

5
=
0
5
= 0

z =
X−M

s
=
32−25

5
=
7
5
= 1 40

Now that we have converted the raw scores into z scores, the question can be
rephrased as “what percentage of scores fall between a z score of 0 (the mean)
and 1.40?” The answer is 41.92%. (Next to a z score of 1.40, see the value in
column B.) ■

0

90%

–1.645 +1.645

2.50% 2.50%

Figure 5.9 Approximately 90% of the scores fall between z scores of ±1.645.
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■ Question Given M = 100 and s = 25, what percentage of scores fall between
75 and 125?

SolutionWell, the standard deviation is 25 units of whatever is being measured.
The score of 125 is one standard deviation above the mean, while the score of
75 is one standard deviation below the mean. By now, we should know that
approximately 68% of the scores fall within plus and minus one standard devi-
ation of the mean (68.26%, to be exact). ■

Up to now, we have been using z scores to find the percentage of scores falling
within a given area of the normal curve, or the probability that a given score will
fall within an area. However, sometimes questions are asked that require z
scores to be converted into raw scores. Formula 5.4a and b enables us to accom-
plish this conversion.

Formulas for transforming z to an X Score

Population Sample

X = μ + zσ (Formula 5.4a) X = M + zs (Formula 5.4b)

■ Question A teacher administers a placement test in order to assign each
student to one of three classrooms: an accelerated, a remedial, or a regular
class. The regular class will have those students who obtained scores falling
within the middle 60% of the distribution. All students scoring in the upper
20% of the distribution will be assigned to the accelerated class, and those
receiving scores in the lower 20% of the distribution will be assigned to the
remedial class. The mean of the class distribution is 75 with a standard devi-
ation of 7. What raw score cutoffs should be used to make the assignments
(Figure 5.10)?

0
z

? ?

30% 30%20% 20%

Figure 5.10 What are the cutoffs that bracket the middle 60% of scores in the distribution?

146 5 The Normal Curve and Transformations



Solution This problem, at first glance, may seem overwhelming. If we repre-
sent the problem visually, we can simplify matters. Our illustration should look
like Figure 5.10. Since we want the middle 60% of the distribution, we need a z
score that has 30% of the scores between it and the mean. Since it is assumed
that the distribution of placement test scores is normal, the same percentage of
scores that fall between the relevant positive z score and the mean will fall
between the same negative z score and the mean. Instead of using the first col-
umn of the z table, the column of z scores, use the second column to find the
percentage closest to 30. The percentage 29.95 is as close as this table allows.
The z score that corresponds to 29.95 is +0.84. This means that approximately
30% of the raw scores fall between the mean and a z of +0.84. Since the dis-
tribution is symmetrical, another 30% of the scores fall between the mean and
a z score of −0.84. Therefore, the middle 60% of the distribution falls between z
scores of ±0.84.
We are now in a position to convert the z scores to raw scores. Since we are

looking for the raw score cutoffs that correspond to a positive and negative z
score, two separate calculations are required, both using Formula 5.4 (whether
we use version a or b depends on how we define the class, population or sample,
but either one will yield the same result):

Upper Cutoff = 75 + + 0 84 7

= 75 + 5 88

= 80 88

Lower Cutoff = 75 + −0 84 7

= 75−5 88

= 69 12

Assuming the placement test yields whole number results, we can apply the
findings to the distribution of test scores in the following manner: Students
scoring 81 or higher are in the top 20% and should be assigned to the accelerated
section, students scoring 69 or below are in the lower 20% and should be
assigned to the remedial section, and students with scores from 68 to 80 should
be assigned to the regular section. ■

Using z Scores to Calculate Percentile Rank

Recall that the percentage of scores falling below a given score is the percentile
rank of that score.We have just learned that any score can be transformed into a
z score. The z table can enable us easily to calculate percentile ranks via z scores.
Bear inmind, however, that percentile ranks can only be computed with z scores
if the data set is normally distributed.
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■ QuestionWhat is the percentile rank of the score 15, when M = 18 and s = 4,
assuming a normal distribution?

Solution The z score of 15 is

z =
15−18

4
=
−3
4

= −0 75

Use the third column of the z table. This allows us to determine the percent-
age of scores above a positive z score or below a negative z score. Figure 5.11
depicts the shaded area that we are going to identify in the third column.

The z score that corresponds to the raw score of 15 is −0.75. The percentage of
scores that fall below a z of −0.75 is 22.66. Hence, the percentile rank of 15 is
22.66%. ■

■ QuestionWhat is the percentile rank of 30, when M = 27 and s = 2, assuming
the data set is normally distributed?

Solution The z score associated with a raw score of 30 is

z =
30−27

2
=
3
2
= 1 5

The percentage of scores between the mean and a z of 1.50 is 43.32. However,
the percentile rank includes all the scores below X, so we need to add the lower
half of the distribution to 43.32. Therefore, the percentile rank of 30 is 43.32 +
50 = 93.32%. We can calculate percentile ranks using either the second or the
third column of the z table. If we draw a picture of the normal curve, shade the
appropriate area, and understand what the second and third columns of the z
table are giving us, the proper arithmetic operations will be obvious. ■

18

22.66%

0
x= 15
z= –0.75

Figure 5.11 In finding the percentile rank of 15, the shaded area is the percentage of scores
that fall below a raw score of 15.

148 5 The Normal Curve and Transformations



Identifying the Interquartile Range

Recall from Chapter 4 that the interquartile range marks the middle 50% of the
distribution. It is a descriptive measure of variability that is unaffected by
extreme scores. The way in which we go about finding the interquartile range
is similar to the way we solved the problem of assigning students to advanced,
regular, and remedial classes.

■Question A distribution has μ = 80 and σ = 5.What is the interquartile range?

Solution Figure 5.12 shows the middle 50% of the distribution. We need to
identify the z scores that bracket the middle 50%. Enter the second column
of the z table and find the percentage closest to 25%. A z of 0.67 is as close
as our table gets us. Since the distribution is symmetrical, 50% of the scores fall
between z scores of ±0.67. Now convert the z scores to raw scores using
Formula 5.4a

Upper Cutoff Lower Cutoff

X = 80 + (0.67)(5) X = 80 – (0.67)(5)

= 80 + 3.35 = 80 – 3.35

= 83.35 = 76.65

The interquartile range is 83.35 − 76.65 = 6.70. ■

One issue needs to be addressed before we continue. Up to this point, we
have been claiming to identify the portion of the curve above or below given
values in a data set; however it is unclear how to classify scores that correspond

80
0

76.65
–0.67

83.35
+0.67

x
z

Figure 5.12 The shaded area defines the interquartile range.
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perfectly with the z score in question. In other words, if we are asked to find
the percent of scores in a data set below a z of −1.96, column C in the z table
would direct us to answer 2.5%; however what about a raw score that corre-
sponds perfectly with a z of −1.96? Is that raw score part of the lowest most
2.5% of the data set or part of the upper 97.5%? Where do we put it? This is not
an easy question to answer. It depends, in part, on whether the raw scores are
understood to be from a discrete or a continuous measure. The conventional
way to handle this situation is to suggest that the point itself – in this case, the
raw score corresponding perfectly with a z value of −1.96 – should be included
in the area of the curve being identified. In this way, it is appropriate to say that
2.5% of the scores in the distribution have a z score of −1.96 or below (not just
below −1.96). Up until now, we have only been using language of being above
or below a given point, but it is also appropriate to use the phrases “at or
above” and “at or below.”
The z score system is not the only method of standardizing scores. Another

standardizing method is the T score system. It is very similar to the z score sys-
tem. However, it features a mean of 50, a standard deviation of 10, and does not
have any negative values. We will not cover the T distribution since use of it is
largely restricted to a handful of specific psychometric measurements (e.g. the
Minnesota Multiphasic Personality Inventory [MMPI] uses T scores). Informa-
tion about this standardizing system is likely to be presented when students are
studying these particular psychometric measurement systems in other content-
related classes.

Summary

Percentiles and z scores are statistical transformations of original scores. They
provide information about where a score stands in relation to other scores in a
given distribution. The percentile rank of a score is expressed as the percent-
age of scores in the distribution that fall below that score. The percentile rank
of a score is based on the rank order of scores; it does not take the distance
between scores into consideration. The z score transformation avoids this
problem by using the variability of the distribution in the transformation for-
mula. A z score is the number of standard deviations a raw score is from the
mean of the distribution. All z scores above the mean are positive; those below
the mean are negative. The z score distribution has a mean of 0 and a standard
deviation of 1. Formulas can be used to transform raw scores into z scores and
conversely to find the raw score values that correspond with specific z scores.
A z table can be used to find probabilities associated with selecting scores at
random above and below z scores. However, a z distribution will only be nor-
mal if the raw score distribution is normal.
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Using Microsoft® Excel and SPSS® to Find z Scores

Excel

General instructions for data entry into Excel can be found in Appendix C.

Data Analysis
1) Input a data set. (For practice, we can use one of the data sets in the “Work

Problems for the Computer” for this chapter.)
2) Since Excel first needs to know the mean and standard deviation, we will

need to find that first. So, select Data Analysis and then Descriptive
Statistics. Click OK.

3) Highlight all of the scores in the distribution and put those quadrant num-
bers into the Input Range box.

4) Select a location for the output. Use the Output Range box if needed.
5) Make sure to click Summary Statistics before clicking OK. This should

generate a box of descriptive statistics, including the mean and standard
deviation of the distribution (the first and fifth statistic generated,
respectively).

6) Now select the location for the z score computation for a given raw score
number we wish to transform (typically this is the cell directly adjacent to
the right of the raw score), and click the fx key to the immediate left of the
input box at the top of the spreadsheet.

7) Excel uses the term standardize for z scores. Search for and select
this term.

8) In the X box, select the raw score we wish to transform.
9) In theMean and Standard-dev box, select the appropriate values from the

Summary Statistics box we just constructed and click OK. The z score
should show up in the selected box.

10) To transform all of the raw scores into z scores, we can use the “autofill”
function. However, first highlight the z score already transformed and
place a $ in front of the number of the coordinate for both the mean
and standard deviation components of the equation (since we do not
want those values to change). For instance, if our mean value is found
in cell E5, change that to E$5; if our standard deviation value is found in
cell E9, change that to E$9. This will keep this value constant for all of
the autofill calculations. Then highlight the cell containing the z score
and move the cursor to the lower right of the cell until a “+” appears.
Then drag down to a cell corresponding to the last raw score cell and
release. This should produce a column of z scores corresponding to the
adjacent raw scores.
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SPSS

General instructions for inputting data into SPSS can be found in Appendix C.

Data Analysis
1) Input a data set. (For practice, we can use one of the data sets in the “Work

Problems for the Computer” for this chapter.)
2) Once the data has been entered, click Analyze on the tool bar, select

Descriptive Statistics and then Descriptives.
3) Move the column label containing the data we wish to convert into z scores

from the left box to the Variable box. Also, make sure the Save standar-
dized values as variables box in the lower left corner is checked. This is
vitally important.

4) Click OK (no other work is needed).
5) The output screen will generate some descriptive statistics. However, once

we go back to the data file, we will see a new variable (named identical to the
selected variable with a “Z” in front of it) with each raw score transformed
into its corresponding z score.

Key Formulas

Formula for finding the Percentile Rank of X, PR

PR of X =
B+ 1 2E

N
100 (Formula 5.1)

Formula for finding X given a Percentile Rank, Xp

Xp = L+
N P −F

f
h (Formula 5.2)

Formulas for transforming an X Score into a z Score

Population Sample

z =
X−μ

σ
(Formula 5.3a) z =

X −M
s

(Formula 5.3b)

Formulas for transforming z to an X Score

Population Sample

X = μ + zσ (Formula 5.4a) X = M + zs (Formula 5.4b)
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Key Terms

Percentile Rank Standard Score
z Score Standard Normal Distribution

Questions and Exercises

1 Using the following frequency distribution, what is the percentile rank of a
score of:
a 56
b 60
c 54
d 49

X f

62 3

60 4

58 7

56 12

54 10

49 7

44 6

2 What is a z score, conceptually?

3 Why are some z scores positive values, while others are negative?

4 Think of two examples of variables that are believed to be normally distrib-
uted across a population. Defend the answers.

5 Think of two examples of variables that are not believed to be normally dis-
tributed across a population. Defend the answers.

6 Transform these scores of a population distribution into z scores.

Raw Scores: 4, 5, 7, 9, 10, 11

7 Given M= 14 and s2 = 16, what is the z score of a raw score of 11?

8 In a distribution whereM = 25 and s = 3, what raw score corresponds to a z
score of 0.36?
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Assume normality for all remaining questions.

9 If a distribution has a mean of 130 and a standard deviation of 13, what is
the probability of randomly selecting a score above 140?

10 When M = 34 and s = 3, what percentage of scores are lower than 27?

11 What is the total percentage of scores that lie beyond z scores of ±1.96?

12 What percentage of scores fall between the z scores ±1.28?

13 What is the z value when the probability of selecting a score at
random is:
a At or below z = 0.4207
b At or below z = 0.3821
c At or above z = 0.3192
d At or above z = 0.0694
e At or below z = 0.1151
f At or above z = 0.2946
g At or above z = 0.4641
h At or below z = 0.4247
i At or above z = 0.2119

14 What is the probability of randomly drawing a score between the z scores
+0.56 and −1.2?

15 In a distribution withM = 78 and s = 7, what is the probability of selecting a
score between 72 and 80?

16 In a distribution having a mean of 123 and a variance of 49, what is the total
percentage of scores falling above 130 and below 116?

17 If a standardized anxiety questionnaire has a mean of 25 and a standard
deviation of 5, what is the probability that an individual selected at random
will score between 20 and 30?

18 A standardized test of reasoning ability has amean of 70 and a standard devi-
ation of 7. The principal of a school would like to identify the best and worst
students, as defined by their scores on the test. The best students are those
with a percentile rank of 90 and above, and the worst students are those with
a percentile rank of 10 and below. What are the raw score cutoffs the prin-
cipal should use to identify the two groups of students?

19 Transform the following population of raw scores into z scores.

2, 4, 5, 6, 8, 9
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20 For a distribution with M= 48 and s = 4, what is the percentile rank of:
a 43
b 57
c 48
d 50
e 47

21 A 100-point final exam is administered in a class where μ = 78 and σ = 7.
What score did these four students receive?
a Laurie, with a percentile rank of 95%.
b Jennifer, if she is in the 80th percentile.
c Jim, who scored better than 30% of the other students.
d Gus, with a percentile rank of 45%.

22 For a distribution with M = 35 and s = 3, find the percentage of scores
that are:
a At or above z = +1.20
b At or above z = −0.36
c At or below z = −0.56
d At or below z = −0.79
e At or below z = −1.10
f At or below z = +0.98
g At or above z = +0.13

23 Professor Seitz gives a final exam to his abnormal psychology class and
finds that μ = 56 and σ = 5.
a If the passing score is 38, what percentage of students will fail?
b If Professor Seitz wants the “C” category to span the middle 30% of the

distribution, what would be the cutoffs?
c What score would serve as the cutoff for an “A” if only the top 10% of the
class is to receive an “A?”

24 A student receives a score that corresponds to a percentile rank of 80%.
a What z score corresponds to this rank?
b Given the information available here, can we determine the raw score?

25 A score from a population that is 10 points below the mean corresponds to
a z score of −2.50. What is the population standard deviation?

26 A sample score that is 5 points above the mean corresponds to a z score of
2.00. What is the sample standard deviation?

27 For a population with a standard deviation of 15, a raw score of 51 corre-
sponds to a z of −1.00. What is the population mean?
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28 For a sample with a standard deviation of 5, a raw score of 31 corresponds
to a z of 2.00. What is the sample mean?

29 For a population with a mean of 60, a raw score of 61 corresponds to a z of
0.20. What is the population standard deviation?

30 For a sample with a mean of 75, a raw score of 60 corresponds to a z of
−2.00. What is the sample standard deviation?

31 For a given sample distribution, a raw score of 35 corresponds to a z of
−1.00 and a raw score of 40 corresponds to a z of −0.50. Find the mean
and standard deviation for this sample.

32 For a given population, a raw score of 72 corresponds to a z of 0.20 and a
raw score of 84 corresponds to a z of 0.80. Find the mean and standard
deviation of the population.

33 For a given sample distribution, a raw score of 16 corresponds to a z of –
2.00 and a raw score of 23.5 corresponds to a z of 3.00. Find the mean and
standard deviation of the sample.

34 For a given population, a raw score of 77 corresponds to a z of 2.50 and a
raw score of 41 corresponds to a z score of −5.00. Find the mean and stand-
ard deviation of the population.

35 Suppose miles traveled per year by American drivers is normally dis-
tributed with a mean of 25 000 miles and a standard deviation of 6 000
miles. If we wanted to find the miles traveled that will cut the distri-
bution into five equally populated segments, what are the miles trav-
eled that define the bottom 20%, the next 20%, and so on up to the
top 20%?

36 Suppose the average American household generates 45 lb of garbage per
week with a standard deviation of 11 lb. Suppose the local government
wants to levy a tax on the worst offenders (top 15%) and offer a tax rebate
as incentive for its most conscientious citizens (bottom 28%). What weekly
garbage amounts correspond to these cutoffs?

37 For a sample distribution with a mean of 25 and a standard deviation of 4,
what raw score corresponds to a z score of −1.75, and what percent of sam-
ple scores will be greater than that raw score?
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38 For a population of scores with a mean of 99 and a standard deviation of 9,
what raw score corresponds to a z score of 1.33, and what percent of scores
will be greater than that raw score?

39 For a sample distribution with a mean of 150 and standard deviation of 15,
what percent of scores will fall between the values of 170 and 175?

40 For a population of scores with a mean of 1 and a standard deviation of
0.15, what percent of scores will fall between the values of 0.6 and 0.7?

41 Suppose Andrew and Lisa wanted to compare how well they each performed
in their respective soccer games. They are, however, on different teams. Since
both are defenders and neither score verymuch, they decided to compare the
number of completed passes. Andrew completed 54 passes; his team average
was 44 completed passes per player with a standard deviation of 6. Lisa com-
pleted 48 passes; her team average was 38 passes with a standard deviation of
7. Which one performed better relative to their teammates?

42 Suppose both Sarah and Justine think the other wastes too much time.
Sarah feels Justine spends too much time on social media compared with
others, while Justine feels Sarah spends too much time figuring out what to
wear compared with others. Suppose further we know that people average
65 minutes per day on social media (σ = 20minutes) and 15minutes per
day deciding what to wear (σ = 4minutes). Justine spends 90minutes a
day on social media and Sarah spends 20 minutes deciding what to wear.
Who wastes more time compared with the rest of the population?

43 Using the following grouped frequency distribution, what is the percentile
rank of a score of 172?

Class interval Frequency

180–184 7

175–179 11

170–174 16

165–169 15

160–164 11

155–159 9

150–154 7
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44 For the following grouped frequency distribution, find the percentile rank
for an X of 40, 50, 65, and 90.

Class interval Frequency

26–29 17

22–25 13

18–21 23

14–17 27

10–13 25

6–9 12

2–5 9

Computer Work

45 For the following population of scores:

12 15 34 23 32 12 22 21 19 25 14 11 12

11 10 14 15 13 12 16 18 21 29 32 31 30

24 30 29 28 26 21 19 17 16 15 11 10 17

32 30 29 29 28 27 21 14 21 18 16 16 11

20 23 14 15 17 11 21 32 20 20 25 15 17

14 15 23 26 30 24 19 23 22 21 24 17 15

Find μ, σ2, σ and convert all raw scores into z scores.

46 For the following sample of scores:

10 5 1 19 13 6 11 12 9 15 17 17 6

4 16 19 8 13 11 7 18 16 7 6 16 2

7 7 11 8 4 11 18 10 14 20 15 4 19

9 3 8 16 5 7 1 19 20 18 12 9 4

9 11 5 15 5 17 17 9 18 1 8 18 6

16 6 12 6 6 18 19 11 18 9 19 17 11

Find M, s2, s and convert all raw scores into z scores.
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47 For the following sample of scores:

112 175 344 123 327 412 122 217 419 125 147 411 112

112 108 145 125 183 152 126 188 251 229 382 351 320

243 309 629 283 269 216 193 197 166 153 119 106 173

324 130 279 429 128 277 421 114 217 184 116 167 411

520 223 148 155 127 181 251 322 280 250 225 185 157

164 153 239 266 303 294 196 233 229 621 243 197 156

Find M, s2, s and convert all raw scores into z scores.

48 For the following population of scores:

4.2 8.5 3.4 2.3 3.2 2.2 2.2 2.8 6.9 2.5 1.4 9.1 2.2

5.6 9.1 2.4 4.5 6.3 1.2 3.6 9.8 2.5 2.9 3.2 3.8 3.1

2.4 3.0 2.9 2.8 2.6 2.9 4.9 1.7 4.6 7.5 1.2 7.0 3.7

3.2 3.1 2.9 2.9 2.8 2.7 2.5 2.4 2.3 8.8 3.6 6.6 4.5

2.0 2.3 3.4 5.5 7.7 8.1 2.6 3.2 2.0 2.1 2.5 5.5 6.7

7.4 1.5 2.3 2.6 3.1 2.4 7.9 2.3 2.2 2.9 2.4 4.7 7.5

Find μ, σ2, σ and convert all raw scores into z scores.
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6

Basic Concepts of Probability

6.1 Theoretical Support for Inferential Statistics

The concepts presented in this chapter and Chapter 7 build on what we have
already learned regarding descriptive statistics and will, in conjunction, present
the theoretical support for performing inferential statistics – the subject matter
of the remainder of the text. Inferential statistics are a collection of mathemat-
ical techniques that use probability theory and hypothesis testing logic to draw
inferences about the characteristics of a population of scores from the
characteristics of a sample of scores. The primary types of inference to be made
concern whether or not a sample seems to come from a known population or
whether or not two or more samples seem to come from the same population.
Operationally, inferential statistics are used to analyze the merits of different
hypotheses that have been presented and for which quantitative information
has been carefully and systematically gathered.
This chapter will introduce us to the basics of probability theory – its

terminology, formulaic principles, and conceptual limitations. Chapter 7 will
introduce us to concepts and terminology related to hypothesis testing as well
as a description of the sampling distribution concept and an explanation of its
theoretical importance. Together, this chapter and Chapter 7 help us under-
stand the relationship between the features of randomly drawn samples and
the features of populations from which they are drawn.
Probability theory can help us speculate about the nature of samples that are

drawn from well-defined populations. For instance, imagine we are blindly
selecting 10 jelly beans from a jar that contains an equal number of red and
black jelly beans. We can imagine this jar to be a population of jelly beans
and the selection of 10 to be a sample. Although we will not be able to predict
the exact makeup of our sample, we might suggest that it should be close to
about 5 of each color. Although the exact composition of our sample cannot
be perfectly predicted, we can gather some reasonable expectations based on
our knowledge of the population from which it is drawn. Now, what if there
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was another jar of jelly beans from which we blindly selected 10 jelly beans, but
this one contained 90% red and only 10% black jelly beans. Just as before, we
would not be able to predict how many red and black jelly beans we would have
in our sample, but because the population is well defined, we could use our
knowledge of the population to make some predictions. One, for instance,
might be that we will almost certainly have more red than black jelly beans
in our sample. By knowing the composition of the population, we can gain a
sense of how likely it will be to get different kinds of samples. Probability theory
helps us to better understand what to expect when selecting samples from
well-defined populations.
Inferential statistics reverses this logical flow of inference. Instead of inferring

the features of a sample that is drawn from a well-defined population, inferential
statistics starts with access to a well-defined sample, and by using probability
theory as well as various hypothesis testing concepts, we are enabled to draw
inferences about the features of the population from which the sample came.
For instance, if we looked at our sample of 10 jelly beans and saw that they were
all red, this information should be helpful to us as we think about the features of
the jar of jelly beans from which this sample came. Furthermore, if we knew that
there were two jars of jelly beans as described earlier, we might feel pretty
strongly about from which jar our sample came. If, however, our sample
contained seven red and three black jelly beans, we may not feel very certain
at all. Additional ideas and terminology concerning how to properly test
hypotheses will need to be introduced to help us set up ways of making
decisions.
This chapter and Chapter 7 contain numerous concepts that are theoretically

important. Although full comprehension of these theoretical concepts is not
absolutely necessary to be able to “run” inferential statistical tests, a clear
understanding of these concepts is necessary for a deep appreciation of how
the inferential tests themselves work, what the recommended conclusions of
the test mean (and do not mean), and why. For these reasons, we need to
seriously grapple with the concepts and arguments presented in this chapter
and Chapter 7 and return to them as needed as we make our way through
the rest of the material in the textbook.
The chapters following 6 and 7 can be roughly clustered into four different

cohesive groups of analysis: (i) Part 4 – z tests and t tests, (ii) Part 5 – analysis
of variance tests, (iii) Part 6 – correlation and regression analyses, and
(iv) Part 7 – nonparametric tests. In terms of theoretical rationale, all of them
are anchored in the twin pillars of probability theory and hypothesis testing. In
this sense, the order of presentation for these groups of tests does not matter. In
fact, many textbooks have a different organization scheme. The specific order of
presentation chosen for this text is based in pedagogical reasons. In this sense,
once we feel comfortable with the material contained in this chapter and
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Chapter 7, we should feel some degree of comfort moving directly to any sub-
sequent chapter matching our interest, if so desired. Furthermore, if we find
ourselves struggling to understand either the theoretical rationale underlying
an inferential procedure or the conclusions we can or cannot draw from the
results of an inferential test, review of the material in this chapter and
Chapter 7 is recommended.

6.2 The Taming of Chance

Historically the process of decisionmaking in situations of uncertainty was often
dealt with by techniques designed to let the fates or the gods control the out-
comes; for instance, procedures like the casting or drawing of lots is often refer-
enced in ancient writings. With the rise of Christianity in theWest, this practice
was largely replaced through the direct petitioning to the Christian God for
guidance in the making of weighty decisions. However, starting in the seven-
teenth century, several natural philosophers and mathematicians started to
speculate about how to deal with more mundane uncertainties associated with
daily life (e.g. Reeves, 2015). One such activity that spurred a good deal of inter-
est concerned gambling. Many historians of science point to an exchange of let-
ters between Blaise Pascal and Pierre De Fermat regarding how to settle out the
stakes involved in an interrupted gambling venture that could not be finished as
a critical event in the development of probability theory (e.g. Katz, 1993; Weis-
berg, 2014). We can easily imagine a gambling situation where one contestant
would be ahead and would be more likely to win if the contest was to continue,
but that this outcome would not be certain. Splitting the winnings in half would
seem unfair to the person who is ahead. However, giving this person the full
amount would seem unfair to the other contestant who, although sitting in a
disadvantaged position, had not yet lost and had some hope of recovering to
win. The discussion started by Pascal and Fermat generated a lot of further dis-
cussion over the next 300 years regarding how to quantify the uncertainty in
situations such as these. (See also Box 2.2 presented earlier in this text.)
A major breakthrough came when it was realized that “games of chance”were

probably not that at all but that the outcomes of rolls of the dice and the location
of a card in a deck when shuffled were regulated and law-like, if only detailed
information about preconditions and processes were available. However, given
that such precise information could never be fully known, the key was to
becomewillfully ignorant of the myriad of small effects that influence outcomes
and choose to focus on the more general truths. (See Box 6.1 for further
information about the use of willful ignorance in probabilistic thinking.) If
we should choose to become ignorant of any particular roll of the dice and
instead focus on what tends to happen across several events (e.g. several rolls
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Box 6.1 Is the Scientific Method Broken? Uncertainty, Likelihood, and Clarity

An aspect of probabilistic thinking that seems to have been lost inmost modern
discussions of probability, and that may be partly responsible for the reproduc-
ibility problem in the social and medical sciences, is the realization that
uncertainty is not merely the quantification of likelihood, but is also influenced
by a clear understanding of the situation; let us use the term “clarity” for a lack of
a better one. Now “likelihood” (or “risk” as it is sometimes called) is usually
understood as something that can be quantified numerically, like the odds
of selecting a spade from a deck of cards. This predisposes that the conditions
are well understood as well as the relative frequencies of favorable and
unfavorable options to be known. Every judgment call dealing only with
likelihood has some known degree of risk to be wrong. Modern probability
theory, since the 1930s, has almost exclusively focused on only this aspect of
uncertainty. However, uncertainty, which is what probability theory was
designed to address, is not restricted to merely this more objective quantifica-
tion. Clarity is also a necessary component. By clarity, it is meant the degree to
which the situation one is speculating about is being properly conceptualized.

For instance, when we say that the likelihood of getting snake eyes when
rolling two dice is 1/36, we are assuming that we have full clarity regarding
the situation (e.g. what is known as “snake eyes,” the features of the two dice,
and so on). We realize that gambling on this outcome has a certain amount of
risk associated with it (actually a lot of risk associated with it!), but this risk is at
least quantifiable. However, if we think about it for a few minutes, it should be
easy to see that we may be overlooking several aspects of the probabilistic
situation out of convenience. For instance, what if each side of each die is
not equally likely? What if there are actually 10 sides to each die? What if the
numbers on the die do not start with 1? Now, this is a simple example where
there is most likely a lot of initial clarity regarding the situation; or if not, issues
revolving around the clarity of the situation could be easily resolved by simply
looking at the dice to be rolled. However, in many research situations, the
degree of clarity that a researcher has regarding the situation is not as easy
as inspecting the dice. Further compounding the situation, a researcher’s lack
of clarity may be best understood as a qualitative variable as opposed to a
quantitative one, and as a result, not something that could even be factored
into modern probability theory. Acknowledging this limitation, however, might
leave the researcher without a clear path forward in their efforts to investigate.
So, oftentimes researchers, perhaps unknowingly, engage in what some
theorists call “willful ignorance” regarding issues of clarity so as to focus only
on the issue of likelihood when testing their hypotheses. By essentially ignoring
issues of clarity and focusing exclusively on likelihood, modern probability
theory has created a false sense of confidence in the stated outcomes of some
statistical analyses. Some argue that our failure to address this fundamental
issue has led to the challenging state in which many areas of scientific investi-
gation currently find themselves (e.g. Byers, 2011; Weisberg, 2014).

To help illustrate this further, imagine a medical situation where a patient has
arrived with a set of symptoms and an unknown diagnosis. There are two
judgments that need to be made: First, what is the nature of the illness, and
second, what form of treatment would be best? It might be helpful to consider



of the die), we can construct a fairly accurate representation of the set of
outcomes and their likelihood. For example, Figure 6.1 shows a representation
of the set of outcomes associated with the rolling of two standard dice. Histor-
ians suggest this gained insight to be critical in the development of probability
theory.

the first of these two judgements as being representative of the issues of clarity.
The doctor, relying on clinical expertise, past experiences, logic, and judgment,
moves to increase clarity by rendering a diagnosis. Yes, some probabilistic
information may have been used in this analysis, but primarily this was not
an exercise in probability. Now, the second question of treatment may be much
more representative of the issues related to likelihood and probability. Based on
the outcomes of previous studies employing different treatments, the doctor
may choose to prescribe one form of treatment over another due to the
likelihood of a favorable outcome derived from a quantification of relevant data.

Research situations oftentimes involve both forms of uncertainty: likelihood
and clarity. Moreover, when research replication efforts take place, issues of
clarity have oftentimes not properly been noted or documented by the original
researchers and are not properly considered by the replicating researcher. This
disconnect can lead to contradictory findings when replication takes place and
thus great confusion as to what is actually going on. In the interest of accuracy
and the public confidence in science, it would be wise for researchers to begin
to consider seriously the issue of clarity when setting up their investigations,
writing up their procedures, and drawing conclusions from their data.
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Figure 6.1 A probability distribution representing a single roll of a pair of
six-sided dice.
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6.3 What Is Probability?

Probability, as mathematicians use the term, can be defined as the likelihood of
an event occurring. This likelihood can be represented by a number between 0
and 1. An event is anything that can either occur or not occur. For example, when
we flip a coin, it either comes up heads or it does not come up heads (i.e. it comes
up tails). So, in a coin flip, heads is an event. Of course, tails is also an event.When
we roll a die, it either comes up 4 or it does not come up 4. Therefore, 4 is an
event. Events that are single occurrences like a “4” on a die roll or a “head” on
a coin flip are often called elementary events. An exhaustive set of elemental
events is referred to as a set. Now back to events; an event can also be understood
as a collection of elemental outcomes; we call these complex events. For example,
in rolling the die, getting an even number is an event because we will either get an
even number or not. Getting a number less than 4 is also an event. Drawing
the King of Spades from a deck of cards would be an elementary event, but deter-
mining the probability of drawing a spade (of any value) would be a com-
plex event.
When we assign a probability (i.e. a number between 0 and 1) to an event, we

are stating how likely that event is to occur. If the probability is .5, it means that
the event is as likely to occur as it is to not occur.1 A probability greater than .5
means that it is more likely to occur than not occur, and a probability of less than
.5 means that the event is more likely to not occur than to occur. Events with a
probability of 0 mean they cannot occur,2 while events with a probability of
1 mean that they most certainly will occur.
A good place to start to understand how probabilities are determined is to

look at situations where each elemental event is equally likely – for example,
a roll of a die, a drawing of a card, or a flip of a coin. In each of these scenarios,
it makes sense to think that each elementary event is equally likely to occur. In
situations like this, relative frequency is used to determine likelihood. By relative
frequency we mean the comparison of the number of favorable events with the
total number of possible events. Perhaps we can see that the likelihood of any
elemental event is equal to the reciprocal of the total number of events in the set.

1 In this chapter and throughout the rest of the book, when we are dealing with probabilities,
quantities that cannot exceed 1, we will typically not place a “0” in front of the decimal.
2 Theoretically, this description is a too simplistic. Events with the probability of virtually 0 happen
all the time. For instance, imagine a six-figure number (e.g. 587 202); now imagine a two-digit
number with two decimal places (e.g. 33.91). Now divide the six-figure number by the double-digit
number with two decimal places. There are literally millions and millions of different answers that
can be achieved as a result of this exercise. The answer found for the two numbers chosen as
examples is 17 316.484 812 739 6. The chance of any person going through this simple exercise
and getting that exact number is so close to zero as to be virtually zero – and yet it occurred. It may
help to distinguish between events with probability equaling zero on the one hand and logically
impossible events, like encountering a square circle, on the other. These are different concepts.
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For example, the likelihood of rolling a die and getting a 4 is 1/6 or .17 (actually it
is .166 repeating; but we will keep our answers to two decimals). There are six
different events and one of them is a 4. This is also the frequency of getting a 3,
by the way. In fact, each of the six elemental events has the same likelihood of
occurring. This is not always the case, of course. Sometimes each elemental
event is not equally likely. For instance, when we examine what will happen
when a baseball player takes their turn batting, there are several different ele-
mental events that could take place; for simplicity purposes we can think of
the set of events as being (i) an out, (ii) a walk, (iii) a single, (iv) a double,
(v) a triple, or (vi) a home run. Each of these six events, however, is not equally
likely. It would be inappropriate for us to conclude that the likelihood of the
batter getting a home run is one chance out of six. Likewise, it would be inap-
propriate for us to decide that the chance of rain today is .5 because after all
there are only two choices – it will either rain or not rain. In these latter cases,
while wemay have correctly identified the set of elemental events, we have failed
to realize that each event is not equally likely.
When we examine finding the probability of a complex event if all elemental

events are equally likely, we encounter our first significant probability
formula. First, however, we need to introduce some notation information as
well as a new term. In probability formulas the uppercase letter P is used to
represent “probability” and can be read as “The probability of…” Events are
placed within parentheses. In this way, one can express the probability of
flipping a coin and getting heads as P(heads). In our coin flipping example
the P(heads) = .5. Often mathematicians use an abstract symbol like a capital
letter to represent an event. For the probability of eventA, we could write P(A).
Finally, the word “favorable” is used to identify the event or events that are
being considered. So, assuming all elemental events are equally likely, the
formula for determining the likelihood of an elemental event occurring that
is part of a favorable set of events is the ratio of favorable events compared
to the set of all possible events.

Probability of favorable event

P =
number of favorable events
total number of events

(Formula 6.1)

when all elemental events are equally likely.
If, for instance, we wanted to know the likelihood of getting a spade with the

draw of a single card from a deck of 52, since all elemental events are equally
likely, the probability would be 13/52 (or .25 or 25%; all of these ways of repre-
senting this relationship are acceptable). If the two Joker cards were also
included in the deck, the ratio would be 13 favorable events over a total of
54 possible events (13/54, or .24).

6.3 What Is Probability? 169



Using the notion of relative frequency, we can say that a probability of .7
means that the event in question has a 7 out of 10 chance of occurring.
Likewise, a probability of .25 would be a 1 out of 4 chance of occurrence.
We should be aware that the analogy breaks down if we try to apply this
way of literal thinking to all things. For example, we can say that there is a
.7 probability of measurable rain tomorrow. We should note, however, that
no 10 elementary events of which 7 are favorable exist. We cannot think of
this situation in relative frequency terms. Yes, it can be argued that “some-
thing like” on 7 out of 10 days with meteorological features like tomorrow
measurable rain will be recorded. But what does that really mean? Not much!
Do we really have access to 10 days like tomorrow? No, we do not. However,
we can still think of the .7 probability as a 7 out of 10 probability for the pur-
poses of understanding what the number means. In order to make use of
probabilistic information, it is not required for the user to actually identify
the elemental events as real entities.

6.4 Sampling with and Without Replacement

Sampling with replacement is a method of sampling wherein a member of a
population is randomly selected and then returned to the population before
the next member is selected. This is not a difficult concept. Suppose we want
to know the probability of selecting a red card from a deck of playing cards.
Since half of the cards are red and half of the cards are black, the probability
of selecting a red card at random is .50. If we return the selected card to the deck,
the probability of selecting another red card is still .50. However, suppose we do
not return the card to the deck and ask, “Nowwhat is the probability of selecting
a red card at random?” Since there are now more black cards than red cards in
the deck, the probability of selecting a red card is not .50 (it is a bit less). In the
latter example, we have sampled without replacement. Sampling without
replacement is a method of sampling in which a member of a population is
not returned to the population before selecting another member of the
population.
Sampling with or without replacement has obvious implications for the

probability of occurrence of subsequent events. The distinction between
sampling with replacement and sampling without replacement is also impor-
tant to mathematical statisticians interested in hypothesis testing. For exam-
ple, the sampling distribution concept, a centerpiece of Chapter 7, is derived
from a sampling with replacement procedure. As we move forward in the
chapter, we will be limiting ourselves to only sampling with replacement –
the procedure that is most commensurate with an introduction to probability
concepts.
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6.5 A Priori and A Posteriori Approaches to Probability

Up to this point we have approached probability from an a priori or classical
approach. This approach is based on a logical analysis of the probabilistic
situation and the relative frequencies that are predicted. It is not based on
the accumulation of data. Using logic alone we can claim that we should get
100 “4’s” if we rolled a single die 600 times.
The a posteriori approach, on the other hand, is an empirical approach to

probability. It requires the collection of data. Using the preceding example,
how would we determine the probability of getting a 4? We would need to
collect some data. We could, for instance, roll a die 600 times and record
how many times we got a 4. Suppose we did just that and got a “4” 90 times.
Note that this a posteriori method of determining the likelihood of rolling a
“4” is .15, close, but not identical, to the .17 probability determined by the a
priori method. Theoretically, it is believed that if we had rolled the die an infinite
number of occurrences, this a posteriori approach would have yielded a
probability of .17 (or, stated more precisely, a ratio of 1/6).
For the previous problem of determining the getting a “4” on a roll of a die,

nothing is gained by using the a posteriori approach because reason alone (the
a priori method) could solve the problem. However, in actual research, the a
priori approach is often inappropriate because, without collecting data, we do
not know the number of favorable events in a population (recall the concept of
“clarity” presented in Box 6.1). For example, suppose we would like to know
the probability that those who are hospitalized have a diagnosis of depression.
There is no way to use logic alone to determine the answer. We would have to
take a random sample (preferably a large one) of all hospitalized patients and
observe the proportion of patients in our sample who received a diagnosis of
depression. We could then make a statement about the probability of those
that are hospitalized having a diagnosis of depression.
Since the purpose of this chapter is to provide a brief introduction to some of

the basic concepts of probability, considering only the a priori approach will
suffice for this chapter. The a posteriori approach will be further explored,
implicitly, when hypothesis testing is introduced in Chapter 7.

6.6 The Addition Rule

The addition rule is used to determine the probability of occurrence of one of
many possible events. It is typically applied when the question has the word “or”
in it. For example, “What is the probability of rolling a die and obtaining a 4 or a
6?;What is the probability of drawing a club or a heart from a deck of cards?”We
can represent this concept by using the term P(A or B). [Note that in mathemat-
ics, this is usually written as P(A B), but we will just use the word “or” rather
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than introduce a new symbol.] Determining the proper formula to use when
answering an “or” question depends upon another concept –mutual exclusivity.
Mutually exclusive events occur when one event precludes the occurrence of
another event. (The term “disjoint”may also be used to represent this concept.)
For example, when we roll a die once, it is impossible to obtain a 4 and a 6; one
precludes the other. When we select a card from the deck, it cannot have more
than one suit (we can either get a spade, heart, club, or diamond; the suits cannot
co-occur within the same elemental event). If the two events are mutually
exclusive, the formula for the addition rule follows.

Addition rule formula for two mutually exclusive events

P(A or B) = P(A) + P(B) (Formula 6.2)

Formula 6.2 is read as “The probability of either event A or event B occurring
equals the probability of event A occurring plus the probability of event
B occurring.”

■ Question Assume that we roll one die. What is the probability of coming up
with a 2 or a 5?

Solution

Step 1. First, determine P(A). Let us call rolling a 2 eventA. Is each event equally
likely? Assuming the die is a fair die, we can assume this. So, we will use For-
mula 6.1 to answer this question.

P A =
number of favorable events
total number of events

=
1
6
= 17

The probability of rolling a 2 is .17. (This value is more accurately stated as the
fraction 1/6.)

Step 2. Determine the probability of event B occurring. Let us call rolling a 5
event B. Since each event is equally likely, let us use Formula 6.1 once again.

P B =
number of favorable events
total number of events

=
1
6
= 17

The probability of rolling a 5 is .17. (This value is more accurately stated as the
fraction 1/6.)

Step 3. Since events A and B are mutually exclusive, we can use Formula 6.2 to
determine the probability of rolling a 2 or a 5.

P A or B =P A +P B

P A or B = 1 6+ 1 6 = 2 6 or 33

The probability of rolling a 2 or a 5 on a single toss of the die is .33. ■
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The addition rule for mutually exclusive events is generalizable to situations
where we want to determine the probability of occurrence of one of several
events. The general equation for the addition rule with more than two mutually
exclusive events follows.

Addition rule formula for more than two mutually exclusive events

P(A or B or C or… Z) = P(A) + P(B) + P(C) + + P(Z) (Formula 6.3)

where

P(Z) = the probability of occurrence of the last event

Formula 6.3 ismerely an extension of the addition rule formula for twomutually
exclusiveevents.Asaconsequence, thecomputational steps followthesameformat
as outlined in the precedingworked example. Beloware a coupleworked examples.

■QuestionWhat is the probability of randomly selecting a 3, 7, or 9 from a deck
of cards?

Solution

Step 1. First determine the P(A). Let us call drawing a 3 event A. Since each
elemental event is equally likely, we can use Formula 6.1.

P A =
number of favorable events
total number of events

=
4
52

= 0769

The probability of randomly selecting a 3 from the deck is .0769. (We should
feel free to use a couple more decimal places when dealing with probabilities,
since the values only range from 0 to 1.)

Step2.Determine theprobability of eventBoccurring. Let us call drawinga 7 event
B. Since each elemental event is equally likely, once againwecanuseFormula6.1.

P B =
number of favorable events
total number of events

=
4
52

= 0769

The probability of randomly selecting a 7 from the deck is also .0769.
Step3.Determine theprobability of eventCoccurring. Let us call drawinga9event
C. Since eachelemental event is equally likely, once againwecanuseFormula6.1.

P C =
number of favorable events
total number of events

=
4
52

= 0769

The probability of randomly selecting a 9 from the deck is also .0769.
Step 4. Use the addition rule to sum the separate probabilities.

P A or B or C =P A + P B + P C

P A or B or C = 769 + 769 + 769 = 23

This means the probability of selecting a 3, 7, or 9, on a single draw, is .23. ■
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Let us try one more example. This time the problem will involve 4 elemental
events, and we will take some liberties with the process.

■ Question Assume that we roll one die. What is the probability of coming up
with a number less than 5?

Solution

Step 1. Since all elemental events can be considered equally likely, and since
each elemental event is mutually exclusive, we can use Formula 6.3.

P 1 or 2 or 3 or 4 = P 1 +P 2 +P 3 +P 4 = 1 6 + 1 6 + 1 6

+ 1 6 = 4 6 or 67

The probability of rolling a number less than 5 on a single toss of the die
is .67. ■

We must watch out since not all cases of P(A or B) can be worked that easily;
sometimes events A and B can co-occur. For example, what is the probability of
drawing a heart or a queen? Well, the probability of drawing a heart is 13/52
(or 1/4), and the probability of drawing a queen is 4/52 (or 1/13). But the
probability of drawing a heart or a queen is 16/52; this is not the sum of
13/52 and 4/52 (which is 17/52). What is the difference? In the first example,
the two events (jack and queen) cannot both occur at the same time. However,
in the second example, the two events (heart and queen) can co-occur; one can
draw both a queen and a heart at the same time. In card language, that card is
the queen of hearts; and in mathematical language, that card represents a co-
occurrence. An event being a “heart” is not mutually exclusive from an event
being a “queen.” If we leave the formula as is, the queen of hearts card will
be counted twice, once when we tally up all of the queens and again when
we tally up all of the hearts. We need to change our formula to keep from dou-
ble-counting events that qualify as being both an event A and event B. In so
doing we will need to introduce a new concept, the probability of both events
A and B co-occurring. (This idea will be more fully explained in the following
sections of the chapter.) Here is the formula for finding the likelihood of events
A or B occurring if they are not mutually exclusive.

Addition rule formula for two events

P(A or B) = P(A) + P(B) − P(A and B) (Formula 6.4)

P(A and B) can be read as “The probability of both event A and event B
co-occurring.” In the above example of selecting a queen or a heart, the probability
of both a queen and a heart co-occurring is 1/52. This helps us understandwhy the
correct answer is not 17/52, but rather 16/52. Perhaps it is helpful to point out that
Formula 6.2 is just a special case of the more general Formula 6.4. Formula 6.4
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always works; but Formula 6.2 works when P(A and B) = 0. In these situations the
last expression in Formula 6.4 simply falls out of the formula, leaving us with
Formula 6.2.

■Question Suppose we are about to win a game if we roll either an even number
or a number greater than 4. What are our chances of winning?

Solution

Step 1. First determine the P(A). Let us call rolling an even number event A. Let
us further assume that we know that the chance of rolling an even number is .5.

Step 2. Second determine the P(B). Let us call rolling a number greater than
4 event B. Let us further assume that we know that the chance of rolling a
number greater than 4 is .3333.

Step 3. Finally determine P(A and B). This, when translated into our problem,
means the chance of rolling a number that is both an even number and a
number greater than 4. Let us assume we know that the chance of this occur-
ring is .1667. (The number 6 is the only value on a standard die that is both an
even number and a number that is greater than 4. Since all elemental events
are equally likely, the chance of rolling a 6 is 1/6 or .1667.)

P A or B = P A +P B −P A and B

P A or B = 5+ 3333− 1667 = 6667 or 2 3

The probability of rolling a die and getting either an even number or a number
greater than 4 is .6667. We have a 2/3rd chance of winning on the next roll. ■

The addition rule for more than two events when the events are not mutually
exclusive is much more complicated. Since this chapter is merely an introduc-
tion to probability, this topic will not be covered.

6.7 The Multiplication Rule

The addition rule is used when we want to determine the probability of one of
two or more events occurring. Themultiplication rule is used when a problem
is framed as the probability of event A and event B occurring or P(A and B).
[In mathematics, the P(A and B) is usually written P(A B), but for the same
reason as above, we will use the word “and.”] Of course, the multiplication rule
can be extended to problems that address more than two events co-occurring,
just as the addition rule can be used when there are more than two events being
considered. However, since this chapter is merely an introduction to probabil-
ity, we will only consider the co-occurrence of two events. We will, however,
consider the multiplication rule under two different conditions: when events
are independent of each other and when they are dependent.
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Probabilistic independence between events is found when knowledge of the
occurrence of one event has no effect on determining the probability of
occurrence of a second event. For instance, if we wanted to determine the like-
lihood of selecting a card from a deck of cards that is both a spade and a face card,
the occurrence of a spade does not change the likelihood that the card will be a
face card. If we did not know the card selected is a spade, the probability of a face
card (we will include the ace for the sake of argument) is 16/52 or 4/13. If,
however, we know the card selected is a spade, the probability that the card is also
a face card has not changed – it is still 4/13. In this case, we can say that event A
(spade) and event B (face card) are independent of each other; the occurrence of
one event did not change the likelihood of the other event occurring. (Even
though we presented this relationship from the perspective of selecting a face
card, the same relationship can be shown from the perspective of selecting a
spade. Namely, there is a 1 in 4 chance of selecting a spade knowing nothing else.
If we learn that we have a face card, the ratio stays the same–we still have a 1 in 4
chance of selecting a spade. If event A is independent of event B, then event B is
independent of event A – this is a shared property.) The formula for the
multiplication rule for independent events follows.

Multiplication rule for two independent events

P(A and B) = P(A)P(B) (Formula 6.5)

Formula 6.5 is read as “The probability of events A and B co-occurring is equal
to the probability of event A occurring multiplied by the probability of event
Boccurring.”Be sure to note that this formula is true only if the two events are inde-
pendent.Wewill develop amore general rule formultiplication in the next section.
Let us take a look at an example. If we roll a die and flip a coin, certainly the

outcome of each is independent of the outcome of the other. So, what is
the probability of getting both a heads on the coin flip and a 5 on the roll of
the die? Well, the P(heads) = 1/2 and P(5) = 1/6. So, using our rule, P(heads
and 5) = P(heads)P(5) = (1/2)(1/6) = 1/12. If we think about this, we can see
that it is correct. The elementary events in this example are the combined events
of the two actions – one from the coin flip and one from the roll of the die. There
are 12 of them (e.g. head and 1, head and 2…, tail and 1, tail and 2…). Further-
more, all of the elementary events are equally likely, so the probability of any one
of them (e.g. head and 5) is 1/12, just as we found using the rule.
Let us look at another example. Suppose we know that the probability of Lisa

earning an “A” in a collegiate course is .9, and we know that the probability of
Jason earning an “A” in the course is .4. Suppose we also know that these
students have no interaction at all; in other words, their grades should be
independent. So, the probability that both will get an A is (.9)(.4) = .36. As
we would expect, it must be less than the probability of either one of them
getting an “A.”
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■ Question What is the probability of randomly selecting a 4 and an 8 on two
successive draws from a deck of cards? Since sampling with replacement is used,
one card is randomly drawn from the deck and then put back into the deck, and
then a second card is randomly selected.

Solution

Step 1. First determine the P(A). Let us call drawing a 4 event A. Since all cards
are equally likely to be selected, we can use Formula 6.1.

P A =
number of favorable events
total number of events

=
4
52

= 0769

The probability of randomly selecting a 4 is .0769 or about 7.7%.
Step 2.Determine P(B). Let us call drawing an 8 event B. Note that P(B) is unaf-
fected by step 1. This is because the card drawn for step 1 has been replaced
(the “sampling with replacement” procedure); therefore, the second draw is
from a complete deck of cards.

P B =
number of favorable events
total number of events

=
4
52

= 0769

The probability of randomly selecting a 8 is .0769 or about 7.7%.
Step 3. The multiplication rule is now applied.

P A and B =P A P B

P A and B = 0769 0769 = 0059

The probability of drawing a 4 replacing the card and then drawing an 8 is
.0059. Stated differently, only 59 times out of 10 000 would these two events
be expected to occur in this sequence. ■

Formula 6.5 can be extended to any number of independent events. For
example, if we wanted to know the probability of drawing an ace, a spade,
and the 6 of clubs on three successive draws, we wouldmerelymultiply the three
probabilities of occurrence.
Probabilistic dependence between events is found when knowledge of the

occurrence of one event changes the determination of the probability of
occurrence for the second event. For instance, if we wanted to determine the
likelihood of selecting a person from a population that is both a biological female
and under 6 ft tall, the occurrence of a biological female would change the like-
lihood that the person will also be under 6 ft tall. If we stipulate that about 8% of
people are 6 ft tall or taller, we would have about a 92% chance of randomly
selecting a person who was less than 6 ft tall. But if we stipulate that the person
we have selected is a biological female, the likelihood of having a person who is
under 6 ft tall has just jumped to about 99%. In this case, the occurrence of one
event (female) changed the likelihood of the other event occurring. Yes, this is a
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bit confusing because both events are technically occurring at the same time (at
the point of selecting the individual), but the way to calculate the likelihood of
this co-occurrence necessarily involves exploring the relationship between the
two events. To determine the probability of two dependent events, we need to
use the more general multiplication rule. (Why we use the more general mul-
tiplication rule for dependent events will be clarified at the end of the next
section.)

Multiplication rule for two events

P(A and B) = P(A| B)P(B) (Formula 6.6)

The symbol P(A|B) is read as “The probability of event A occurring given the
occurrence of event B”. [It does not mean that P(A) is to be divided by P(B).] The
symbol P(A|B) is also referred to as a conditional probability, a concept that will
be further explored in the next section of this chapter. A worked problem clari-
fies the use of Formula 6.6.

■ Question What is the probability of randomly selecting a person from the
campus student population that is both a psychology major and a biological
female?
Given Suppose it is known that 10% of the student population are psychology

majors, 80% of the psychology majors are biological females, and 60% of the
entire student population are biological females.

Solution
Determine P(A), P(B), and P(A|B). Let us call being a biological female P(A).

Let us call being a psychology major P(B). This would mean that P(A|B) would
mean the probability of being a biological female given that one is a psychology
major. (This is the only way to assign the events for this problem – we do not
have enough data to find P(A|B) if events A and B are switched.) Since we are
given all of the needed values, there is no need for preliminary steps.
If being a psychology major and being a biological female were independent

of each other (where the occurrence of one of these events did not change
the rate of occurrence for the other), then we could use Formula 6.5 and
determine that

P A and B =P A P B

P A and B = 6 1 = 06

However, these events are not independent and so we must use Formula 6.6.
In this case

P A and B =P A B P B

P A and B = 8 1 = 08
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The probability of randomly selecting a student on campus who is both a
psychology major and a biological female is 8%. Since there is a dependency
between events A and B, we should not use Formula 6.5, and it would not be
true that the probability of randomly selecting a student on campus who is both
a psychology major and a biological female is 6%. ■

Formula 6.6 allows us to incorporate into the calculations the realization
that most psychology majors are biological females. And so, of the popu-
lation of students, the likelihood of event A and event B co-occurring in
the same person is increased a bit by the fact that events A and B already
seem to co-occur a bit more than one might expect if the two events were
randomly represented in the population (or said in other words, if the two
events were independent of each other). Of course in other situations,
events A and B may be dependent, but in such a way that the occurrence
of A decreases the likelihood of event B occurring. The key term regarding
whether events are independent of each other or not is whether the like-
lihood of one event changes (increases or decreases) if the other event is
known to have occurred.

6.8 Conditional Probabilities

As was stated earlier in the chapter, a conditional probability is an expres-
sion of likelihood given that another particular event has occurred. For
instance, we can easily see that the probability of randomly selecting a person
from a population who is pregnant will change if we know ahead of time if the
person selected is a biological male or female. The P(A|B) if event A equals
“being pregnant” and B equals “being a biological female” is undoubtedly a
low number, but P(A|B) would be zero if event B was changed to “being a bio-
logical male.” In a sense, we have been doing conditional probabilities all
along. Oftentimes, the conditions surrounding a probability are simply
assumed. For instance, what is the probability of rolling a die and having it
land on a 4? The commonsense response is that the probability would be
1/6. But what if we were later told that the die we were rolling was 10-sided?
Well, we might be a bit upset to have not been told that up front, but we would
instinctively know that we need to change our answer. It helps to think of
conditional probabilities as specifications of the situation. Sometimes the
situation is so well known as to be assumed, but other times we need to be
clear about the nature of the situation. By the way, oftentimes probability
theorists will refer to gaining the specifics of the probabilistic situation as
understanding the sample space. (For example, learning how many sides
are on the die that is being rolled, learning how many times it will be rolled,
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and so on.) Determining the probability of rolling a die and getting a 4
changes depending on the number of sides a die has because the sample space
in which a 4 can be found changes.
The formula for determining conditional probabilities is simply a rework-

ing of the multiplication rule for two dependent events. The formula is as
follows.

Conditional probability formula

P A B =
P A and B

P B
(Formula 6.7)

By simply dividing both sides of the formula for the multiplication rule
for two dependent events by P(B), we can transform Formula 6.6 into
Formula 6.7.
Let us try our hand at determining conditionals by looking at a form of a

problem that is often used when teaching probability – the ball-in-urn scenario.
Imagine an urn (it is a bit of a mystery why probability people like to call baskets
“urns,” but far be it for us to change the status quo!) filled with balls. These balls
have different colors and also have either an “X” or a “Y” on them. Let us further
stipulate that each ball is equally likely to be drawn. Now suppose the urn we are
working with has the following contents:

20 Red – X

20 Red – Y

10 Green – X

50 Green – Y

Conveniently, the balls add up to 100. On the basis of the given information,
we should be able to see the following:

P(Red) =.4 (Formula 6.1)

P(Green) =.6 (Formula 6.1)

P(X) =.3 (Formula 6.1)

P(Y) =.7 (Formula 6.1)

P(Red or Green) =.6 + .4 = 1 (Formula 6.2)

P(X or Y) =.3 + .7 = 1 (Formula 6.2)

P(Red or X) =.4 + .3 – .2 = .5 (Formula 6.4)

P(Green or X) =.6 + .3 – .1 = .8 (Formula 6.4)

P(Red or Y) =.4 + .7 – .2 = .9 (Formula 6.4)

P(Green or Y) =.6 + .7 – .5 = .8 (Formula 6.4)
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Furthermore, we should be able to see that the following are true:

P(Red and X) =.2 (given)

P(Red and Y) =.2 (given)

P(Green and X) =.1 (given)

P(Green and Y) =.5 (given)

Let us try to find some conditionals.

■ Question Given the probabilistic situation above, what are the following
conditional probabilities? P(Red|X), P(Red|Y), P(Green|X), and P(Green|Y)?

Solution
For P(Red|X), first assign “Red” and “X” to events A and B. Let us define “Red”

as event A and “X” as event B. Use Formula 6.7 to determine the correct value.

P A B =
P A and B

P B

P Red X =
P Red and X

P X
=

2
3
= 67

The probability of selecting a red ball given an “X” ball has been drawn is .67
or 67%.
For P(Red|Y), first assign “Red” and “Y” to events A and B. Let us define

“Red” as event A and “Y” as event B. Use Formula 6.7 to determine the correct
value.

P A B =
P A and B

P B

P Red Y =
P Red and Y

P Y
=

2
7
= 29

The probability of selecting a red ball given a “Y” ball has been drawn is .29
or 29%.
For P(Green|X), first assign “Green” and “X” to events A and B. Let us define

“Green” as event A and “X” as event B. Use Formula 6.7 to determine the
correct value.

P A B =
P A and B

P B

P Green X =
P Green and X

P X
=

1
3
= 33
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The probability of selecting a green ball given an “X” ball has been drawn is .33
or 33%.
For P(Green|Y), first assign “Green” and “Y” to events A and B. Let us define

“Green” as event A and “Y” as event B. Use Formula 6.7 to determine the
correct value.

P A B =
P A and B

P B

P Green Y =
P Green and Y

P Y
=

1
7
= 14

The probability of selecting a green ball given a “Y” ball has been drawn is .14
or 14%. ■

Before we move on to the final section of this chapter, we need to go back
and address the topic of independence again, but now from a more informed
vantage point. When we introduced the concept of independence, we stated
that two events are independent if the occurrence of one event does not
change the likelihood of occurrence for the other event. Determining if two
events are independent is often times not a straightforward decision. With
a little reflection we may be able to see that selecting a spade and selecting
a face card are independent events, but it may be much more difficult to deter-
mine merely from what is given in the problem above if a red ball is independ-
ent of a ball with an “X” on it. To help matters, it is important to realize that
Formula 6.6 is the more generally true formula for determining multiplication
problems in probability (the “and” problems). Formula 6.5 is merely a special
case version of Formula 6.6. That special case is for situations where events
A and B are independent. Look at the two formulas. Here we see that the only
difference is that Formula 6.5 refers to P(A), while Formula 6.6 refers to
P(A|B). Here we also see that if two events are independent, then the P(A)
should equal the P(A|B). That is, if two events are independent, the likelihood
that event A will occur is the same likelihood if we previously know that event
B has or has not occurred. Putting this into the card drawing question, the
probability of selecting a spade is 1 out of 4 (25%). This likelihood does not
change if we are told ahead of time that the card is a face card; the probability
is still 1 out of 4 (or 25%). Therefore, this means we can use the two formulas in
combination if we need to determine if two events are independent of
each other. We can simply run both formulas and see if they yield the same
result. If the two formulas produce the same answer, then we will know that
P(A) = P(A|B), and so events A and B must be independent of each other.
If, on the other hand, the formulas yield different answers, then we know that
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P(A) ≠ P(A|B), and therefore events A and B are dependent upon one another
(and so the answer to Formula 6.6 is the correct one). In this way we can use
these formulas in combination to help us figure out if two events are
independent.

■ Question Given the following probabilistic situation involving balls in
an urn, are events Green and X independent? Are events Yellow and
Y independent?

15 Green – X

15 Green – Y

10 Red – X

20 Red – Y

25 Yellow – X

15 Yellow – Y

Solution

Step 1.To determine if events “Green” and “X” are independent, we need to first
determine the values corresponding to Formulas 6.5 and 6.6. Let us assign
“Green” to be event A and “X” to be event B. These are P(Green and X),
P(Green), P(X), P(Green|X).

P(Green and X) =.15 (given)

P(Green) =.3 (Formula 6.1)

P(X) =.5 (Formula 6.1)

P(Green|X) =.15/.5 = .3 (Formula 6.7)

Step 2. Then we need to “run” both formulas. (Recall that we assigned “Green”
to be event A and “X” to be event B.)

P A and B =P A P B

P Green and X =P Green P X = 3 5 = 15 Formula6 5

P A and B =P A B P B

P Green and X =P Green X P X = 3 5 = 15 Formula6 6

Both formulas yield the same answer (.15). This means “Green” and “X” are
independent. The likelihood of a “Green” ball occurring is not influenced by the
occurrence of a “X” ball (and vice versa).
Now let us apply this same procedure to the second question: Are “Yellow”

and “Y” independent?
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Step 1. To determine if events “Yellow” and “Y” are independent, we need
to first determine the values corresponding to Formulas 6.5 and 6.6. Let us
assign “Yellow” to be event A and “Y” to be event B. These are P(Yellow
and Y), P(Yellow), P(Y), P(Yellow|Y).

P(Yellow and Y) =.15 (given)

P(Yellow) =.4 (Formula 6.1)

P(Y) =.5 (Formula 6.1)

P(Yellow|Y) =.15/.4 = .375 (Formula 6.7)

Step 2. Then we need to “run” both formulas. (Recall that we assigned “Yellow”
to be event A and “Y” to be event B.)

P A and B =P A P B

P Yellow and Y =P Yellow P Y = 4 5 = 2 Formula6 5

P A and B =P A B P B

P Yellow and Y =P Yellow Y P X = 375 5 = 19 Formula6 6

The formulas do not yield the same answer (.2, .19). The values are close, but
technically, “Yellow” and “Y” are not independent. The likelihood of a yellow
ball occurring is influenced by the occurrence of a “Y” ball (and vice versa). ■

6.9 Bayes’ Theorem

Up to this point most of the formulas in this chapter are what mathematicians
call commutative. That is, we can “commute” or “move around” values and still
get the same answer. For instance, P(A or B) = P(B or A). It does not matter
which of the two events in question we call A and which we call B – we will
get the same answer. This is also true of the multiplication rule, whether or
not events A and B are independent. The P(A and B) = P(B and A). This is
not true, however, for conditionals. P(A|B) is almost certainly not equal to
P(B|A); only by pure coincidence might these be the same value. A little
reflection can show us this rather quickly. For instance, the probability of being
a biological female if one is a psychology major (perhaps around .7 at many
universities) is not the same thing as the probability of being a psychology major
if one is a biological female (this must be under .1 at most universities).
Alternatively, take this example, the probability that a baseball player chews
gum [P(gum chewer|baseball player)] is almost certainly not the same value
as the probability of those who chew gum playing baseball [P(baseball
player|gum chewer)]. These are very different questions.
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Unfortunately, it is a common human foible to think that when we know one,
we also know the other. This tendency is referred to in the academic literature as
the “confusion of the inverse” or “conditional probability fallacy” (e.g. Plous,
1993; Villejoubert & Mandel, 2002). Oftentimes people will be given one bit
of information, for example, the degree to which political liberals vote demo-
cratic [or P(vote democratic|liberal)], and unknowingly transpose the relation-
ship [P(liberal|vote democratic)]. In the first case the answer might be around .9
(of those who consider themselves politically liberal, about 90% vote demo-
cratic); but the other conditional might be very different (of those who vote
democratic, only about 60% might consider themselves politically liberal). Of
course some conditionals may be more implicitly understood as only working
one way (e.g. if we suppose that 80% of pickup truck owners are males, this does
not mean that 80% of males own pickup trucks), but a lack of familiarity with the
variables can often lead to inadvertently flipping the relationship between the
conditional and the event in question.
However, if we know just a few more bits of information, we can figure out

P(B|A) if we know the P(A|B) thanks to the work of an eighteenth-century
English cleric named Thomas Bayes (learn more about Bayes in Spotlight 6.1).
But before we look at the classic version of Bayes’ theorem, we need to make a
couple more observations. Both observations concern the “not” concept in
probability. Up to this point we have been asking questions about how likely
something is to occur, but of course we could frame the probability question
from the perspective of how likely something is not to happen. For instance,
we could ask, “what is the probability that “notA” is going to happen?” To help
clarify our thinking here, we need to recognize that the probability of event A
and event notA combined is always 1. Together they make up what probability
theorists refer to as an “exhaustive set.”We can explore this a bit by asking our-
selves questions like “what is the probability that we are wearing blue socks or
not wearing blue socks?” Well, that probability is 1, correct? What is the
probability that it is going to rain tomorrow or not rain tomorrow? Again,
the probability is 1. If the probability that a randomly selected person is of retire-
ment age is .2, then the probability that a randomly selected person is not of
retirement age must be .8. Therefore, if we know the probability of event A,
we can always deduce the probability of event notA.
The last needed observation merely extends this line of thinking into the

world of conditionals. The “not” concept can also be used as a descriptor for
the sample space, the condition for the event. We can ask ourselves what is
the likelihood that we will enjoy our meal if we go to Restaurant A [P(enjoy
meal|Restaurant A)], but we can also ask ourselves about the probability that
we will enjoy our meal if we do not go to Restaurant A [P(enjoy meal|not
Restaurant A)]. When it comes to these probabilities, the pair of occurrences
based on the conditional and the not conditional rarely add up to 1. For
instance, in this case it may be fairly likely that we will enjoy our meal whether
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we go to Restaurant A or somewhere else (at least we can hope). There is no
need for these two events to sum to one; they are not complementary. However,
given the proper information, we can determine P(A|notB). For instance, what is
the probability of getting the queen of spades given that we did not get a red card
or P(queen of spades|not red card)? Because we understand the sample
space well enough, we can figure this out (1 favorable card out of 26 total
cards = 1/26).
Now we are ready to learn Bayes’ famous theorem. If we know P(A|B) and

want to determine the P(B|A), we will additionally need the P(B), P(notB),
and P(A|notB). (Actually, all we need is one or the other of the first two. For
example, if we know P(B), we can deduce the P(notB); and vice versa.) Following
is Bayes’ theorem.

Spotlight 6.1 Thomas Bayes and Bayesianism

Thomas Bayes (1701–1761) was a nonconformist (a term used for those who
had problems with the Church of England), English cleric, statistician, and
philosopher (Bellhouse, 2001). Although his interests were broad and his
writings ranged from theology to a defense of Newton’s ideas regarding cal-
culus, he is most well known for a posthumously published paper by a friend
in which he formulated a specific case of the theorem that now bears his
name (Bayes’ theorem; see Section 6.9). His theorem solved the problem
of inverse probability (also known as the “confusion of the inverse” or “con-
ditional probability fallacy”). As a result of his broad contributions to math-
ematics, Bayes was elected as a Fellow of the Royal Society sometime in the
mid-1700s and prior to his death in 1761. This was the most prestigious Brit-
ish association for individuals who had been deemed to have made substan-
tial contributions to the improvement of what was called “natural
knowledge.”

The currently used term Bayesianism comes not only from Bayes’ own writ-
ings but also from the work of a French scholar named Pierre-Simon Laplace
(1749–1827) who used Bayes’ ideas to develop a way to think probabilistically
about events that may not be part of a known “reference class” (e.g. Stigler,
1986) or what we have previously referred to in our text as the “sample space.”
This way of thinking allowed probability theorists to reason about the accuracy
of various speculative hypotheses by first assigning prior probabilities, which
were to be later updated to posterior probabilities in the light of new and rel-
evant data in a recursive system of thinking. What we now call Bayesianism (or
Bayesian probability) is the standard set of procedures and formulae utilized for
this sequence of calculations.
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Bayes theorem

P B A =
P A B P B

P A B P B + P A notB P notB
(Formula 6.8)

Let us try our hand at a typical Bayes’ theorem problem.

■Question Imagine it is true that 1% of 40-year-old women who participate in a
routine screening have breast cancer. Further imagine that 80% of women with
breast cancer will receive a positive reading from the mammogram screen
procedure. However, 9.6% of women without breast cancer will also receive a
positive reading from the mammogram screening procedure (this is sometimes
referred to as a “false positive” result). Now suppose a 40-year-old woman is told
that her mammogram screening is positive for breast cancer. What is the
likelihood that she actually has breast cancer?

Solution

Step 1. Let us first transpose the variables in our example into the terms used by
Bayes’ theorem, namely, P(B|A), P(A|B), P(B), P(notB), and P(A|notB). Recall
that we are trying to determine the probability that a person with a positive
mammogram reading does indeed have breast cancer. This can be stated in
probability language as P(breast cancer|positive reading). Since the formula is
set up to find P(B|A), this means that event A corresponds to the event pos-
itive reading and event B corresponds to the event breast cancer.

Step 2. This means the following assignments should be true:

P(A|B) =P(positive reading|breast cancer)

P(B) =P(breast cancer)

P(A|notB) =P(positive reading|not breast cancer)

It follows then that

P(A|B) =.8

P(B) =.01

P(A|notB) =.96

And we can deduce that

P(notB) =.99

Step 3. Use Bayes’ theorem to solve the equation

P B A =
P A B P B

P A B P B + P A notB P notB

P B A =
8 01

8 01 + 096 99
= 078 or about 7 8
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This may seem surprising to us. We probably thought the chance of this lady
actually having breast cancer was much higher. However, as we stop to think
about it, we may realize that about 10% of the 40-year-old ladies getting
screened who do not have breast cancer (which is about 99% of them) are going
to get a positive mammogram. That’s a large number of false positives. This is
intentional, as the inconvenience and sense of alarm that may result from
receiving a false positive pale in comparison to the need to avoid false negatives.
In reality, positive screens for breast cancer result in secondary screening pro-
cedures that are more sensitive and designed to distinguish between these initial
false positives and true positives. ■

Summary

This chapter and Chapter 7 serve as the theoretical “bridges” that connect
descriptive statistics to inferential statistics, the remaining material in the text-
book. Inferential statistics, the ability to draw inferences about populations
based on known properties of samples drawn from those populations, is
dependent upon several concepts related to probability theory and hypothesis
testing.
Probability theory started in the seventeenth century by several key thinkers

who decided it was best to approach situations with a sense of willful ignorance
regarding specific outcomes and the many idiosyncratic issues associated with
them and to rather focus on determining likelihood over multiple trials. Out of
this thinking emerged modern probability theory.
Probability can be understood mathematically as a proportion that ranges

from 0 to 1. A probability of 0 means that an event is certain to not occur; a
probability of 1 means that an event is certain to occur. A distinction is made
between sampling with and without replacement. Sampling with replacement is
a method of sampling whereby a member of a population is randomly selected
and then returned to the population before the next member is selected.
Sampling without replacement is a method of sampling in which a member
of a population is not returned to the population before selecting another
member of the population. Since hypothesis testing concepts are based on
determining likelihood when in situations with replacement, this chapter will
restrict itself to these situations.
There are various formulas that can be used to determine specific prob-

abilities: the basic probability formula, the “or” formulas, the “and” formulas,
the conditional probability formula, and Bayes’ theorem. To distinguish
between the “or” formulas, the concept of “mutual exclusivity” is needed.
To distinguish between the “and” formulas, the concept of “independent”
is needed. Bayes’ theorem allows us to avoid the problem of inverse prob-
ability (also called the “confusion of the inverse” or “conditional probability
fallacy”).

188 6 Basic Concepts of Probability



Key Formulas

Probability of favorable event

P =
number of favorable events

total number of events
(Formula 6.1)

Addition rule formula for two mutually exclusive events

P(A or B) = P(A) + P(B) (Formula 6.2)

Addition rule formula for more than two mutually exclusive events

P(A or B or C or… Z) = P(A) + P(B) + P(C) + + P(Z) (Formula 6.3)

Addition rule formula for two events

P(A or B) = P(A) + P(B) − P(A and B) (Formula 6.4)

Multiplication rule formula for two independent events

P(A and B) = P(A)P(B) (Formula 6.5)

Multiplication rule formula for two events

P(A and B) = P(A| B)P(B) (Formula 6.6)

Conditional probability formula

P A B =
P A and B

P B
(Formula 6.7)

Bayes’ theorem

P B A =
P A B P B

P A B P B +P A notB P notB
(Formula 6.8)

Key Terms

Inferential statistics Multiplication rule
Probability Probabilistic independence
A priori (classical) approach Probabilistic dependence
A posteriori approach Conditional probability
Addition rule Sample space
Mutually exclusive events Bayes’ theorem

Questions and Exercises

1 Together, this chapter and Chapter 7 allow the researcher to (please select
the best answer):
a Understand how to run inferential statistics
b Determine the nature of samples from populations and the nature of

populations from samples
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c Think philosophically about numbers
d Understand the relationship between numbers and people

2 Assuming all events are equally likely, please determine the following
probabilities:
a Selecting a spade from a deck of 52 cards
b Rolling a 6 on a 10-sided die
c Randomly selecting a pawn from a set of chess pieces
d Selecting North Carolina from a lottery draw involving all 50 states
e Missing a pop quiz in a Psychology 100 class the one day class it is

skipped

3 Which of the following events are mutually exclusive?
a Being a resident of Country A; being a resident of Country B
b Making one toss of a die and obtaining either an even number or a 2
c Drawing a 5 and a 2 on a single draw from a deck of cards
d A person has black hair and blue eyes
e Obtaining a 1 and a 6 when rolling two dice at once
f Being a dog; being a cat
g Being pregnant; being not pregnant
h Being a Yankees fan; being a Red Sox fan
i Wearing an official Star Trek shirt; getting a date

4 Suppose there is a bin with 40 red marbles and 60 white marbles. In each of
the following problems, selections are made blindly, and the marbles are
randomly distributed throughout the bin.
a What is the probability of picking a red marble?
b What is the probability of drawing a white marble?
c What is the probability of drawing either a red or a white marble?
d What is the probability of picking two red marbles in a row, with the first

marble replaced?
e What is the probability of drawing two white marbles in a row, with the

first marble replaced?

5 For each of the following situations, specify whether the events are
independent or dependent.
a The weekly state lottery is conducted by drawing six numbers from a bin

that has 54 balls, each with a number. Is the successive selection of balls
during the drawing an instance of independent or dependent events?

b The six balls selected one week and the six balls selected the next week.
c Drawing two 5’s from a deck of cards without replacing the first card.
d Drawing a 3 from a deck of cards, replacing it, and then drawing a 6.
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6 Suppose we have an urn with the following set of balls:

10 Red – X

20 Red – Y

10 Green – X

30 Green – Y

15 Yellow – X

15 Yellow – Y

Find:
a P(Red)
b P(Green)
c P(not Red)
d P(Red or Yellow)
e P(Red or X)
f P(Red and X)
g P(Red|X)
h P(X|Red)
i Are events Red and X independent?
j Why or why not?

7 Suppose we have an urn with the following set of balls:

20 Green – X

15 Green – Y

10 Red – X

15 Red – Y

30 Yellow – X

10 Yellow – Y

Find:
a P(Green)
b P(Y)
c P(Red or Yellow)
d P(Red or Yellow or Green)
e P(Red or X)
f P(not Green)
g P(X or Y)
h P(Yellow and X)
i P(Yellow and Red)
j P(Red|Y)
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k P(Y|Red)
l Are events X and Green independent? Why or why not? If not, what
probabilities might we change to make them independent?

m Are events Yellow and Y independent? Why or why not? If not, what
probabilities might we change to make them independent?

8 Suppose that we have an urn with red and green balls with an X or Y on
them (i.e. four different kinds of balls, namely, Red – X, Red – Y,
Green – X, Green – Y). Suppose that we know the following:

P(Red) = .2
P(Red and X) = .1
P(X) = .3

Find:
a P(Green)
b P(Red or X)
c P(Red|X)
d P(X|Red)
e Are events Red and X independent?
f Why or why not? If they are not independent, change one of the probabil-
ities given to make them independent.

9 Suppose we have an urn with the following set of balls:

15 Green – X

15 Green – Y

10 Red – X

20 Red – Y

25 Yellow – X

15 Yellow – Y

Find the following probabilities:
a P(Green)
b P(Y)
c P(Red or Yellow)
d P(Red or X)
e P(not Green)
f P(X or Y)
g P(Yellow and X)
h P(Yellow and Red)
i P(Yellow|Y)
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j P(Y|Yellow)
k Are eventsX andGreen independent?Why or why not? If not, what prob-
abilities might we change to make them independent?

l Are events Yellow and Y independent? Why or why not? If not, what
probabilities might we change to make them independent?

10 Suppose the probability of being farsighted is .1. Suppose also that the
probability of a farsighted person being dyslexic is .05 and the probability
of a person who is not farsighted being dyslexic is .025 (1/2 as likely). What
is the probability that a person with dyslexia is farsighted?

11 In baseball, suppose we are told that the probability of scoring a run on a
double is .54. That is, given a play has generated a double, 54% of the time
at least one run will score. However, we want to know how often when a run
scores, it was generated by a double. This is not the same question. Dowe see
the difference?We are told that the probability of runs scoring on plays that
are not doubles is .11 and the probability of hitting a double is 18%.

12 Suppose we are interested in finding out more about who buys our com-
pany’s product –Nutrinut Peanut Butter. We know that about 44% of pea-
nut butter buyers who come from families with 4members or more choose
Nutrinut over the other brands (that is, given a peanut butter buying 4-
person family or more, 44% of them choose Nutrinut), but we want to
know what percentage of Nutrinut buyers are from 4-person families or
more. (Do we see how this is quite a different question?) We know that
those who choose Nutrinut who are not in 4-person families or more is
36%, and we know that the percentage of peanut butter buyers who are
in 4-person families or more is 57%. What percentage of Nutrinut buyers
are in 4-person families or more?

Hint: P(Nutrinut|PB buyers from 4pf ) = .44

13 One cab company in our city is named “Blue Cab Co.” And they have had
some complaints about the driving behavior of their employees. But we
know that all cab companies have some drivers who are a bit reckless. We
know that the probability of getting a reckless driver if we are in a Blue
Cab car is .25, but what we want to know is if we have a reckless driver,
how likely is it a Blue Cab that we are in? Do we see the difference? We
know the probability of getting a reckless driver if we are not in a Blue Cab
car is .15, and we know the probability of getting a Blue Cab car is .4. So,
what is the probability of being in a Blue Cab car if we have a reckless
driver?
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14 In the dice game called craps, we win on the first roll if we get a 7 or an 11.
(Two dice are rolled, and the numbers are added.) What is the probability
we will win on the first roll? Hint: First find the probability of a 7 and then
of an 11. To do each of these, find what combinations give us each number
and what the probability of that combination is. Then find the probability
of a 7 or an 11.

194 6 Basic Concepts of Probability



7

Hypothesis Testing and Sampling Distributions

7.1 Inferential Statistics

Asmentioned in the previous chapter, inferential statistics originally developed,
in part, from thinking about how to settle fairly interrupted gambling endeavors.
The modern era of inferential statistics began in the late nineteenth century.
One driving force was agricultural companies and breweries interested in asses-
sing the influence of various treatments on crop yields. Another driving force
was the desire by a growing number of social scientists to measure various eco-
nomic, sociological, and psychological phenomena like employment rates, pop-
ulation growth, mental capabilities, and various developmental markers in
children. As a result of these research interests, most of the basic statistical tools
to be introduced starting in Chapter 8 and running through the remainder of the
text were developed within the span of just a few decades, from the 1880s to
the 1920s.
As mentioned in Chapter 6, inferential statistics, based on probability theory

and the logic of hypothesis testing, is used to make inferences about the char-
acteristics of a population from the characteristics of a random sample drawn
from the population. For example, what if we wanted to know the level of read-
ing skills among the high school students of a large city? We could proceed to
test every student in the city (a costly and time-consuming effort), or we could
test a random sample of all the students and use their scores to infer the reading
skills of the entire student population. Given real-world limitations, ever-
present budgetary constraints and the desire to obtain answers to questions
as efficiently as possible, the use of inferential statistics has become a necessity
for today’s behavioral and social science researchers.
In inferential statistics, the key phrase is “random sample.”A random sample,

as noted in Chapter 1, is a sample of scores taken from a population in such a
way that each score in the population has an equal chance of being included in
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the sample. Random sampling maximizes the likelihood that the sample is rep-
resentative of the population.
Inferential statistics requires random sampling, but this is not always easy to

achieve. Consider a typical psychology experiment. The sample of participants
is university students enrolled in an introductory-level psychology course who
have volunteered for the experiment to fulfill a course requirement. What is the
population to which we can generalize from this sample? Strictly speaking, the
population is students who attend that particular type of university and who opt
to take an introductory-level psychology course. This rather narrow population
may or may not line up well with the population of “all university students” or
even less so the population of “people in general.” Because of the large number
of psychology studies conducted with university students, we have to wonder to
what extent the findings of many psychological studies apply only to university
undergraduates. (This criticism has often been leveled at the field of psychology
and is one that psychologists in recent years are working hard to correct.) The
problem here is not one of mathematics, but rather one of logic. One cannot,
based on the findings from a study, make statements about a group of people
who are different (in important ways) from the participants in the study. In
inferential statistics, the researcher is bound by the degree to which samples
are representative of the populations wished studied. Given the uncertain
nature of generalizing research findings to others not represented in the study
sample, researchers are required to limit their conclusions to only populations
that are well represented in the study sample.

Types of Inferential Estimation

Recall that a parameter is a numerical characteristic of a population (e.g.
mean, standard deviation, variance, etc.), whereas a statistic is a numerical
characteristic of a sample. Therefore, parameter estimation uses data from
a sample to infer the value of a population parameter. There are two kinds
of estimation: point estimation and interval estimation. Suppose we take a
random sample and compute the mean. If someone were to ask us to estimate
the mean of the population, we could use our sample mean to make a point
estimation. Any sample statistic (e.g. mean, median, variance, standard devi-
ation) can be used to make a point estimation of a population parameter. The
other kind of estimation is called an interval estimation (or confidence
interval). In this procedure, two values are stated within which it is believed
the actual population value falls. With interval estimations, a formula is used
to determine both the values creating the interval and the degree of confi-
dence that should be given to the claim that the population value falls within
this interval.
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7.2 Hypothesis Testing

A research (or scientific) hypothesis is a formal statement or expectation about
the outcome of a study. They are usually stated in terms of independent and
dependent variables, and the relationship between them, or in terms of two vari-
ables and the degree of association between them. These statements are often-
times derived from relevant preexisting theories and/or based on relevant
previous research findings. For example, we might read something like the fol-
lowing, “Given that time pressures diminish the tendency to help (e.g. Darley &
Batson, 1973; Moore & Tenney, 2012), participants in the low stress situation
are predicted to be more helpful than participants in the high stress situation.”
The accumulation of knowledge in the behavioral and social sciences relies
heavily on the process of formulating theories, stating hypotheses, gathering
data to test hypotheses, revising theories, making new hypotheses, and conduct-
ing more research. Although hypothesis testing is conducted in many different
contexts, all instances of hypothesis testing share common characteristics: the
use of probability theory and inferential statistical concepts to extrapolate
from sample data to relevant populations as well as efforts to quantify the pos-
sibility of making decision errors associated with these probability-based
inferences.

The Use of Sample Data to Make Inferences
About Populations

If the investigator of a study is only interested in drawing conclusions about the
participants in the study, then hypothesis testing is irrelevant. Confining one’s
interest to the participants in the study defines those participants as the popu-
lation; thus, no inference is required. One goal of the researcher, however, is to
acquire general knowledge about our world. The behavior of our research par-
ticipants is interesting only insofar as it allows us to make statements about the
behavior of people who are not in our study – a larger population. Representa-
tive samples of participants are used to generalize study results to this lar-
ger group.
In order to use samples to infer the characteristics of populations, mathemat-

ical tools to accomplish the task are needed. Because, in a sense, the researcher is
forced to work at the level of samples, anything concluded about populations
always involves a degree of uncertainty. Inferences about population parameters
are, therefore, necessarily probabilistic in nature. The statistical methods of
hypothesis testing allow us to use sample data to make probabilistic statements
about the credibility of research hypotheses, hypotheses that are always stated in
population terms.
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Decision Errors: An Unpleasant Fact of Life in Hypothesis Testing

Whenever a conclusion is drawn about a population based on sample data, there
is a chance the conclusion will be wrong. For example, suppose we took two
samples from a population and gave one sample technique A to manage their
anxiety regarding an upcoming timed test and the other was given technique B.
Further, suppose that those given technique A were subsequently shown to be
less anxious and therefore more accomplished on the task than those given
technique B. From this we might conclude that technique A is more effective
than technique B for the entire population from which we drew our samples.
Although this is probably an accurate conclusion to draw, there is always a
chance we may end up being wrong. Despite our best efforts, the samples
may not be representing the population well, and our conclusion about which
technique is best for the population is dubious. For this reason, there are con-
cepts and principles developed later in the text (first introduced in Chapter 8) to
help the researcher think about, reduce, and quantify the level of uncertainty
associated with any conclusions that are made. (One of these principles is rep-
lication. See Box 7.1 presented later in this chapter for a more developed argu-
ment in favor of replication.)

Research Hypotheses Versus Statistical Hypotheses

As previously stated, a research hypothesis is a statement based on relevant pre-
vious findings and/or a theory regarding the expected outcome of a study. It is
the thesis that prompts the study; or in other words, it is the study’s reason for
being. A statistical hypothesis, however, serves as the vehicle for evaluating a
research hypothesis. This is a numerical statement regarding the potential out-
come features of a study. Some statistical hypotheses rely on previously known
population parameters. These are sometimes referred to as single-sample
research designs. For example, suppose an existing validated stress question-
naire has a knownmean of 50. (This is important; the populationmean is known
ahead of time.) In other words, it is known that the average person will receive a
score of 50. A community psychologist is interested in the emotional effects of
natural disasters. Soon after an earthquake, 100 randomly sampled people are
asked to complete the stress questionnaire. The research hypothesis may be
stated as, “Natural disasters create stress reactions among the victims.”
(Note: research hypotheses are almost always based on differences; that is,
something is supposed to change.) The statistical hypothesis can be stated as,
“Does the mean stress score of the sample suggest the population mean from
which this sample came is different from 50?” The job of the researcher, then,
is to use gathered sample data to decide if there is enough evidence to conclude
that the population mean is probably not 50.
Other statistical hypotheses are based on similarity or differences between

two groups. These are sometimes referred to as two-sample research designs.
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An example from medicine might be, “Heart patients who receive a beta-
blocker will experience fewer cardiac arrhythmias than patients who receive
a placebo.” The corresponding statistical hypothesis might read, “Is there a dif-
ference in the mean number of arrhythmias between the ‘beta-blocker’ popula-
tion and the ‘placebo’ population?” Notice that in these situations there are no
known means; rather the question at issue has to do with whether there is a dif-
ference between the two population means (“beta-blocker” and “placebo”). The
job of the researcher, then, is to use gathered sample data from both populations
to decide if there is enough evidence to conclude that the population means are
probably not the same.
A majority of current experimental research, however, involves more than

two samples. For example, an experimental psychologist might formulate the
research hypothesis: “Does the magnitude of reinforcement influence the num-
ber of trials it takes to learn a task?” The psychologist might then examine the
influence of five different incentive conditions on learning. The statistical
hypothesis might be, “Is there a difference among the populations in the mean
number of trials required to learn the task?”
In the behavioral and social sciences, hypothesis testing does not always take

place within an experimental context. The correlational approach is an alterna-
tive research method that differs from experimentation in that it does not
attempt to exert an influence on a measured response. Because variables are
not controlled, correlational research cannot identify causal relations among
variables. (Correlational designs were initially presented in Chapter 1.) Instead,
this approach attempts to find variables that relate to one another. An example
of a correlational research hypothesis is, “First-time parents who have newborns
who cry a lot are more dissatisfied with their marriages than first-time parents
who have quiet babies.” The investigator would search for an association
between the amount of time an infant cries and the parents’ reports of marital
dissatisfaction. No attempt is made tomanipulate some variables and hold other
variables constant. (For instance, it would be unethical to randomly assign noisy
and quiet babies to parents and observe the hypothesized deterioration of the
marital unit.)
Although the correlational approach does not manipulate variables, it does

not alter the fundamental characteristics of hypothesis testing. The job of the
researcher is to use gathered sample data to decide if there is enough evidence
to conclude that there is a relationship between the variables at the popula-
tion level.

More on Statistical Hypotheses: The Null and Alternative Hypotheses

As previously noted, statistical hypotheses are numerical statements regarding
the potential outcomes of an experiment. When conducting a study, statistical
hypotheses always come in pairs, a null hypothesis, denoted H0, and an alterna-
tive hypothesis, denoted H1. In the context of an experiment, the null
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hypothesis states that there is no effect of the independent variable on the
dependent variable. In a correlational context, the null hypothesis states that
there is no relationship between two variables. It may help to realize that the
word “null” in hypothesis testing means, quite literally, nothing – as in, no dif-
ferences between groups or no relationships between variables, as the case may
be. The alternative hypothesis states that there is something going on. In the
context of an experiment, it means that there is effect of the independent var-
iable on the dependent variable. In a correlational context, it states that there is a
relationship between two variables. The alternative hypothesis is the logical
alternative to the null hypothesis.

Box 7.1 Is the Scientific Method Broken? The Value of Replication

This is another box in the series looking at the reproducibility crisis in the social,
behavioral, andmedical sciences.When researchers conclude that the null cannot
be rejected (also known as “failing to reject the null hypothesis”), the study’s find-
ingsaredeemed “nonsignificant.”This termisawayofexpressingthe ideathatany
differencesbetween the samplemeansof the various conditions ina study arenot
substantial enough to warrant rejecting the null hypothesis of no difference. (The
degree of differences needed to be found between samplemeans before the null
hypothesis can be rejected is a topic that will be carefully explored in future chap-
ters.) Unfortunately,most journals in the social sciences are not interested in pub-
lishing research that has not found evidence of differences between conditions,
so-called nonsignificant findings. Each journal wants to include only articles that
seem original and important and are likely to be read and referenced by others.

This policy, however, can create a problem. Imagine several researchers work-
ing independently of each other, each of them looking at a similar research
question. Furthermore, imagine their research hypothesis is, in the end, not a
very good one. That is, perhaps the null hypothesis is actually true; the inde-
pendent variable has no effect on the dependent variable. However, given
the sampling error that naturally occurs within a sampling distribution, suppose
one of the researchers gets an extreme sample mean that prompts them to
reject the null. The researcher is in error; their sample mean was very unusual.
However, they do not realize this and believe they are correct in rejecting the
null hypothesis and claiming to have found an effect. If all of the researchers
who were looking at the same topic published their findings, readers might
become suspicious of the one study showing an effect amid the many others
that do not. However, readers will not be exposed to these other (nonsignifi-
cant) findings. These studies will not be published by the journals. The only
study that will be published is the one that found evidence to reject the null.
Once we realize this, it is easy to see how the current publication practices in
the social, behavioral, and medical sciences create the possibility that the find-
ings of a number of published studies may not be reliable.

A potential remedy for this is the replication of published studies. Unfortu-
nately, replication is not particularly valued in the profession and so is rarely
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The null and alternative hypotheses are statistical hypotheses and are there-
fore numerical expressions. For example, if an educational enrichment program
is expected to increase IQ, and we know that the average IQ in the population is
100, the null and alternative hypotheses are stated as

H0 μ= 100
H1 μ 100

The null hypothesis can be determined as untenable whether the program
increases or decreases IQ. To reject the null hypothesis in favor of the alternative
hypothesis, we will need to find statistical evidence that the null is likely to
be false.
Taken together, the null and alternative hypotheses are mutually exclusive

(i.e. they cannot both be correct) and collectively exhaustive (i.e. one of them
has to be correct). Consider the statistical hypothesis that a population mean
is 50. Well, the population mean either equals 50 or it does not, symbolically
either μ = 50 or μ 50. The hypotheses are mutually exclusive in that only
one of them can be true. They are collectively exhaustive because one of these
hypotheses has to be true.
Notice also that statistical hypotheses are always made in reference to popu-

lation parameters, not sample statistics. We will gain sample means or sample
correlations from our data, but our inferential decision will always be in refer-
ence to a population parameter (usually a mean, a mean difference, or a
correlation).

Truth in Hypothesis Testing

Once the data are analyzed in hypothesis testing, the researcher has to make a
decision about whether or not to reject the null hypothesis. The two options
available are to reject the null hypothesis (in favor of the alternative) or to
not reject the null hypothesis – in other words, to fail to reject the null hypoth-
esis. Notice that there is no option to accept the null hypothesis. This is because
it is not possible, on the strength of sample data alone, to demonstrate that the
null is true. A poorly designed study with insensitive measurement instruments
may fail to detect an experimental effect or a relationship between variables.

performed. For example, according to Makel, Plucker, and Hegarty (2012), only
about 1.6% of all published studies in the top 100 psychology journals from
1900 to 2012 were replication attempts. Simply stated, replications are rarely
published. However, in recent years a growing number of researchers are serv-
ing the scientific community by carefully and painstakingly replicating pub-
lished research findings. A good example of this growing trend is the Center
for Open Science (https://cos.io/). Hopefully, the value of replication efforts will
continue to rise in the social, behavioral, and medical sciences in the wake of
this reproducibility crisis.
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The use of a small number of participants may make it difficult to infer accu-
rately a true population mean or detect whether two variables are related. Even
if the study is expertly designed, with a large number of participants, and the
samples yield identical means, this is still an insufficient reason to conclude that
the null is true. Therefore, failure to reject the null hypothesis does not necessar-
ily mean that the null hypothesis is true. It could be, of course, but it does not
have to be true. This is one of the necessary limitations of using samples tomake
inferences about populations. For this reason, when we fail to reject a null
hypothesis, the conclusion should be that we simply do not know if the null
is true or not; it is much more like a scientific “shrug-of-the-shoulders” than
a pronouncement that the null is correct. Unfortunately, this is a common error
in statistical interpretation.
On the other hand, if the statistical analysis suggests the null hypothesis

should be rejected, this only means that the alternative hypothesis ismost likely
true. For example, two samples that seem to be different from each other and
that lead us to reject the null hypothesis may, in reality, be drawn from the same
population, thus making the null hypothesis correct.
Of course, in actuality either the null hypothesis is true or it is not. However,

we are not able to make this determination with certainty from merely the fea-
tures of the accessible sample or samples. The methods of hypothesis testing are
probabilistic, and probability, by definition, means that there is some level of
uncertainty. This may seem unsettling, but it is simply unavoidable. Even
though decision errors can occur in this process, we can at least begin to quan-
tify and understand the likelihood of making these errors. This topic will be
more carefully addressed in the next chapter, once we start using inferential sta-
tistics to make judgments regarding the null hypothesis.
However, before leaving this topic, it is important to stress the posture differ-

ence between research hypotheses and statistical hypotheses. Research hypoth-
eses are usually not stated numerically, are derived from theory and/or previous
findings, and, most importantly, are almost always suggestive of a difference, an
effect, or a relationship. In short, research hypotheses usually predict that some-
thing interesting is happening. Otherwise, why are we interested in performing
the research? Compare this with statistical hypotheses. Here, the default posi-
tion is that nothing is going on and evidence suggesting otherwise will have to be
found before the null will be rejected. The statistical hypothesis initial posture is
skeptical (as if to say, “show me!”). While our heads and hearts may be predict-
ing and hoping to find some effect or relationship, the logic and mathematics of
hypothesis testing start with the presumption that nothing is going on.
One final point to be made concerns the relationship between rejecting the

null hypothesis and supporting the research hypothesis. Because the alternative
hypothesis covers both sides of the null hypothesis, rejecting the null may or
may not support the research hypothesis. It is possible to reject the null hypoth-
esis and yet still not find supporting evidence for the research hypothesis.
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For example, suppose the research hypothesis is that the experimental group
will outperform the placebo group. Suppose further that statistical evidence
is found that the placebo group actually outperformed the experimental group.
Even though the null hypothesis that they are equal will be rejected, this decision
does not support the research hypothesis; the findings were opposite of the pre-
dicted direction. It is important to realize that rejecting the null hypothesis does
not always mean the researcher’s inclinations were correct.

7.3 Sampling Distributions

Statistical hypothesis testing is the topic of interest for the rest of this textbook.
The conceptual foundation of statistical hypothesis testing and the application
of formulas to research data will be emphasized. These two topics are inter-
twined. Without understanding the conceptual basis of statistical hypothesis
testing, there is no way to understand why a formula looks as it does and
why the formula should be used in a given situation.
The most important concept in inferential statistics is the sampling distribu-

tion. As we read the remainder of this chapter, be forewarned that the connec-
tion between sampling distributions and hypothesis testing may not be
immediately obvious. Subsequent chapters will deepen our understanding.
For now, understand that if statisticians had not worked through the character-
istics of sampling distributions, statistical hypothesis testing would be
impossible.

Population and Sample Distributions

We know the difference between a population and a sample, the latter being a
portion of the former. Every population of scores can be depicted as a frequency
distribution that reflects the frequency of occurrence of every score in the dis-
tribution. Frequency distributions are also called probability distributions
because the probability of selecting a given score at random depends on the fre-
quency with which that score occurs in the population. In addition, if we know
the mean and standard deviation of a normal distribution, we can make prob-
ability statements about the likelihood of selecting a score from a specified area
of the distribution (remember all those z score problems?).
As has been stated already, samples have value only insomuch as they repre-

sent the population from which they come – the population we wish to study.
Most importantly, when we make inferences from a sample to a population, we
do notmake inferences about a specific score. Instead, wemake inferences about
a population parameter from a sample statistic. For example, we may infer the
mean or the variance of a population based on the mean or variance of our
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sample. It is meaningless to take a single score from a sample and try to estimate
a single score of a population.
In the discussion of z scores in Chapter 5, questions were asked like, “What is

the probability of selecting a score of less than 20, given that the mean of the
population is 26 and the standard deviation is 4?”We were able to answer such
questions because we used a standardized normal distribution, the z score dis-
tribution. The z score distribution is a distribution of transformed raw scores.
However, in hypothesis testing, we are interested in population parameters –
means (usually), never individual scores. If we want to make a probability state-
ment about a randomly selected sample mean falling within a specified area
under the normal curve, we need to create a normal distribution of means,
rather than of raw scores. This topic is addressed in the following section.

A Sampling Distribution of Means

Generally stated, a sampling distribution is a theoretical frequency distribu-
tion of a statistic (usually a mean) based on a very large number of repeated sam-
ples of some specified size, n. With respect to means, a sampling distribution
shows the relative frequency of all possible values of sample means, given the
selected sample size. A researcher never actually goes through the process of
constructing a sampling distribution. As was noted above, it is a theoretical
mathematical concept; however, it is critically important to the hypothesis
testing process. The concept of creating a sampling distribution is easily
grasped by walking through the steps that, theoretically, would be taken to
construct it.

Step 1. Choose a population of scores. It might be a population of IQ scores,
heights, weights, or scores from a population of participants who have taken
some personality inventory. It can be quite literally any population of scores
that are measured on an interval or ratio scale.

Step 2. Decide on a sample size, n. The sample size can range from 2 to infinity.
(Since means are being used, a sample size of 1 has questionable meaning.)

Step 3. Take a random sample of size n, the sample size decided upon in step 2.
Step 4. Compute the sample mean and replace the scores back into the popu-

lation. This is called random sampling with replacement (as referenced in
Section 6.4).

Step 5. Repeat steps 3 and 4 an almost infinite number of times. Each repeated
sample must be the same size as was selected in step 2. How do we know when
we are finished? At some point, it will be impossible for us to select randomly
a sample that we have not already selected. In other words, all possible
samples of size n will have been selected; there is no combination of
participants of size n left that we have not already drawn.
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Step 6. Finally, plot the relative frequency distribution of the means. This
distribution of means is the sampling distribution of the population of scores
for that chosen sample size.

In specifying the steps of constructing a sampling distribution, the statistic of
interest for us was the mean. The steps are the same no matter what statistic we
select. If we want a sampling distribution of variances, use the same procedure,
except compute and plot variances. We could even take two samples, calculate
the means, take the difference between the two means, and establish a sampling
distribution of mean differences (techniques like this will be featured in Chap-
ters 9 and 10). There are, in fact, many occasions in hypothesis testing when the
sampling distribution to be used will not be a distribution of means. Here, how-
ever, as the concept is introduced, the discussion of sampling distributions will
be confined to means.

Characteristics of Sampling Distributions

The Central Limit Theorem
This section begins with a theorem, the most important theorem in the entire
field of inferential statistics, formulated in 1810 by Pierre Laplace (1749–1827).
It is called the central limit theorem.
There are several claimsmadeby the central limit theorem that are important for

understanding sampling distributions. First, if the population is normally distribu-
ted, the samplingdistributionofmeanswill benormally distributed. Second, even if
the scores in the population are notnormally distributed, assumingn is sufficiently
large, the sampling distribution of means will be normally distributed. In other
words, unless the raw population of scores is wildly nonnormal and the selected
sample size is rather small, the resulting sampling distribution will be normal.

The Mean of the Sampling Distribution, μM
Third, the central limit theorem states that the mean of a sampling distribution
is the mean of all the sample means in the distribution and is symbolized as μM
(the population mean of all of the sample means). Further, the mean of the sam-
pling distribution has exactly the same value as the mean of the population of
raw scores. Therefore, μ = μM.

The Standard Deviation of the Sampling Distribution, σM
How would we compute the standard deviation of a sampling distribution? In
Chapter 4 we learned that the formula for computing the standard deviation of a
population of scores is

σ =
Σ X−μ 2

N
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The formula for the standard deviation of a sampling distribution, σM, has the
same form as the standard deviation of a population. This formula is a defini-
tional formula since it defines the standard deviation of the sampling distribu-
tion. Although Formula 7.1 is not actually used to compute the standard
deviation of a sampling distribution, it is presented here to underscore the point
that the standard deviation of a sampling distribution has the same mathemat-
ical form as the standard deviation of a population.

Definitional formula for the standard deviation of a sampling distribution

σM =
M−μM

2

NM
(Formula 7.1)

Since the “scores” of a sampling distribution are means,M replaces X. In addi-
tion, since themean of a sampling distribution is μM, μM replaces μ. The denom-
inator of Formula 7.1 is NM; this is the number of sample means that comprise
the sampling distribution. We would never use Formula 7.1 to calculate the
standard deviation of a sampling distribution because NM can approach infinity
for some populations and in most cases is simply indeterminable.

The Relationship Between σ and σM
Whereas the mean of the sampling distribution is identical to the mean of the
population, μ = μM, the standard deviation of the sampling distribution is not
equal to the standard deviation of the population. The two measures are related,
however. Formula 7.2 shows this relationship. The standard deviation of the
sampling distribution ofmeans is called the standard error of themean or sim-
ply the standard error.

Standard error of the mean

σM =
σ

n
(Formula 7.2)

Note the denominator of the standard error. The n refers to the sample size
selected when taking repeated samples during the theoretical construction of
the sampling distribution. Remember, when constructing a sampling distribu-
tion, every sample needs to be the same size. Therefore, the relationship
between σ and σM depends on the size of the samples being drawn. As a result,
the variability of the sampling distribution is determined by the variability of the
population distribution and the size of the samples used.
There is some potential for confusion when discussing the means that com-

prise the sampling distribution. We are used to thinking of a distribution of
scores that has one mean. A sampling distribution is a distribution of means.
The mean of the sampling distribution is the mean of all the sample means,
μM. For example, if we move one standard error away from the mean of the
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sampling distribution, we will land on a sample mean, not the mean of the dis-
tribution, but a mean that could be found when sampling from the population
(using the selected sample size).

How and Why n Affects the Standard Error of the Mean
Suppose two different sampling distributions from the same population are
established. In the first sampling distribution, the sample size is 4. In the second
sampling distribution, the sample size is 25. The standard deviation of the pop-
ulation is 32. Using Formula 7.2,

σM =
32

4
= 16 and σM =

32

25
= 6 40

The standard error of the mean becomes smaller as the sample size becomes
larger. This is not the case with themean of the sampling distribution; μ = μM no
matter what the size of n. Step 2 in constructing a sampling distribution
required us to specify the size of the samples. By using the preceding equation,
we can see that n influences the variability of the sampling distribution; specif-
ically, as n increases, the standard error decreases. However, we may be won-
dering, “What are the features of the real sampling distribution?” or “What
size of n corresponds to the best sampling distribution?” First, there is not just
one sampling distribution for a single population. There are as many sampling
distributions for a population as there are sample sizes. Statisticians describe
this situation by using the term family of sampling distributions. Whenever
we refer to a sampling distribution, we are actually referring to a sampling dis-
tribution of a particular size n. Keeping in mind that sampling distributions are
theoretical, one sampling distribution is just as “real” as the next. Which one is
the best? Well, there is no best one. In general, the smaller the standard error of
a sampling distribution, the better for rejecting null hypotheses, but there are
other factors to consider. Also, recall that as n increases, the resulting sampling
distribution approaches normality even if the population of raw scores is not
normally distributed. This means that as n increases the sampling distribution
becomes more and more like a normal distribution. How large does the n have
to be before one can be sure the sampling distribution is normal? Well, the
standard answer is that an n of 30 will generate a normal sampling distribution.
However, it depends on the shape of the population of raw scores. If it is normal,
then even small n’s will yield normal sampling distributions. If it is not normal,
then the more non-normal it is, the higher the n will need to be to produce a
sampling distribution that is normal; perhaps an n of more than 30 will be
needed. One more point needs to be made that will be further developed later
in the text; as the sample size increases, the sampling distribution will not only
approach normality, it will approach the standard normal distribution; the same
distribution described in detail in the z table (Table A.1).
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Given two sampling distributions, why does the one with a smaller n have a
larger standard error? As an example, let us contrast a sampling distribution in
which n = 2 with one in which n = 20. Each one of the means of the sampling
distributions is comprised of scores. When n = 2, there are two scores that are
averaged to arrive at the mean for that sample. When n = 20, there are 20 scores
averaged to arrive at the mean for that sample. When thinking about unusually
high or low sample means, which is more unlikely, selecting two extreme scores
to get an extreme sample mean or selecting 20 extreme scores to get an extreme
sample mean? Although we do not usually get two extreme scores in a row, it is
much less likely that we would get 20 extreme scores within the same sample. In
other words, with a small sample, there is little opportunity for other scores to
compensate for selected extreme scores; in large samples, it is more likely that
other scores will be included in the sample to compensate for selected extreme
scores. Therefore, a sampling distribution based on n = 2 will contain many
more extreme means than a sampling distribution in which n = 20. (Try this
thought experiment – imagine having a sample size that is almost the size of
the population itself, say, N – 1. If we were to generate a sampling distribution
by sampling the entire population minus one, replacing the scores, then sam-
pling them again with all but one, and do this repeatedly, would not the resulting
sampling distribution have an extremely small standard error? Every sample
mean would be virtually the same score.) Having only a few extreme scores pro-
duces a population or sample distribution with a relatively small standard devi-
ation; having only a few extreme means produces a sampling distribution with a
relatively small standard error of the mean. Figure 7.1 shows how the shape of a
sampling distribution is affected by changes in the size of the samples.

μ = 50 μ = 50

μ = 50 μ = 50

μ = 50

Population n=1 n= 2

n= 16 n= 36

Figure 7.1 Several sampling distributions constructed with different sample sizes. As the
sample size increases, the standard error, σM, reflected in the width of the distribution,
correspondingly decreases.
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The following list summarizes the main points of sampling distributions
of means:

1) A sampling distribution of means is a theoretical distribution derived by
computing the means of an almost infinite number of samples of size n.

2) If the scores of a population are normally distributed, irrespective of sample
size, the sampling distribution of means will be normally distributed.

3) If the population distribution is not normally distributed, the sampling dis-
tribution approximates a standard normal curve as the sample size increases.
The more the population distribution deviates from normality, the larger the
sample size must be to establish a normally distributed sampling
distribution.

4) As n increases, the shape of the resulting distribution approaches the stand-
ard normal distribution, as displayed in the z table (Table A.1).

5) The mean of the sampling distribution equals the mean of the population of
raw scores, μ = μM.

6) The standard deviation of the sampling distribution is called the standard
error of the mean. The relationship between the standard error of the mean
and the standard deviation of the population is σM = σ n.

Box 7.2 will show us howwe can use software programs found online to create
and adjust sampling distributions.

Box 7.2 Playing with the Numbers: Create Our Own Sampling Distribution

Programs found on the Internet allow us actually to see how changing the sam-
ple size, mean, and the standard deviation of the population of raw scores
change the resulting sampling distribution. Some of the ones recently found
online include the StatKey Sampling Distribution for a Proportion program
(www.lock5stat.com/StatKey/sampling_1_cat/sampling_1_cat.html), the Rice
Virtual Lab in Statistics (onlinestatbook.com/stat_sim/sampling_dist/), and
the Rossman/Chance Applet Collection (www.rossmanchance.com/applets/
OneSample.html). There are others. A program that is quite flexible, however,
is one created by Dr. Patrick Wessa (www.wessa.net/rwasp_samplingdistribu-
tionmean.wasp). In this program, we can input the number of replications
we want to make (theoretically, sampling distributions involve the number of
replications that equals the total number of samples of size n that are possible,
often in the billions or more, so choose a number in the hundreds at least), the
sample size (n), the mean of the population of raw scores, and the standard
deviation of the population of raw scores. (It is recommended to leave the width
and height of the chart as the given default values.) After imputing some values,
click the “compute” button, wait for the program to run, and then scroll down to
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7.4 Estimating the Features of Sampling Distributions

Only in rare situations will a researcher know the value of population para-
meters. However, population parameters are needed to determine μM and
σM. Thankfully, in most cases, population parameters can be estimated from
sample statistics. If μ is known, then μM can be computed with certainty
(μ = μM). If μ is not known, then a sample mean (M) can be used as an unbiased
estimate of μ. (“Unbiased” means that the sample mean is just as likely to be
larger than the population mean, as it is to be smaller.) Of course, if σ is known,
then σM can also be computed with certainty. However, when σ is unknown, σ
must be estimated by using s (a sample standard deviation), an unbiased esti-
mate of σ. Therefore, sM becomes an estimate of σM. Formula 7.3 is the standard
error of the mean estimated from a single sample.

Estimated standard error of the mean

sM =
s
n

(Formula 7.3)

where

sM = the estimated standard error of the mean
s = the sample standard error
n = the sample size

Formula 7.3 allows us to estimate the amount of variability within a sampling
distribution. As an estimate of σM, sM becomes more reliable as the sample size
increases.
Table 7.1 clarifies the various symbols and estimates that are characteristics of

sampling distributions.

the second chart. Here we will see a graph reflecting the various sample means
given our selected sample size, mean, and standard deviation.

By changing the values of the imputed numbers, we should be able to see the
general principles of the sampling distribution concept as well as the claims of
the central limit theorem on display. For instance, if we increase the sample size,
we should see the standard deviation of the sampling distribution (or, the
standard error) tighten (and vice versa if we decrease the sample size). (If it does
not look like it has tightened, check the values on the X-axis to see if they were
adjusted to better present the data.) If we change the value of the mean, the
entire distribution should shift to be centered on the new mean. If we increase
the standard deviation, the resulting sampling distribution should widen (and
vice versa if we decrease the standard deviation). By exploring this program (or
the others previously mentioned), we should be able to see that μM = μ,
σM = σ n, and all sampling distributions approximate a normal distribution.
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Sampling Distributions and Sampling Error

The notion of sampling error is fundamental in statistical inference. When dis-
cussing the mean in Chapter 3, an error was defined as the distance a score is
from the mean of the distribution, X −M. The term error may be confusing
because it usually implies a mistake; the fact that a raw score can be different
from the mean should not be understood as a mistake. However, the term error
has real meaning in relationship to a sampling distribution.Within the sampling
distribution of means, the only value that is the same as the mean of the pop-
ulation is μM. Only those sample means that are equal to μM are perfect esti-
mates of μ. Any sample mean that is different from the mean of the
sampling distribution is in error in the sense that it is an inaccurate estimate
of μ. A sampling error is the difference between a population parameter and
the estimate of that parameter provided by a statistic. Thus, when estimating
μ, a sampling error is M − μ.
When working with a population distribution of raw scores, σ is the

overall measure of error that is typically used. With a sampling distribution,
the overall measure of error is σM. This makes perfect sense. Figure 7.2 shows
two sampling distributions that have the same mean. Figure 7.2a has a smaller
standard error, and as a result, the distribution is narrower than the sampling

Table 7.1 Important symbols of sampling distributions and population estimates.

1) M is an estimate of μ

2) s is an estimate of σ

3) μM is the same value as μ; μM is not an estimate of μ

4) σM is the standard deviation of a sampling distribution, called the standard error of the
mean; it is not an estimate of anything

5) sM is an estimate of σM

Distribution of M′s
for n= 25
σM= 3

μM μM

(a) (b)

Distribution of M′s
for n= 8
σM= 6

Figure 7.2 The sampling distribution in (a) has a smaller standard error than the sampling
distribution in (b). The amount of sampling error is greater as σM increases.
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distribution in Figure 7.2b, where there are more sample means at a greater dis-
tance from μM. Suppose we select a mean at random from each distribution in
Figure 7.2. With an error defined as M − μ, from which mean would we expect
the larger error? Since the distribution in Figure 7.2b has more means farther
away from μM, we are more likely to select a sample mean from that distribution
that is far from the actual mean of the distribution. In other words, when com-
paring sampling distributions that have different standard errors, a randomly
selected mean from a broader distribution will likely be a poorer estimate of
μ than a randomly selected mean from a more narrow distribution.
At this point, there is no way for us to appreciate fully the importance of sam-

pling distributions. However, it is impossible to understand the statistical foun-
dation of hypothesis testing if we do not understand the characteristics and logic
of sampling distributions. In large measure, the difference between being a sta-
tistical “number cruncher” and truly understanding inferential statistics
depends on our ability to grasp the sampling distribution concept. The better
we understand this chapter, the easier time we will have mastering much of
the material presented in subsequent chapters. If there is confusion, please
reread the necessary sections of the chapter to improve conceptual clarity.

Summary

The field of inferential statistics, based on probability theory and logic, is used to
make inferences about the characteristics of a population from the character-
istics of a random sample drawn from the population. A random sample is a
sample of scores taken from a population in such a way that each score of
the population has an equal chance of being included in the sample. Researchers
use random sampling to obtain samples that are representative of populations.
Random sampling forms the basis on which one can generalize from samples to
populations.
The field of inferential statistics includes estimation and hypothesis testing.

Parameter estimation uses data from a sample to infer the value of a population
parameter. There are two kinds of estimation: point estimation and interval esti-
mation or confidence intervals. Point estimation entails estimating a parameter
as a single value. Interval estimation establishes a range of values within which
the parameter is expected to lie. The second and most common type of infer-
ential procedure is hypothesis testing.
Several characteristics of hypothesis testing were discussed:

1) A scientific research hypothesis is a formal statement or expectation about
the outcome of a study. A research hypothesis precedes the collection of data
and usually predicts a difference, effect, or relationship.
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2) A statistical hypothesis is a numerical statement regarding the outcome of a
study. Statistical hypotheses come in logically related pairs, the null and the
alternative. They are mutually exclusive and collectively exhaustive.

3) Hypothesis testing uses samples to make inferences about populations. Sta-
tistical methods are used to make these inferences.

4) The null hypothesis states there is no effect of the independent variable on
the dependent variable or, in correlational designs, no relationship between
two variables. The alternative hypothesis states that there is an experimental
effect, difference, or relationship, as the case may be.

5) Hypothesis testing results in a decision to either reject the null hypothesis or
fail to reject the null hypothesis. Since any decision is probabilistic, there is
always a risk of committing a decision error.

Single-sample research uses one sample to test a hypothesis about themean of a
population. Two-sample research uses two samples to test a hypothesis about the
difference between two populationmeans.When two samples are used, the inves-
tigator has an opportunity to establish the comparative effectiveness of two treat-
ments. Many research designs are more complex, involving more than two
samples. The correlational approach is an alternative researchmethod that differs
from experimentation in that it does not attempt to exert an influence on a meas-
ured response. Because variables are not controlled, the correlational approach
cannot identify causal relations among variables. The correlational approach to
hypothesis testing examines whether or not two variables are related.
A sampling distribution is a distribution of some sample statistic, usually the

mean. It is the conceptual and mathematical cornerstone of hypothesis testing.
Six facts about the sampling distribution of means were presented:

1) A sampling distribution of means is a theoretical distribution derived by
computing the means of an almost infinite number of samples of size n.

2) If the scores of a population are normally distributed, irrespective of sample
size, the sampling distribution of means will be normally distributed.

3) If the population distribution is not normally distributed, the sampling dis-
tribution approximates a standard normal curve as the sample size increases.
The more the population distribution deviates from normality, the larger
the sample size must be to establish a normally distributed sampling
distribution.

4) As n increases, the shape of the resulting distribution approaches the stand-
ard normal distribution, as displayed in the z table (Table A.1)

5) The mean of the sampling distribution equals the mean of the population of
raw scores, μ = μM.

6) The standard deviation of the sampling distribution is called the standard
error of the mean. The relationship between the standard error of the mean
and the standard deviation of the population is σM = σ n.

Summary 213



Key Formulas

Definitional formula for the standard deviation of a sampling distribution

σM =
M−μM

2

NM
(Formula 7.1)

Standard error of the mean

σM =
σ

n
(Formula 7.2)

Estimated standard error of the mean

sM =
s
n

(Formula 7.3)

Key Terms

Random sample Null hypothesis
Point estimation Alternative hypothesis
Interval estimation Sampling distribution
Research hypothesis Central limit theorem
Hypothesis testing Standard error of the mean
Statistical hypothesis Sampling error

Questions and Exercises

Most of these questions are conceptual, requiring no computations. Try to
answer the conceptual questions without referring to the text.

1 How would we go about constructing a theoretical sampling distribution
of means?

2 How does the population standard deviation influence the variability of the
sampling distribution? What happens if it increases? What happens if it
decreases?

3 What is the difference between point and interval estimation?

4 How does hypothesis testing differ from estimation?

5 How is the variability of a sampling distribution affected by the sample size?
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6 What is meant by single-sample versus two-sample research designs? How
is correlational research different from these designs?

7 What is the difference between a research and statistical hypothesis?

8 Define null and alternative hypotheses.

9 Give examples of null and alternative hypotheses for single-sample and
two-sample research projects.

10 A normally distributed population of scores has μ = 100 and σ = 10. A sam-
pling distribution is established with n = 9. Describe the sampling distribu-
tion in terms of μM, its standard error, and shape.

11 Suppose a research hypothesis predicts that Drug A will generate higher
performance numbers than Drug B.
a State the null and alternative statistical hypotheses
b What finding would result in a failure to reject the null?
c How would a finding to fail to reject the null be interpreted in terms of
the research hypothesis?

d What finding would support the research hypothesis?
e What finding would allow the researcher to reject the null but would not

allow the researcher to support the research hypothesis?

12 Imagine it is known that American teenagers spend, on average, three
hours a day on social media. Further, imagine that a community wanted
to change this and took intentional steps to create numerous activities
for the local teenager population that did not involve social media. Further,
suppose that a researcher wanted to test the effectiveness of this commu-
nity’s programs by sampling the local teenager population and asking them
about their social media involvement.
a What would the null and alternative hypotheses look like?
b What would be a finding that would result in failing to reject the null?
c What would be a finding that would support the objectives of the com-
munity organizers?

d What would be a finding that would reject the null but not support the
objectives of the community organizers?

13 What is the relationshipbetweena samplemeanvalue andthe standarderror?

14 Suppose we know an anxiety measure has a mean of 50 with a standard
deviation of 10; μ = 50; σ = 10. What is the standard error if we create
a sampling distribution with n = 20?
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15 Suppose we know the average university student sleeps 6.5 hours a night
during the school week with a standard deviation of 0.5 hours. What is
the standard error if we create a sampling distribution with n = 100?

16 Suppose we know the average four-person family household generates
20 lb of garbage a week with a standard deviation of 4 lb. Suppose further
that we wish to generate a sampling distribution based on a sample
of 50 households. What is the mean of the population of means
generated?

17 Suppose we sample the local squirrel population by trapping and releasing.
Suppose further that we find our sample generates a mean weight for the
squirrels of 17 ounces with a standard deviation of 2 ounces.
a What is our best estimate of the population weight and standard
deviation?

b What is our best estimate of the standard error for a sampling distribu-
tion if we gathered 20 squirrels?

18 Suppose a local promoter, wanting to create a unique selling feature for
their community, decides to try to create larger squirrels by creating
and spreading genetically modified nuts throughout the community
that have been supplemented with a growth hormone. Using data from
Problem 17:
a What would be the research hypothesis?
b What would be the null hypothesis?
c What would be the alternative hypothesis?
d What statistical finding would support the research hypothesis?
e What statistical finding would run counter to the research hypothesis?
f What would be a finding that would result in failing to reject the null?

Computer Work

19 Consider the following data set as a population of scores. Compute μ and σ.
Take a random sample of 5, 10, 15, and 20 scores. Compute the sample
means and the standard errors using σ. Note how the sample size influ-
ences the variability of the sampling distribution that would be derived
from this population. The overall measure of sampling error is the stand-
ard error of the mean. As the sample size becomes larger, sampling error
becomes smaller.
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A population of scores

22 11 7 9 9 8 7 23 45 9

23 21 8 8 5 16 9 22 17 6

12 29 6 5 9 23 7 33 24 5

15 14 9 7 3 17 8 19 15 8

11 10 8 6 1 11 9 25 35 9

10 18 6 5 4 13 8 21 20 9

14 17 5 6 2 34 2 35 35 5

35 36 8 1 3 37 1 32 33 4

33 29 7 7 6 28 9 27 26 9

27 28 5 5 4 27 8 26 25 7
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Part 4

Inferential Statistics

z Test, t Tests, and Power Analysis
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8

Testing a Single Mean: The Single-Sample z and t Tests

8.1 The Research Context

This chapter addresses the statistical analyses used in single-sample research
projects. Recall that single-sample studies use one sample of participants to
make an inference about whether the mean of the population is some specified
value. A typical statistical hypothesis might read, “Does the obtained sample
come from a population with a mean of [insert specific mean value] or from
a population with a different mean?”The single-sample methodology for testing
a hypothesis about a specified population mean has its place in the social and
behavioral sciences. However, it is one of the least used research methods. It
is certainly less commonly used than the comparison of two or more conditions
or the type of study that attempts to discover the correlation between two or
more variables.
Nonetheless, the relative simplicity of the method makes it ideal for the pur-

poses of learning how to run inferential tests. Once we gain familiarity with
these concepts in the context of a simple research design, we will be able tomore
easily understand the statistical inner workings of hypothesis testing in more
complex designs – designs that are, admittedly, more commonly used in the
social and behavioral sciences.

► Example 8.1 Assume that themean weight of newborn babies is 7 lb, with a
standard deviation of 1 lb. A study is conducted with the following research
question: “Do newborn babies of mothers who drink alcohol during pregnancy
weigh less than the average baby?” To answer this question, the investigator
would take a single random sample of newborns from mothers who consumed
alcohol during pregnancy, compute themean, and, using themethods discussed
in this chapter, come to a decision about whether this sample of newborns came
from a population with a mean of 7 lb. ◄
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► Example 8.2 Suppose a university administrator wants to know if the stu-
dents coming into the institution have strong mathematical abilities. Assume
the national mean of the quantitative section of the Scholastic Aptitude Test
(SAT) Math is 500, with a standard deviation of 100. The administrator takes
a random sample of SAT Math scores from the incoming freshman class, com-
putes the mean, and decides whether the population of incoming students has a
mean SAT Math score that is different than 500.◄

► Example 8.3 The chairperson of a psychology graduate program is told
that the average time it takes a graduate student to earn the PhD is 6.8 years,
with a standard deviation of 1.2 years. The professor wonders how the students
in this program compare. A random sample of 32 recent graduates is examined
and found to have a mean of 5.2 years. Can the chairperson conclude that stu-
dents in this program average less than 6.8 years?◄

The statistical test that is used to decide if a sample mean does or does not come
from a specified population, when the standard deviation of the population is
known, is called a single-sample z test. Since only one sample of scores is taken,
the z test applied in this situation is a single-sample or one-sample statistical
test. Furthermore, since the standard deviation of the population is known,
we can determine the actual standard error; we do not need to estimate it using
a sample standard deviation. If we did not know the population standard
deviation, this would still be a single-sample research project, but we would
need to estimate it and run the single-sample t test instead. This chapter dis-
cusses both tests, but we will look at the z test first and then t tests. We will
discover that the arithmetic computations for each test are rather simple. We
will also discuss the role of sampling distributions, the reasons the formulas
for the z test and t test are expressed as they are, and the implications of shifting
from a z test to a t test.

8.2 Using the Sampling Distribution of Means
for the Single-Sample z Test

This section begins where Chapter 7 ends: the importance of sampling distribu-
tions in hypothesis testing. To recall, the following list highlights the facts about
the sampling distribution of means:

1) A sampling distribution of means is a theoretical distribution derived by
computing the means of an almost infinite number of samples of size n.

2) If the scores of a population are normally distributed, irrespective of sample
size, the sampling distribution of means will be normally distributed.
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3) If the population distribution is not normally distributed, the sampling dis-
tribution approximates a standard normal curve as the sample size increases.
The more the population distribution deviates from normality, the larger
the sample size must be to establish a normally distributed sampling
distribution.

4) As n increases, the shape of the resulting distribution approaches the stand-
ard normal distribution, as displayed in the z table (Table A.1).

5) The mean of the sampling distribution equals the mean of the population of
raw scores, μ = μM.

6) The standard deviation of the sampling distribution is called the standard
error of the mean. The relationship between the standard error of the mean
and the standard deviation of the population is σM = σ n.

z Scores and the Sampling Distribution of Means

The z score formula for transforming a raw score to a z score was given in
Chapter 5 as

z =
X−μ

σ

A z score specifies how many standard deviations the transformed raw score is
from the mean of the distribution. If every score of a population that is normally
distributed is transformed into a z score, the result is the standard normal curve;
this curve has a mean of 0 and a standard deviation of 1 (it is described by
Table A.1 in the Appendix). The standard normal curve was used in
Chapter 5 to solve all of the z score problems. For example, it is possible to
use this table to make statements about the probability of selecting a score at
random from some area under the normal curve. In every one of the z score
problems we worked in Chapter 5, the focus was on scores. For example, a typ-
ical question was, “Given μ = 50, and σ = 5, what is the probability of drawing a
score at random above 60 or below 40?”The strategy we used to answer this type
of question involved transforming the numbers 60 and 40 into z scores and then
using the z table to identify the area of the curve above the z score for 60 and
below the z score for 40.
In inferential statistics, a sample statistic (e.g. the mean) is used to infer a pop-

ulation parameter. It is meaningless to take a score from a sample and attempt to
infer a score from the population. When testing a hypothesis about the value of a
population mean, a sample mean is used to decide whether the population has a
stated value. The decision is based on the probability of finding a sample mean
of a certain value, given a hypothesized value of the population mean. Obviously,
the z score formula cannot be used to arrive at a probability statement regarding
the likelihood of drawing a sample mean of a certain value; scores are notmeans.
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However, with a slight adjustment in the formula, and by employing the sam-
pling distribution concept presented in Chapter 7, we can make probability
statements about selecting a sample mean from an area under the curve of a
sampling distribution.

The z Statistic

The z score formula transforms raw scores within a population into z scores.
The formula for the z statistic transforms the means within a sampling distri-
bution into z scores. Formula 8.1 is used for this transformation.

z Statistic

zobt =
M−μ

σM
(Formula 8.1)

where

M = the mean of the sample
μ = the hypothesized mean
σM = the standard error of the mean

The zobt symbol is used to indicate that the z value is obtained from a mean.
The z statistic has the same basic form as the z score formula. Table 8.1 contrasts
each value of the two formulas. Technically, the population mean of the z score
formula is replaced by the mean of the sampling distribution. Since the mean of
the sampling distribution, μM, is the same as the population mean from which
the sampling distribution is established, the formula for the z statistic simply
uses the symbol μ in place of μM. The sample mean M replaces the X score.
In the denominator, instead of using the standard deviation of the population
of raw scores, the z statistic uses the standard deviation of the sampling distri-
bution, also called the standard error, σM.
If all the raw scores of a normally distributed population are transformed into

z scores, the standard normal distribution is generated, and the z table

Table 8.1 A comparison of the z score formula used to transform raw scores with the z
statistic used to transform a sampling distribution of means.

z Score formula z Statistic formula

z =
X −μ

σ
zobt =

M−μ

σM

X = a single score M = a single mean

μ = the population mean μ = the hypothesized population mean

σ = population standard deviation σM = standard error of the sampling distribution
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(Table A.1) can be used to identify areas under the curve and to make proba-
bility statements. When a sampling distribution of means is normally
distributed, transforming all the means to z values (using Formula 8.1) produces
the same standard normal distribution. The z table can now be used to make
probability statements about means.

The Logic of the z Test

To walk through the logic of the z text, we can use a hypothetical study. Suppose
an educational enrichment program is developed to teach math skills. The
program entails the use of an interactive web-based instruction to teach basic
algebra skills. A random sample of 36 students is selected, given the interactive
web-based instruction, and tested at the end of the school year. The test has
been extensively validated on a large population and is known to have a mean
of 100 and a standard deviation of 10. (That is, suppose we know both μ and σ.)
A statistical test, based on a single sample, will be conducted to test the hypoth-
esis that the population mean is 100. Therefore,

H0 μ= 100

H1 μ≠100

We are not testing the hypothesis that the mean of the national exam is 100. We
have already been told that. The population we are intending to make an infer-
ence about is a hypothetical population, the population of all students that the-
oretically could receive the training. When the training of the sample is
completed, we must assume that this sample of participants is representative
of the population of students who could be exposed to this training. The pop-
ulation of interest is hypothetical; it is imaginary. It is important for us to gain
comfort with the idea of getting real samples but understanding that they may
represent imaginary populations. In this situation, our sample is a subset of all
these hypothetical students.
The null and alternative hypotheses in the example are statements that derive

from the question, “Is the mean of the population from which the sample is
taken 100?” In essence, we are asking if the treatment has any effect on math
skills. If the treatment has an effect, we would expect to obtain a sample mean
that is different from the hypothesized population mean of 100.

Sampling Error and Hypothesis Testing

Suppose thenull hypothesis is true; that is, suppose themathenrichmentprogram
hasnoeffect, and thepopulationmeanof studentswhocould experience themath
enrichment program is still 100. When we gather the data from our sample and
compute the mean, would we expect that sample mean to be exactly 100?
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Due to sampling error, even if the null hypothesis were true, it is extremely
unlikely that the samplemeanwouldbe exactly 100. Recall that the sampling error
of amean is the distance themean of a sample is from themean of the population.
Imagine taking repeated samples from a population, calculating the mean, and
replacing them (in other words, creating a sampling distribution of means). Each
mean is based on scores dispersed throughout the population. For the sample
mean in question, we might randomly draw, for example, several extreme scores
from the right tail of the population. The resulting samplemean, therefore, will be
larger than the mean of the population. Even though the null hypothesis is true
and there is no treatment effect, the random selection of scores is subject to sam-
pling error.
Returning to the educational enrichment program, we have to decide if there

is a treatment effect; that is, we have to make a decision about whether to reject
the null hypothesis that μ = 100. Suppose the sample mean drawn is 100.5. Are
we willing to conclude that μ ≠ 100? Probably not. Suppose the sample mean
drawn is 102. What about a sample mean of 105, 115, or 130? As we answer
these questions, we are operating with some intuitive belief about the likelihood
that sampling error can explain the distance between the value of the obtained
sample mean and the hypothesized population mean. We might assume that a
sample mean of 102 could easily occur when the population mean is actually
100, but we may also conclude that a sample mean of 130 would not be likely
to occur if the population mean were 100. Thankfully, the statistical procedures
involved in hypothesis testing greatly reduce this guesswork. When we conduct
a z test, the sample mean is transformed into a z statistic, and this allows us to
use the z table to judge the probability of obtaining that sample mean when the
null hypothesis is true. If the z statistic is far away from 0, it suggests it is very
unlikely that sampling error alone would have yielded that value. We would
then conclude that the population mean from which our sample is drawn is
not what is specified in the null hypothesis, and the null hypothesis would be
rejected. Please reread the last three sentences; they are the most important
in the entire chapter.

Sampling Distributions When the Null Hypothesis Is True or False

Figure 8.1 depicts two sampling distributions of a mathematics enrichment pro-
gram. The sampling distribution on the left shows the mean of the population as
100. The overlapping sampling distribution on the right is from a population
with a mean of 104. As we continue reading, keep the following in mind.
The goal of hypothesis testing is not to infer the value of the mean for the
hypothesized population. If we want to make an inference of that sort, use a
point or interval estimation. The goal of hypothesis testing is to decide whether
to reject the null hypothesis. In Figure 8.1, the sampling distribution on the left
would be true if the null hypothesis is true (μ = 100). In other words, if the
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mathematics enrichment program has no effect, we would expect the mean of
the sampling distribution to be 100. If the null hypothesis is false, then the mean
of the sampling distribution is some number other than 100. In this figure the
true mean of the population of those in the mathematics enrichment program is
presented as 104; thus, the mean of the sampling distribution must be l04.
Now suppose we take a sample, compute the mean, and find it to be 105. If the

true state of affairs is represented by the sampling distribution on the left,
μ = 100, then we have unintentionally and randomly oversampled from the right
tail of the distribution. Since there are fewmeans in the tail of the distribution, it
is a statistically rare event to obtain a mean of 105 from a sampling distribution
with a mean of 100. However, if the true state of affairs is represented by the
sampling distribution on the right, μ = 104, then the sample mean of 105 is
not at all unusual. A sampling distribution with a mean of 104 will have many
means right around the value of 104; obtaining one close to 104 is not a statis-
tically rare event.
It is important to keep in mind when hypothesis testing that we do not know

the mean of the population, and therefore we do not know the mean of the sam-
pling distribution. Figure 8.1 gives us a behind-the-scenes glimpse, so to speak –
a glimpse that we never have when performing actual research. With the aid of
only our sample mean, we need to determine the probability of drawing that
sample mean, by chance, from a distribution based on a null hypothesis that
is true. If the probability is low (determining what is meant by “low” will soon
be discussed), then the null hypothesis should be rejected. If we hypothesize
μ = 100, obtaining a sample mean of 105may lead us to conclude that μ is prob-
ably not 100. As mentioned earlier, thankfully we have tools that can remove
much of the guesswork. Specifically, the z test and z table are used to arrive
at a decision about whether or not to reject the null hypothesis.

100 104 105

Hypothesized µ True µ

Sample M

Figure 8.1 The sampling distribution on the left is from a population in which μ = 100.
The sampling distribution on the right is from a population in which μ = 104; this represents
the true state of affairs. A sample mean of 105 falls in the tail of the left distribution, but closer
to the middle of the distribution on the right.
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Using the z Test in Deciding to Reject the Null Hypothesis

Consider again the task of evaluating the effectiveness of the educational enrich-
ment program. When testing the null hypothesis, we proceed as if the null
hypothesis were true. (This is such an important point; the mathematics of
hypothesis testing are set up as if the null is true. It is the starting position.) Since
students are tested with an examination previously known (i.e. outside of this
enrichment program) to have a population mean of 100 and a standard devia-
tion of 10, the null and alternative hypotheses are stated as

H0 μ= 100

H1 μ≠100

A sample of 36 students is tested after completion of the program and the sam-
ple mean is found to be 105. After the null and alternative hypotheses have been
stated, the next step is to transform the sample mean into a z statistic, using
Formula 8.1:

zobt =
M−μ

σM

zobt =
105−100

10 36

=
5

1 67
zobt = 2 99

How would we interpret a zobt of 2.99? If we assume that the null hypothesis is
true, μ = 100, then our sample mean of 105 is 2.99 standard error units above the
mean of the sampling distribution. (Recall that standard error units are analo-
gous to standard deviation units; thus, about 68% of all z scores will fall within
±1 standard error of the mean, about 95% within ±2 standard errors from the
mean, and about 99.7 within ±3 standard errors from the mean. See the 68-95-
99.7 rule presented in Chapter 4.)
Figure 8.2 shows where a sample mean of 105 lies in a sampling distribution

having a mean of 100 and a standard error of 1.67. Note the z values that cor-
respond to the means in the sampling distribution. Since Formula 8.1 trans-
forms the sampling distribution to a standard normal curve with μ = 0 and
σ = 1, the z value at themean of the sampling distribution is 0. Since the standard
error of the sampling distribution is 1.67, the means of 101.67 (100 + 1.67) and
98.33 (100 − 1.67) have corresponding z values that are +1 and −1, respectively.
The sample mean of 105 is in the right tail. If the mean of the sampling distri-
bution is 100, what percentage of means is found at or above a z of 2.99? Refer to
the third column in the z table (Table A.1). Only 0.14% of the means of the sam-
pling distribution are found at or above a mean of 105 (a z of 2.99).
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Now there is a decision to make. We can assume that the mean of the sam-
pling distribution (the mean of the population) is 100 and that we have expe-
rienced the highly unlikely event of oversampling from the extreme right tail
of the distribution. On the other hand, we can reject the assumption that the
null hypothesis is true; that is, reject the claim that our sample mean came from
a population with amean of 100. In this situation, most would agree that the null
hypothesis is probably false and it should be rejected.
If it were left up to each individual researcher to decide what is and is not a

rare statistical occurrence, hypothesis testing would lead to endless confusions.
For this reason, in most research situations social and behavioral scientists fol-
low a long-standing convention of using a probability value of .05 as the crite-
rion for rejecting null hypotheses.

The Criterion for Statistical Significance: Acceptance
and Rejection Regions

Over the years, statisticians have come to define the criterion for rejecting the null
to be .05 (for a historical overview see Cowles and Davis, 1982). As applied to the
single-sample z test, thismeans that if the probability of randomly drawing a given
sample mean is less than .05, when the population mean is hypothesized to be a
specified value, then we should reject the hypothesis that claims the population
mean is that specified value. In the z distribution, what are the cutoffs beyond
which lie the outermost 5% of the distribution? Stated differently, what are the z
values that mark both the lowest 2.5% of the distribution and the highest 2.5%
of the distribution? (Combined, these areasmakeup the outermost 5%.)Assuming
the data is normally distributed, the z values of ±1.96 mark these extremes.
Therefore, the probability of selecting a mean at random that will correspond
to a z value that is equal to or falls outside of the absolute value of 1.96 is .05.

98.33 µ = 100 101.67 M= 105

z –1.0 0 +1.0 +2.99

Figure 8.2 In this sampling distribution μ = 100 and σM = 1.67. A sample mean of 105 is
2.99 standard error units above the mean.
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Thismeans if the zobt shows the samplemean to bemore than 1.96 standard error
units away from the assumed populationmean in either direction, then we should
reject the null hypothesis.

Alpha Levels and Rejection Regions

When we use the cutoffs of ±1.96, we are testing the null hypothesis at the 5%
level of significance. The probability value of .05 is called the alpha level, sym-
bolized as α. In hypothesis testing, the investigator chooses the alpha level.
Other conventional alpha levels are .10 and .01. Before the data are analyzed,
the researcher specifies the alpha level at which the null hypothesis is to
be tested. In essence, when setting the alpha level, the researcher is defining
the criterion for what will be considered a statistically rare event. An alpha value
of .10 would be considered a permissive or liberal criterion, while an alpha
value of .01 would be considered a conservative criterion.
As soon as an alpha level is selected, rejection and fail to reject regions are

automatically determined. Figure 8.3 shows the rejection and fail to reject
regions for alpha levels of .10, .05, and .01. The rejection region is always in
the tails of the sampling distribution, that is, the farthest away from the mean.
The absolute values of the z scores that define the rejection regions are called
the critical values. Since 10% of the distribution falls beyond a z of ±1.65, the
null hypothesis is rejected at the .10 level of significance if the absolute value of
zobt is equal to or falls outside of the critical values of ±1.65. If the alpha level is
set at .05, the null hypothesis is rejected if the absolute value of zobt is equal to or
falls outside of ±1.96. Moreover, since only 1% of the sampling distribution cor-
responds to a z of ±2.58, the null hypothesis is rejected at an alpha of .01 if the
absolute value of zobt is equal to or falls outside of the critical values of ±2.58.
If alpha is set at .05 and the null hypothesis is rejected, then we would state

p < .05, which means that the probability of obtaining a mean at or beyond the
critical values if the null hypothesis is true is less than .05. The critical values of
±1.65, ±1.96, and ±2.58 can be verified by using the z table (Table A.1). Use the
third column of the z table, and look up the alpha value divided by 2 (half in each
tail of the distribution). Note that the rejection region defined by the critical
values is in both tails of the distribution. The fact that the rejection region is
in both tails reflects the investigator’s willingness to reject the null hypothesis
if the sample mean is either considerably above or considerably below the
hypothesized population mean. This is known as a nondirectional hypothesis
test or a two-tailed hypothesis test. In the educational enrichment program
example, the zobtwas 2.99. Even if we set alpha at .01 prior to collecting the data,
we would still be rejecting the null hypothesis because 2.99 is larger than 2.58
(p < .01). Now that the null hypothesis has been rejected, what does this mean
about the educational enrichment program?

230 8 Testing a Single Mean



90% 
Fail to reject region

5% 5%

0–1.65 +1.65

Reject  H0Reject  H0

Reject  H0 Reject  H0

Reject  H0 Reject  H0

95% 

Fail to reject region

2.5% 2.5%

0–1.96 +1.96

99% 

Fail to reject region

0.5% 0.5%

0–2.58 +2.58

Figure 8.3 The acceptance and rejection regions for alpha levels of .10, .05, and .01.
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The Implications of Rejecting the Null Hypothesis

What would we conclude if the null hypothesis were rejected? In an experiment,
testing the statistical hypothesis is the process used to discover if there is a treat-
ment effect. When the null hypothesis is rejected, it is concluded that the dif-
ference between the sample mean and the hypothesized population mean is
probably not due to sampling error (chance). What caused the difference?
The difference between the hypothesized population mean and the sample
mean is presumably due to the experimental variable. For our example, it means
the sample mean of students from the educational enrichment program was
determined most likely to come from a population that had a mean that differed
from 100. That is to say, given the outcome of the z test, it is reasonable to sug-
gest that the sample of math scores came from a population with a mean that is
something other (in fact, higher) than 100. Generally speaking, in the context of
experimentation, any time the null hypothesis is rejected, a researcher would
like to conclude that the rejection is due to the influence of the independent
variable. However, we cannot automatically assume that the independent var-
iable is responsible for the observed difference between means. In addition to
sampling error, it is also possible that the experimental effect was due to a var-
iable not controlled by the experimenter. Recall from Chapter 1 that an exper-
imental confound presents an interpretive dilemma for the investigator since
alternative explanations can be offered to explain the finding. After rejecting
a null hypothesis, interpretation involves a careful analysis of the quality of
the research design; a poorly designed study cannot be saved by even the most
sophisticated statistical techniques.
As stated in the previous chapter, failing to reject the null hypothesis is not to

accept that the null hypothesis is probably correct. Even if the sample mean per-
fectly equaled the hypothesized population mean, we cannot conclude that the
null is correct. For one reason, the null may be false, but only by a little. For
instance, suppose the enrichment program works, but it only produces a slight
benefit to the students; perhaps it results in a population mean of 101. In a sit-
uation like this, getting a sample mean of 100 might be quite common, and yet
clearly it does not mean that the null hypothesis is true (we just stated that the
null is false and the sample is coming from a population centered on 101).
Failing to reject the null simply means that the null may be correct;
statistical evidence suggesting a rejection of the null hypothesis was not found.
Think of it as a scientific version of a shrug-of-the-shoulder. Perhaps the strong-
est type of claim to be made when a null hypothesis is not rejected is something
like the following; if the null is false, it does not look to be radically false. How-
ever, even a cautious statement like this is dependent upon other factors, like
the sample size being used. When a null hypothesis is not rejected, it is best
merely to state that statistical evidence to reject the null was not found and
to leave it at that.
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8.3 Type I and Type II Errors

The null hypothesis is rejected when it is the most reasonable conclusion given
the relationship between the observed sample mean and the null hypothesized
population mean. However, because inferential statistics are based on probabil-
ities, there is always the chance of making a decision error. There are two kinds
of decision errors that can be made when testing null hypotheses, rejecting the
null when it should not be rejected (a false positive) and not rejecting the null
when it should be rejected (a false negative).
Imagine being a member of a jury that must decide the guilt or innocence of a

defendant. Independent of what is decided, the defendant is either truly guilty or
truly innocent. In this situation, there are four possible outcomes. First, if the
defendant is truly guilty and we decide they are guilty, we are correct. Second,
if the defendant is truly innocent and we decide they are innocent, we are correct
again. Third, if the defendant is truly guilty and we vote innocent, we have com-
mitted an error. Finally, if the person is truly innocent and we say guilty, another
type of error is committed. Although the legal criterion for deciding guilt is
“guilty beyond a reasonable doubt,” the criterion we use to define “reasonable
doubt” may change depending on the consequences of each kind of error. For
example, if we know that the defendant will receive the death penalty if found
guilty, we will want to be very sure of our decision when we vote guilty. Under
this circumstance, we may require more evidence of the defendant’s guilt before
we are willing to decide guilty.
As our cutoff for defining reasonable doubt becomes more stringent, it

reflects the fact that we are protecting ourselves from making a certain kind
of error: the error of calling an innocent person guilty. However, by making
the criterion more stringent, we increase the likelihood of the opposite error:
calling a guilty person innocent. There is a trade-off between the two types
of errors. Two points are important to remember. First, whether we are deciding
on the guilt or innocence of a defendant, or the status of the null hypothesis,
there are two types of errors we can make. These situations are analogous. Sec-
ond, the criterion we use to make a decision is influenced by the relative con-
sequences we decide are associated with committing each type of error.
In hypothesis testing, one error is called a Type I error. This error is commit-

ted if a true null hypothesis is rejected. The other type of error is called aType II
error. This error is committed when a false null hypothesis is not rejected.
Table 8.2 specifies the four possible outcomes when deciding to reject or fail
to reject the null hypothesis under the conditions that the null hypothesis is
actually true or false. The problem is that we never know when we have made
an error because we never know the real status of the null hypothesis.
In hypothesis testing, the investigator is in a better position than the juror

because the investigator is able to control directly the probability of a
Type I error. The alpha level set ahead of time by the researcher specifies the
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probability of a Type I error. Suppose alpha is set at .05. Given a true null
hypothesis, if the study were conducted numerous times, the null hypothesis
would be mistakenly rejected about 5% of the time. Therefore, when the null
hypothesis is true, the zobt will rarely fall outside the critical values of ±1.96,
and the null hypothesis will be correctly not rejected approximately 95% of
the time. Likewise, if alpha is set at .01 and the null hypothesis is true, we
can expect to draw a sample mean from the rejection region only about 1%
of the time. A decision error, however, is still possible.
At first blush, this might suggest that we should make alpha as stringent as

possible. Why not set alpha at .0001? We would only commit a Type I error
1 out of 10 000 times! However, remember the trade-off for the juror: If we
are too afraid to convict an innocent person, we will make it easier for a guilty
defendant to be set free. If alpha is made more stringent, it is true that the prob-
ability of a Type I error decreases, but the probability of a Type II error
increases. Therefore, as we reduce the risk of rejecting a true null hypothesis,
the risk of failing to reject a false null hypothesis increases.
In this way, adjustments to the Type I error rate reciprocally influence the

likelihood of making a Type II error. The more permissive the Type I error
rate selected, the less likely a Type II error will be made and vice versa. How-
ever, the relationship between the types of errors is a peculiar one. Since the
Type I error rate is established from a known null distribution, actions
designed to increase or decrease the type II error rate do not influence the risk
of making a Type I error. The likelihood of making a Type I error is simply
whatever alpha value is decided upon – end of story. It is a strange world
in which we live!
A final word of caution: Do not make the mistake of thinking that if the prob-

ability of a Type I error is .05, the probability of making a Type II error must be
.95. The reciprocal relationship between the two types of errors does not mean
they are complementary. Calculating the probability of making a Type II error is
not straightforward. Actions the researcher can take to influence the Type II
error rate will be discussed in Chapter 11.

Table 8.2 The decision grid depicting the four possible outcomes of
hypothesis testing.

Our decision True state of affairs

H0 is true H0 is false

Fail to reject H0 Correct Type II error
Type I error CorrectReject H0
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Deciding on Alpha

How do researchers decide on an alpha level? Just like jurors, they weigh the
consequences. Suppose a researcher wants to investigate a new research area.
Theremay be interesting effects to find there, but no one knows. Failing to reject
a null hypothesis gets us nowhere. It is sort of like looking into a room for a
missing item but with the lights off. We are not sure we have learned anything
from the exercise. Researchers can become so disappointed after failing to reject
the null theymay decide against performing further research in the area. For this
reason, in new research areas, the investigator may relax the alpha value and test
at the 10% level of significance. It is easier to reject the null with an alpha level of
.10 since the critical values are smaller (±1.65) than the critical values at the 5%
alpha level (±1.96). Once a finding is identified, subsequent studies can use the
more standard alpha level of .05. A permissive alpha level reflects an investiga-
tor’s belief that a Type II error (failing to reject a false null) is more problematic
than a Type I error (rejecting a true null) when initially exploring a new area of
research.
There are instances in which the consequences of making a Type I error are

so serious that a researcher would want to set a very stringent alpha level. Con-
sider a study testing for serious drug side effects. Deciding that the medicine is
safe, when, in fact, it produces side effects in a large number of people, is a
potentially life-threatening error. If the null hypothesis is cast in such a way
that rejecting it means that the drug is medically safe, the researcher might
make alpha very conservative (for example, .001). This practice reflects the
researcher’s belief that it is much more serious to conclude that the drug is
safe when it is not than to mistakenly conclude that the drug is not safe when,
in fact, it is.
Another important issue to address is the timing of setting alpha. To measure

properly the probability of making a Type I error, the alpha level must be estab-
lished ahead of time and then followed. It is highly inappropriate to first run a
study and find the probability associated with getting a particular z value and
then decide where to set alpha so that the null hypothesis can be rejected. This
is a form of statistical cheating!
One final point about making a Type I error: Suppose a researcher conducts

a study and fails to reject the null hypothesis. Would the investigator be
justified in performing the exact same study repeatedly until the null is
rejected? No, because eventually even a true null hypothesis will be
mistakenly rejected (see Box 7.2 and Box 8.1). However, it is acceptable for
researchers to theoretically reflect on failed studies, revise experimental pro-
cedures, and then run the study again. However, conducting the same failed
study over and over again is not only a waste of time, it is also scientifically
dubious.
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Box 8.1 Is the Scientific Method Broken? Type I Errors
and the Ioannidis Critique

If there is a “ground zero” for the current reproducibility crisis in the social,
behavioral, and medical sciences, it may be found in the personhood of John
Ioannidis, Professor of Medicine and of Health Research and Policy at the
Stanford University School of Medicine. In 2005, he published an article in PLoS
Medicine entitled “Why Most Published Research Findings are False” (Ioannidis,
2005). As one might imagine, this article created a firestorm of controversy as
well as an avalanche of articles reacting to this claim – some supporting (e.g.
Freedman, 2010) and some critiquing (e.g. Leek and Jager, 2017). As a result,
Ioannidis is currently one of the most cited scientists in the world.

Several of the points Ioannidis makes in the paper involve misunderstanding
the perils of Type I errors. The Type I error rate is an accurate reflection of the risk
involved in rejecting a singular null hypotheses. However, the testing of a null
hypothesis does not take place within a vacuum, and other factors must be
taken into account. These other factors include (i) how many questions are
being asked in a given research project, (ii) how many other similar projects
may be taking place elsewhere by other researchers, and, most importantly,
(iii) what is the ratio of null relationships to actual relationships existing in a
given area of inquiry.

To help illuminate the argument, Ioannidis (Wilson, 2016) asks readers to sup-
pose there are 101 stones in a given field. Only one of them, however, contains a
diamond (i.e. a true finding). Gratefully, we have at our disposal a diamond-
detecting machine that advertises a 99% accuracy of detection (i.e. hypothesis
testing using inferential statistics). That is, when themachine is placed overtop a
stone without a diamond in it, 99% of the time it will not light up. Only 1% of the
time will it give us a false positive (or Type I error). Further, imagine that after
checking several stones and getting no reaction, the machine finally starts to
flash with activity. What is the probability that this stone, if cracked open, will
contain a diamond? We might initially suggest that there is a 99% chance. How-
ever, recall that there are 100 dud stones in this field. The machine, if function-
ing at a 1% false positive rate, will register, on average, 1 false positive if all
stones are checked. This means, of the 101 stones in the field, two are likely
to register as positive for the diamond (one false positive and one real positive).
Therefore, there is only a 50% chance of finding a diamond when this particular
stone is cracked open. This is a little disappointing.

Now, imagine a field that has several thousand stones in it – still only one of
them containing a diamond. Do we see how in this situation even a false pos-
itive rate of 1% may lead persistent researchers to draw faulty conclusions far
too frequently? One key factor here, which is impossible to answer, is the ratio of
stones containing diamonds. As this ratio increases, the ratio of true positives to
false positives will improve. However, how do researchers know ahead of time
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8.4 Is a Significant Finding “Significant?”

When the decision rule directs the researcher to reject the null hypothesis, often-
times the word “significant” is used in the interpretation. For instance, “the effect
of the drug was found to be statistically significant.” Even though this phrasing is
quite common in the professional literature, it is easily misunderstood.
In ordinary parlance, significant means important. However, it is possible to

achieve statistical “significance” even when the research finding is quite trivial.
Consider the educational enrichment program as an example. Instead of using
a sample size of 36, suppose we had used a sample of 1000 students. Further, sup-
pose that the samplemean turnedout to be 101 instead of 105.UsingFormula 8.1,

zobt =
M−μ

σM

zobt =
101−100

10 1000

=
1

0 32

zobt = 3 13

in what sort of “field” they are working? Herein lies a big problem, the unknown
ratio of real to null findings in a given area of investigation. Knowing the detec-
tion equipment has a 1% false positive rate does not solve this problem.

Further, do we see how the repeated testing of several stones changes the
meaning of the 1% false positive rate? If we were to walk up to a field of stones
and just test one, then the false positive rate of 1%makes sense. However, as we
test stone after stone, the probability that at least one of the dud stones will
register as significant grows as we work our way across the field. Herein lies
a second problem, the additive nature of the Type I error rate.

One way to combat these problems, in addition to valuing replication (see
Box 7.2), is to publically report nonsignificant findings. Only once researchers
get a sense of how few “diamonds” there are in a field of inquiry can they begin
to process what a supposed finding might mean. If the field of inquiry seems to
be chock-full of effects and relationships, then a significant claim seems more
likely to be an actual finding, but if the field has repeatedly been shown to be
lacking meaningful findings, then a claim of significance should be interpreted
with a great deal of suspicion. Unfortunately, despite the current reproducibility
crisis, there seems to be little interest in creating publication opportunities for
null findings. Until this happens, the Type I error problem is going to continue to
bring a cloud of suspicion around claims of findings, especially those coming
from new, previously unexplored, fields of inquiry.
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Even if we set a conservative alpha level of .01, which has a critical value of ±2.58,
the null hypothesis is to be rejected. However, it may not be clear to everyone
looking at the finding that all of the time, effort, and expense used to implement
the program would be worth a mere one point increase on the national exam. In
this case, although the phrase “significant” is accurate in the statistical sense, it
may not be accurate in a practical sense.
The other side of the issue arises when the null hypothesis is not rejected;

the statistical test is deemed nonsignificant. Note that nonsignificant is not
the same as not important. A statistically nonsignificant finding may be con-
sidered important. For example, new treatments are advertised all the time:
treatments for arthritis, obesity, stress, or whatever ails us. If we contrast a
no-treatment control group with a group receiving an ineffective treatment,
we will likely end up failing to reject the null hypothesis, a nonsignificant
finding. Since it is impossible to prove the null hypothesis true, we cannot
conclude that the treatment has been proved ineffective. Nevertheless, in the
absence of evidence that the treatment is effective, there is no compelling
reason to use it. Assuming the study was well designed, the treatment
had an opportunity to show its effect and failed. This scenario exemplifies
a statistically nonsignificant finding that may be considered rather impor-
tant, practically speaking, by a person contemplating the use of a particular
treatment.
Before leaving this topic, it is important to mention a couple more often-

used phrases regarding statistical significance that can be problematic. Some-
times we may read that a finding is described as marginally significant. This
phrase is often used when a finding just fails to fall inside the critical scores
when the alpha level is set at .05. The zobt is close to the rejection region (for
example, getting a zobt of 1.93), and in the mind of the researcher, a Type II
error is being made if the null is not rejected. The use of this term does high-
light the arbitrary nature of the conventional 5% alpha level. However, it is
important to realize that the burden established prior to performing the
research for rejecting the null was not met. It may be true that a Type II error
is occurring, and it is fine and acceptable for the researcher to bring this
to the attention of others, but this possibility should not cause us to reclassify
a “fail to reject” finding. The confusion around the interpretation of margin-
ally significant findings constitutes another reason for valuing replication
studies.
Finally, the phrase highly significant can be frequently found in the profes-

sional literature of the social and behavioral sciences. It is often used when
the alpha value was initially set at .05, but the findings would have allowed
for a rejection of the null even if the alpha value had been set at .01 or even
.001. This phrasing implies that as the p value decreases, a researcher should
be more impressed with the strength of the effect produced by the treatment
(Bakan, 1966; Cohen, 1990). This phrase can be misleading. For one thing,
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the p value reflects the degree of certainty for an effect, not necessarily the size of
an effect. Again, think of the enrichment program example where a sample
mean of just 1 point still allowed for the rejection of the null hypothesis and
at p < .01. This finding could be described as “highly” significant. However, this
description is misleading. It is true that the concepts of certainty and size are not
completely independent of each other; after all, a very powerful effect is more
likely to yield an extreme mean. However, factors other than effect size can
influence our sense of certainty that an effect exists. (This topic will be discussed
further in Chapter 11.) It is also simply inappropriate to redraw the lines of
meaning after the findings have been analyzed. It may be true that a shot arrow
did not only hit the bull’s-eye but also hit it right in the middle. However, it is
inappropriate to shrink the bull’s-eye after the arrow has been shot. After all, we
would probably not be willing to see the shot as a miss if the smaller bull’s-eye
would have been drawn ahead of time and then barely missed by the arrow.
Playing fair in hypothesis testing involves setting the standard ahead of time

and then simply making a binary decision based on the evidence; either the
criterion was reached for rejecting the null hypothesis or it was not. Recogniz-
ing that findings can be close but not quite in the rejection region or can reg-
ister far into the rejection region can be theoretically important and can help
direct future research, but should not cause us to go back and adjust the prob-
abilistic structure of the basic decision to reject or fail to reject the null
hypothesis.
For these reasons, this textbook will only use the terms “significant” and “sig-

nificance” sparingly. Admittedly, these terms are simply unavoidable for a sta-
tistics book, but minimizing their use will help us think clearly about the proper
meaning of statistical analyses. Furthermore, this textbook will refrain from
using the terms “marginally significant” and “highly significant.” Inferential
decisions will only be described as either a rejection of or a failure to reject
the null hypothesis.

A Measure of Effect Size: Cohen’s d

As just noted, one problem with hypothesis testing concerns the impreciseness
of the resulting statistic to reflect the size of the effect (assuming the null is to be
rejected). To address this problem, it is recommended for researchers to provide
a measure of effect size whenever a significant finding is reported. As a result, as
different tests are presented in the textbook, a means of measuring effect size
will also be included.
One of the simplest, direct, and most often-used measures of effect size is

Cohen’s d. Cohen (1988) suggested that the size of an effect can be standardized
by using the standard deviation of the population to quantify the difference
between the two means (in this case, between the null and the sample mean).
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Cohen’s d for single-sample z test

d =
mean difference

standard deviation
=
M−μ

σ
(Formula 8.2)

The standard deviation is included in the formula to standardize the size of the
mean difference in much the same way that it is used by the z score formula to
standardize raw scores. A mean difference of 10 units might suggest a huge
effect if the two distributions are tightly packed around their respective means,
but it may mean much less if the scores are widely distributed around them.
Imagine a mean difference of 10 points where all of the scores in the population
are within 8 units of each other. A mean difference of 10 units would be dra-
matic. However, a mean difference of 10 units where the raw scores have a
standard deviation of 180 would not be nearly as impressive.
In some texts, the reader is informed that certain effect sizes should be clas-

sified as small, medium, or large. These distinctions are rather arbitrary and
should not be seen as authoritative. The value of an effect size measure is found
in the quantification of this concept and the realization that larger values reflect
greater effects, differences, or relationships – whatever the case may be. Addi-
tionally, since this statistic is concerned with the size of the effect and not the
direction, it is typical to simply ignore the valence of the obtained value and
always report it as a positive value.
Versions of Cohen’s d can be used to measure the effect size of many different

types of t tests. As a result, we will see this statistic presented in other places
throughout Part 3.

8.5 The Statistical Test for the Mean of a Population
When σ Is Unknown: The t Distributions

The t Distributions

Up to this point, we have used the z distribution to establish cutoffs for testing
the null hypothesis at a given alpha level. However, when σ is unknown, trans-
forming all the means of a sampling distribution by the z statistic cannot be
accomplished (the standard error cannot be calculated). Instead, the sample
standard deviation, s, must be used as an estimate of σ. This necessitates a
change in the formula and defines the t statistic.

t Statistic

tobt =
M−μ

sM
(Formula 8.3)
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where

sM =
s
n

A t distribution is theoretically established by transforming every mean of a
sampling distribution into a t statistic. This transformation is achieved by apply-
ing Formula 8.3 to every sample of the distribution, usingM, μ, s, and n. How-
ever, because we do not know the standard error and are merely estimating it,
the t formula will not produce a standardized normal curve identical to the z
distribution. This means that we can no longer use the critical values of
±1.96 and ±2.58 to test the null hypothesis at the 5 and 1% alpha levels. How-
ever, t distributions are normal when the population of raw scores being
sampled are normal or the sample size used is not extremely small. A t distri-
bution can be formed for any sampling distribution composed of means that are
based on an n of 2 to infinity. However, as n decreases, the tails of the t distri-
bution stretch out farther down each direction of the X axis (with the critical
values marking the most extreme 5% also moving farther and farther away from
0; see Figure 8.4). Since a different t distribution can be established for each sam-
pling distribution of size n, t distributions are collectively referred to as a family
of distributions. Figure 8.4 illustrates four t distributions based on sampling
distributions of decreasing n’s. Note how the distributions approximate the
standardized normal curve as n increases (with the critical scores of the t
distribution eventually equaling the critical scores for the z distribution –
±1.96). The sample size (n) is roughly reflected by the symbol df – the degrees
of freedom. This concept is discussed in the following section. For the time
being, all we need to know is that the degrees of freedom for the single-sample
t test are equal to n – 1.
As we examine Figure 8.4, remember that the t distribution is not a sampling

distribution of means. The t distribution is a distribution of t values. Each t value
is a sample mean transformed by the t formula. The mean of the t distribution is
0. However, unlike the z distribution, the standard deviation of the t distribution
is not 1. The standard deviation of the t distribution changes, depending, in part,
on the size of the samples used to establish the sampling distribution. Sample
size influences the degree of accuracy of our estimate of σ; as it increases, our
estimate of σ improves, and correspondingly the error in the resulting sampling
distribution shrinks.
As n decreases and the t distribution elongates, the region for rejecting the

null is moved farther away from 0. For example, if α = .05, the critical value when
df = 2 is ±4.30; but when df = 25, the critical value is ±2.06. The broader t dis-
tribution associated with df = 2 requires that we move 4.30 standard error units
in each direction from the mean, to bracket the middle 95% of the distribution.
When the df = 25, we need to only move 2.06 standard error units from the
mean to bracket the middle 95%.
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Figure 8.4 Distributions of the t distribution as the degrees of freedom change. As the
sample size decreases, the tails of the distribution elongate. Note that the critical values
that define the rejection region become more extreme as the sample size decreases.
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Degrees of Freedom

Whenever a hypothesis test is conducted, an obtained value is computed and
compared with a critical value. The critical value is found by referring to a
table of critical values appropriate to the particular test statistic. We will
get used to finding critical values for various kinds of inferential tests by look-
ing up the degrees of freedom (df ) associated with each test statistic. More-
over, degrees of freedom are also often used to compute obtained values. The
reasons whymathematicians use degrees of freedom in developing inferential
tests are complex and beyond an introductory statistics text (Walker, 1940).
Therefore, instead of discussing why df are used, only the concept will be
explained.
Suppose we are asked to pick four numbers. Since there is no restriction

imposed, we are free to pick any four numbers. All four numbers are free to vary;
therefore, we have four degrees of freedom. Now suppose a restriction is
imposed: The four numbers must sum to equal 10. Now we are free to pick
any numbers for the first three, but the fourth number must be determined
based on the value of the other three so that the sum comes to 10. Since three
numbers are free to vary, we have three degrees of freedom. In general, degrees
of freedom refer to the number of values that are free to vary under some
restriction.
The df concept applies only when making a statistical inference. Recall from

Chapter 4 that there is a difference in the denominator when calculating the
sample standard deviation as opposed to the population standard deviation.
The sample standard deviation is used as an estimate of the population standard
deviation.
Sample standard deviation

s=
X−M 2

n−1

Population standard deviation

σ =
Σ X−μ 2

N

The restriction imposed when computing s is (X −M) = 0. All of the num-
bers are free to vary, but the last number must result in (X −M) = 0. The t test
used to test the mean of one sample against a specified population mean
(Formula 8.3) uses s in the process of determining the denominator (the esti-
mate of the standard error), sM = s n. Therefore, the df associated with this
formula are n − 1. Whenever we use the t table to locate the critical value for
the single-sample t test, n − 1 will be used as the df value.
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Using the t Table to Find Critical Values

Table A.2 is the t table, a portion of which is reproduced below.
α Values for two-tailed test

df .05 .01

8 2.306 3.355

9 2.262 3.250

10 2.228 3.169

∞ 1.960 2.576

The first column of the t table specifies the degrees of freedom. Each df corre-
sponds to a different t distribution. For each df, it would be possible to construct
a table just like the z table, each allowing us to answer questions such as, “What
percent of t values fall between a t of 0.34 and a t of 1.2?” However, no one is
interested in asking these types of questions. The t table is only used to find cut-
offs for different alpha levels used in hypothesis testing. Consequently, only the t
values that correspond to various conventional rejection regions are presented.
The top two rows of the t table (Table A.2) state different alpha levels for one-

tailed and two-tailed t tests. Only the two-tailed test is discussed in this chapter,
and therefore only a couple typical alpha levels and their critical values for a
two-tailed test are reproduced.1 Suppose we set alpha at .05 and the sample size
is 10. What are the critical values (or tcrit)? Find df = 9, and then find the .05
column for a two-tailed test. The critical value is 2.262 (which should be under-
stood as ±2.262 since we are splitting the rejection region into the two tails of
the distribution).What are the critical values when α = .01 and the sample size is
9? The answer is ±3.355 (remember that df = n − 1).
Now, follow the .05 column to the bottom row,∞. The critical value is 1.96– a

number we should recognize. When n is very large, the t distribution assumes
the shape of the standard normal curve. Therefore, the cutoffs for the 5% rejec-
tion region are the same as if we were using the z table. As we move from the
bottom of the table to the top, the critical values increase. This reflects the fact
that the t distribution becomes broader and the tails elongate as the sample size
decreases. [Note: Table A.2 does not show every df value. If other tcrit values are
needed, simply use an Internet search engine to find a more complete “t Table.”
Tables on the Internet can look different, but a careful reading should provide

1 The distinction between a one-tailed and two-tailed test is discussed in Chapter 9.

244 8 Testing a Single Mean



the proper value(s). Also, note that critical value differences between large df’s
are negligible.]

A Note on Notation

The use of tobt refers to the t value obtained from Formula 8.3; tcrit refers to the
critical value to which tobt is compared. The subscripts remind us which t value
is being used.
Now we can put our knowledge to the test by using the t formula and the t

table to test a hypothesis about the mean of a single population. To reject the
null hypothesis, tobt must equal or fall outside of tcrit.

■ Question A health psychologist reports that the average high school student
drinks six cups of coffee a week. The school board of Northside High would like
to know if their students are drinking that much coffee. With confidentiality
assured, 15 students are randomly selected and asked about their coffee habits.
The mean number of cups of coffee consumed per week is found to be 4.2, and the
sample standard deviation is 1.5. Test the hypothesis that the health psycholo-
gist’s report is accurate for the students at this particular high school.

Solution

Step 1. Identify the null and alternative hypotheses.

H0 μ= 6

H1 μ≠6

Step 2. Set alpha. Use an alpha of .05.
Step 3. Compute tobt using Formula 8.3.

tobt =
M−μ

sM

sM =
s
n

tobt =
4 2−6 0

1 5 15

tobt =
−1 8
0 39

tobt = −4 62

Step 4. Using the t table, find the critical values for df = 14 and α = .05. The
critical values are ±2.145.

Step 5. Compare the tobt of –4.62 with the critical values of ±2.145. Since tobt
falls outside ±2.145, the null hypothesis is rejected in favor of the alternative
hypothesis (H1 : μ ≠ 6).
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Step 6. Interpret the findings. Statistical evidence suggests the amount of coffee
consumed per week among this school’s students is less than the amount
stated in the newspaper. ■

Interpreting Inferential Findings

Before going any farther, we need to make a few important comments about
interpreting inferential tests. First, notice within the interpretation that the
researcher is free to make a directional statement (i.e. the population mean
in question is either less or more than the hypothesized mean value, as the
case may be). Of course, the null can be rejected in either direction. Once
the null is rejected, however, the researcher is free to look at the valence of
the tobt score and make a more specific interpretation. In this case, we con-
clude that students at this high school drink less coffee than high school stu-
dents in general.
Second, notice that the interpretation is made using cautious language. It starts

with the phrase, “Statistical evidence suggests….” Although this specific wording
is not a requirement of any social science discipline, we will stick closely to it
throughout the text, if, for no other reason, then it creates a good habit of think-
ing. This phrase allows us to underscore three important points about the out-
come of any inferential test; it is evidence (not a guess and not an opinion)
that is statistical in nature (not logical, legal, or of some other form) and merely
suggestive (probabilistic, not proof ). All three of these are important concepts.
Finally, if an analysis results in a failure to reject the null hypothesis, a good

phrase to use is, “We do not have evidence to suggest….” We should not say,
“We have evidence to suggest the null hypothesis is true.” This would be to claim
thatwe should accept the null andwehave already clarified that inferential tests do
not allow for this strong of an inference. The proper way to communicate a failure
to reject the null is to state that we do not have evidence suggesting a difference,
effect, or relationship, whatever the case may be. Either we have evidence (when
we reject the null), or we do not have evidence (when we fail to reject the null).

■ Question A bank president states that the average amount of money on
deposit in savings accounts is $6500. To test the hypothesis that μ = $6500, a ran-
dom sample of nine deposits is examined. The mean of the sample is $7500 and
the standard deviation is $1500. Is there evidence to reject the president’s claim?

Solution

Step 1. Identify the null and alternative hypotheses.

H0 μ= 6500

H1 μ≠6500
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Step 2. Set alpha. Use an alpha of .05.
Step 3. Compute tobt using Formula 8.3.

tobt =
M−μ

sM

sM =
s
n

tobt =
7500−6500

1500 9

tobt =
1000
500

tobt = 2 00

Step 4. Find the critical values for df = 8 and α = .05. The critical values
are ±2.306.

Step 5. Compare the tobt of 2.00 to the critical values of ±2.306. Since tobt does
not fall outside ±2.306, the null hypothesis is not rejected.

Step 6. Interpret the findings. We do not have evidence to suggest the null
hypothesis is incorrect. Keep in mind that this interpretation does not mean
that we know that $6500 is the average amount of money on deposit or even
that we have evidence suggesting this to be true. Failing to reject the null
hypothesis does not allow us to accept it. All we can say is that we have failed
to find evidence rejecting the claim that μ = $6500. ■

Box 8.2 features the use of a single-sample t test to analyse the data for a pub-
lished research study dealing with perceptual illusions.

Box 8.2 Visual Illusions and Immaculate Perception

Perceptual illusions reflect the fact that human perceptions are imperfect and
are not just copies of images on the retinas. People actively construct sensory
information, and in the case of illusions, their perceptions are hardly
immaculate.
One visual illusion is called theMorinagamisalignment illusion. First, examine

the alignment of the angles on the left. We will note that the apex of the middle
angle does not appear to align perfectly with the apexes of the top and bottom
angles. Now, take a ruler or the edge of a sheet of paper and see if the apexes of
the angles fall along a straight line. They do. We experienced a perceptual illu-
sion as we perceived the middle angle to be misaligned.
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Day and Kasperczyk (1984) wondered if the same illusion is found with the
circles on the right. (Notice that the left side of themiddle circle does not appear
to align with the right sides of the circles above and below.) Twelve participants
were asked to move the middle circle (without the help of a straight edge) so
that the left side of the middle circle aligned perfectly with the right sides of the
top and bottom circle. Since the circles were already perfectly aligned, any
adjustment by the participant defined an error of some magnitude, and
reflected the workings of the Morinaga illusion. Errors were measured in milli-
meters (mm). If the illusion did not exist for circles, then there should not have
been realignments by the participants, or the realignments across the partici-
pants should have been just as likely to be to the right as to the left, so the errors
would sum to 0. The null hypothesis is a statement of no perceptual illusion:
H0 : μ = 0, with H1 : μ ≠ 0. The authors found an average error among the 12 par-
ticipants to be 1.44 mm to the right with s = 2.07 mm.2 The question is how
unlikely is a sample mean of 1.44 mm when the population mean is hypothe-
sized to be 0? The question can be answered with a single-sample t test:

tobt =
M−μ

s n

tobt =
1 44−0

2 07 12

tobt =
1 44
0 60

tobt = 2 40

df = n−1 = 12−1 = 11

α= 0 05

tcrit = ± 2 201

2 These values are reported by Kiess (1989, p. 214).
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Cohen’s d for the Single-Sample t Test

As previously noted, one problem with hypothesis testing concerns the impre-
ciseness of the resulting statistic to reflect the size of the effect (assuming the
null is to be rejected). Just as Cohen’s d was used to determine the effect size
for z test, it can also be used to estimate the effect size for a t test. For the
single-sample t test, the formula is as follows:

Cohen’s d for single-sample t test

d =
mean difference

sample standard deviation
=
M−μ

s
(Formula 8.4)

8.6 Assumptions of the Single-Sample z and t Tests

Over the course of the remainder of the text, we will be exposed to several dif-
ferent inferential tests. The appropriate statistical test to use will depend on the
research question of interest and the research method used. All statistical tests
have assumptions. The ability to rely on the conclusions drawn from an infer-
ential test is based on the degree to which the assumptions have beenmet. Some
assumptions can be modestly violated without seriously compromising the
interpretation of a statistical test. Other assumptions are critical. The assump-
tions for the single-sample t test, as well as the z test, are presented below.

1) Representativeness. It is assumed that the participants comprising the sam-
ple are representative of the population in question. The goal of inferential
statistics is to generalize from a sample to a population. If the sample is not
representative of the population, it is possible that an untrue statement about
the population will be made from the nonrepresentative sample. The best
way to ensure the representativeness of a sample is by randomly sampling
from the population. Obviously not all studies can use random sampling;
however, if other sampling methods are used, representativeness can
become a concern. The representativeness assumption is not a mathematical
assumption. Representativeness is an assumption of the research

Since the obtained t of 2.40 falls outside the critical value of ±2.201, the null
hypothesis is rejected. The statistical evidence suggests that the sample mean
of 1.44 mm to the right is unlikely to come from a population with a mean of 0.
The findings can be summarized as statistical evidence suggesting the
Morinaga illusion is a general perceptual effect that is shown not only with
angles but also with circles, t(11) = 2.40, p < .05.
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methodology. If violated, the interpretive conclusions that follow from the t
test may not be valid.

2) Independent observations. This assumption means that each score within
the sample is independent of all other scores. Inmost applications, independ-
ent observations mean that each participant supplies only one score. How-
ever, it is possible to violate the independence assumption even when only
one score is obtained per participant. If the behavior of one participant in the
study is influenced by the behavior of another participant, then the scores
from these two participants are not independent of each other. For example,
earlier in this chapter we speculated about the effects of an educational
enrichment program. Suppose two participants studied together, and, as a
result, their performance was influenced by their contact. The scores from
these participants would not be independent of one another.

3) Interval or ratio scale of measurement. The single-sample z and t tests uti-
lize means as well as standard deviations. Both of these concepts only have
meaning for data corresponding to a scale of measurement where the quan-
titative distance between integers is held constant, namely, an interval or
ratio scale (see Chapter 2). Means and standard deviations should not be cal-
culated for samples of scoresmeasured using an ordinal or nominal counting
system (see Chapters 3 and 4).

4) Normality. The fourth assumption states that the population from which the
sample is taken is normally distributed. Recall that a normal sampling distribu-
tion is needed for inferential analysis. If the population is not normal, the tests
may still lead to valid conclusions, provided the sampling distribution is nor-
mally distributed. For this reason, it is often claimed that z and t tests are robust
to violations of normality, provided n is of sufficient size. A robust statistic is
resistant to violations of certain assumptions; although the assumption was
not met, the conclusions are still valid. Determining the sufficient sample size
for a test to be robust to the assumption of normality involves an advanced dis-
cussion. For the purposes of this introductory textbook, we will assume that all
data sets presented herein will be from normally distributed populations. For
general use, a rule of thumb is if n is in double digits, and especially if it is
approaching 30, we can safely assume the sampling distribution will be normal,
and violations of normality in the raw population data are inconsequential.

8.7 Interval Estimation of the Population Mean

In the previous chapter, we learned that there are actually two kinds of inferen-
tial procedures, hypothesis testing and estimation. Up to this point, we have
been focused on hypothesis testing. However, using a sample mean, the t dis-
tribution concept, and an estimate of the standard error, it is possible to
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generate an interval estimation of the population mean and quantify the con-
fidence that it falls within that interval. Since each potential sample mean
drawn from a population has a corresponding t value, we can use the t distri-
bution and our obtained sample mean (which is an unbiased estimate of the
population mean) to generate a probability function for the value of the actual
population mean. Choosing tcrit values corresponding to different probabil-
ities within the t distribution allows us to create intervals with differing
degrees of certainty. The formula for an interval in which we can have 95%
confidence follows:

The 95% confidence interval for a population mean

LL=M− t 05sM

UL=M + t 05sM
(Formula 8.5)

where

LL = the lower limit of the confidence interval
UL = the upper limit of the confidence interval
t.05 = the critical value for a t distribution of a given sample size

Since we are generating an interval, two values are calculated, one being the
value at the lower end of the interval and the other at the upper end. As
the interval widens and becomes less specific, the confidence grows that
the actual mean falls within that window. A 95% confidence rate is typical,
but the above formulas could easily be adjusted to find a 90 or 99% confidence
interval simply by finding the corresponding tcrit values using the t table
(Table A.2).

■ QuestionUsing the same data previously presented by the health psychologist
investigating the coffee-drinking habits of Northside High School students, find
the 95% confidence interval for the population mean (M = 4.2, s = 1.5,
and n = 15).

Solution

Step 1. Identify the null and alternative hypotheses.

H0 μ= 6

H1 μ≠6

Step 2. Set the confidence rate at 95%.
Step 3.Using the t table, find the cutoff values beyond which lie 2.5% in the right
tail of the t distribution and 2.5% in the left tail of the distribution. The task is
accomplished in the same way that we found tcrit for the t test. With df = 14
and α = .05 (two-tailed test), the cutoff points are ±2.145.

Step 4. Compute the confidence interval.
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LL=M− t 05sM

UL=M + t 05sM

LL= 4 20−2 145 1 50 15 = 3 36

UL= 4 20 + 2 145 1 50 15 = 5 04

Step 5. Interpret the findings. Statistical evidence suggests the mean number of
cups of coffee consumed per week among the population of Northside High
students lies between 3.36 and 5.04. ■

8.8 How to Present Formally the Findings
from a Single-Sample t Test

Proper reporting of inferential statistics can be challenging. Following are exam-
ples of how to report, in sentence form, a rejection of the null as well as a fail to
reject the null. If rejecting the null, a sentencemight read, “A single-sample t test
found evidence that students from Northside High School consume less coffee
than high school students in general, t(14) = −4.62, p < .05.” Notice the follow-
ing; t and p are italicized, the degrees of freedom are placed within parentheses
right after the statistic is identified, a comma follows the actual statistical find-
ing, the alpha value used is shown to have been eclipsed by the expression
p < .05, tcrit is not reported, and a comma precedes the entire statistical expres-
sion that sits at the end of the sentence. Note also that a “0” is not typically
placed to the left of the decimal in the probability statement. This accurately
reflects what readers will find in most professional publications. If we also
wanted to include a measure of effect size, the sentence could finish with, “…
t(14) = −4.62, p < .05, d = 1.2.”
If failing to reject the null, a sentence might read, “A single-sample t test

did not find evidence that Northside High School students consume a dif-
ferent amount of coffee from high school students in general, t(14) = −1.62,
n.s.” First, notice the wording near the front of the sentence. It did not
accept the null by saying that evidence was found of no difference. Rather
it said that no evidence was found of a difference. This may seem like an
insignificant point, but it is not. Second, notice how the final part of the sta-
tistical expression used the letters n.s. (italicized). This stands for “not sig-
nificant.” Each inferential statement should end with either a description of
the alpha value that was eclipsed, if the null hypothesis is rejected (e.g.
p < .05), or an expression communicating that the null hypothesis was
not rejected (n.s.).
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Summary

Hypothesis testing involves either rejecting or not rejecting the null hypothesis.
The decision is probabilistic in nature, and the ultimate truth value of the null
hypotheses can never be known. The decision to reject or fail to reject the null
hypothesis risks two types of errors. A Type I error is committed when a true
null hypothesis is rejected. The probability of making a Type I error is directly
controlled by alpha, the criterion of significance. A Type II error is committed
when a false null hypothesis is not rejected.
The single-sample z test is used to decide if a population mean is not a spe-

cified value. The zobt transforms a sample mean into a z value, which indicates
the number of standard error units that the samplemean is from themean of the
sampling distribution. If the zobt equals or falls outside of the critical values, then
statistical evidence exists to reject the null hypothesis; otherwise, the null
hypothesis should not be rejected.
The t statistic is used to test the null hypothesis when σ is unknown. In the t

formula, s is used to estimate σ, and s n is used to estimate σ n. The t sta-
tistic is used to transform a sampling distribution of means into a t distribution.
The shape of the t distribution will approximate the standard normal curve as n
increases. The critical value to which tobt is compared is based on n − 1 degrees
of freedom.
The assumptions for the single-sample z and t tests are representativeness,

independent observations, interval-scaled or ratio-scaled data, and population
distributions that are normally distributed. These tests are robust to violations
of normality as n increases.
The standard error, sample mean, and t distribution can also be used to create

a confidence interval for the actual value of an unknown population mean.
Statistical significance reflects the degree of certainty that the null hypothesis

is false, but it does not necessarily reflect the size of the difference between the
null mean and the sample evidence. To measure effect size, Cohen’s d can be
calculated.

Using Microsoft® Excel and SPSS® to Run
Single-Sample t Tests

Excel

General instructions for data entry into Excel can be found in Appendix C.

Data Entry
Enter all of the scores from the sample in one column of the spreadsheet. Label
the column appropriately.
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Data Analysis
1) Excel has built-in programs for several types of t tests; however, it does not

have one for the single-sample t test. As a result, we will need to figure the
components of Formula 8.3 ourselves.

2) Determine the null hypothesis (μ), and record it in an open cell (label it
appropriately).

3) Determine the sample mean by using the built-in Excel function
“AVERAGE.” Record it in an open cell (label it appropriately).

4) Determine the estimate of the standard error (sM) by first determining
the sample standard deviation (s) using the built-in function (either
STDEV or STDEV.S; both calculate the standard deviation of a sample,
which is what we want) and our sample size (n). Once we have these
two values, we can determine the estimate of the standard error
(Formula 7.3 – sM = s n). Record this value in an open cell (label it
appropriately).

5) The t value can now be determined using Formula 8.3 – tobt = (M − μ)/sM.
6) Use n to find the appropriate df. The df for a single-sample t test is n − 1.
7) Go to Table A.2 (t Table) in the Appendix, and use the df value and the alpha

value (usually .05) to find the appropriate tcrit value(s).
8) Compare the observed t with the critical t, and make the appropriate

inference regarding the null hypothesis. (See Figure 8.5 for a worked
example.)

SPSS

General instructions for inputting data into SPSS can be found in
Appendix C.

Number of cousins

5 H0= 6.5

7 M = 9.2

12 s = 4.131182

8 sm = 1.307336

18 tobt = 2.065268

3 tcrit = ±2.262

10

8 Fail to reject the null hypothesis

11

10

Figure 8.5 A worked example of using Microsoft Excel to calculate a single-sample t
test value.
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Data Entry
Label the variable appropriately in “Variable View.” Enter all of the scores
from the sample into the appropriate column in “Data View” – one score
per row. (See Figure 8.6 for an example of data entry for a single-sample t test
in SPSS.)

Data Analysis
1) Click Analyze on the tool bar, select Compare Means, and then click One-

Sample T Test.
2) Highlight the appropriate column label in the left box, and click the arrow to

move it into the Test Variable(s) box.
3) In the Test Value box at the bottom of the right-hand side, enter the

hypothesized value for the population mean given a true null hypothesis.
This value is automatically set at zero unless it is changed.

4) Click OK.
5) The output will generate two boxes. The first box will identify how many

scores were in the sample (N) as well as the mean, standard deviation,
and standard error. The second box will identify the t value, degrees of free-
dom, significance level, mean difference, and the 95% confidence intervals of
the actual mean difference. It will not generate tcrit. Either we can look up tcrit
ourselves, or we can look at the significance level to see if that value is equal
to or lower than .05. If it is, then we can reject the null. If it is not, then we
need to fail to reject the null hypothesis. (See Figure 8.7 for a worked
example.)

cousin_num

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

5

7

12

8

18

3

10

8

11

10

Figure 8.6 An example of entered data for a single-sample t test in SPSS.
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Key Formulas

z Statistic

zobt =
M−μ

σM
(Formula 8.1)

Cohen’s d for single-sample z test

d =
mean difference

standard deviation
=
M−μ

σ
(Formula 8.2)

t Statistic

tobt =
M−μ

sM
(Formula 8.3)

Cohen’s d for single-sample t test

d =
mean difference

sample standard deviation
=
M−μ

s
(Formula 8.4)

The 95% confidence interval for a population mean

LL=M− t 05sM

UL=M + t 05sM
(Formula 8.5)

T-test
One-sample statistics

N Mean

Std. 
deviation

Std. error 
mean

cousin_num 10 9.20 4.131 1.306

One-sample test

Test value = 6.5

t df
Sig.

(2-tailed)

Mean 

difference

95% confidence interval

of the difference

Lower Upper

cousin_num 2.067 9 0.069 2.700 –0.26 5.66

Figure 8.7 A worked example using SPSS to calculate a single-sample t test.
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Key terms

z Test Type II error
t Test Cohen’s d
Alpha level t Distribution
Critical values Degrees of freedom (df )
Type I error Robust statistic

Questions and Exercises

1 A statistical test aids a researcher in deciding whether an experimental effect
is due to chance.What does this mean? Is it possible to know for sure that an
effect was not due to chance? Explain.

2 Provide some examples of single-sample research projects. In each instance,
provide a research hypothesis as well as a corresponding pair of statistical
hypotheses.

3 For each of the following situations, specify the null and alternative
hypotheses:
a The average respiration rate per minute is 8. Do smokers have an average
rate different from 8?

b The average score on the Beck Depression Inventory is 12. Does the aver-
age depression score of mothers with young children deviate from the
population mean?

c The average miles per gallon (mpg) of cars used in the United States is 20.
Is the observed mpg of a sample of cars used in Japan different?

4 When conducting an inferential test, when should we use the t distribution?

5 What if a researcher conducting a project using a single-sample design has
access to both the population and the sample standard deviation, which test
should they use?

6 On what basis does a researcher decide on a given alpha level?

7 What type of error corresponds to a “false positive?”

8 What type of error corresponds to a “false negative?”

9 Failing to reject the null when, in actuality, it is false is the making of what
type of error?
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10 Rejecting the null when, in actuality, it is true is the making of what type
of error?

11 For which type of error can we set the precise risk rate, and which one can
we only increase or decrease the chance of making?

12 If the difference between a sample mean from a treated sample and the
known population mean is 5 and the standard deviation of the population
is 10, what is Cohen’s d?

13 If new basketball shoes are supposed to elevate the wearer’s jump by 3
in. and the standard deviation of heights jumped by basketball players is
4 in., what is the supposed effect size of the shoes in terms of Cohen’s d?

14 If we have been told the effect size, according to Cohen’s d is 0.4, and we
know the mean difference is 12, what is the standard deviation of the
population?

15 A publisher of a new statistics textbook claims an effect size (Cohen’s d) of
20% (or 0.2) regarding a nationally normed statistics knowledge test for its
users. If we know the mean and standard deviation of this nationally
normed test is 100 and 20, respectively, what is the publisher’s hypothe-
sized mean for the users of their textbook?

16 Among trained typists, suppose it is known that the average typing speed
using a standard keyboard is 60 words per minute (wpm), with a standard
deviation of 5 wpm. The manufacturer of an ergonomically designed key-
board claims their device will improve typing speed. A random sample of
50 typists is tested on the ergonomically designed keyboard, and the sam-
ple mean wpm is 65. Test the hypothesis that using the new device affects
typing speed. Set alpha at .05.
a Should we use the z distribution or t distribution? Why?
b State H0 and H1.
c What are the critical values?
d What is the obtained statistic?
e Reject the null hypothesis?
f What type of decision error might have been made?
g Is there sufficient evidence to support the manufacturer’s claim?
h If so, what is the effect size?

17 On one standardized measure of IQ, μ = 100 and σ = 15. Imagine we want
to test the hypothesis that children of parents with college degrees have an
average IQ that is greater than the national average. A sample of 100 stu-
dents who have college-educated parents is randomly selected, and the
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mean is 110 with a standard deviation of 12. Conduct a test of the null
hypothesis and set alpha at .05.
a Should we use the z distribution or t distribution? Why?
b State H0 and H1.
c What are the critical values?
d What is the obtained statistic?
e Reject the null hypothesis?
f What type of decision error might have been made?
g Interpret the finding.
h If the null is rejected, what is the effect size?

18 Suppose the mean weight of adult golden retrievers is 90 lb. A veterinarian
claims to be able to double the size of golden retrievers by injecting a hor-
mone into retriever pups when they are eight weeks old (why someone
would want to produce a humongous golden retriever, who knows; it
may have theoretical significance). A sample of 41 pups is injected with
the hormone, and their average weight at maturity is found to be 110 lb,
with a standard deviation of 30 lb. Conduct an inferential test with
α = .05. (Note that the inferential test will not be able to address the asser-
tion that the hormone doubles the size of dogs. The statistical test will only
be able to help us decide if the hormone affects the breed’s weight, either
increasing or decreasing.)
a Should we use the z distribution or t distribution? Why?
b State H0 and H1.
c What are the critical values?
d What is the obtained statistic?
e Reject the null hypothesis?
f What type of decision error might have been made?
g Interpret the finding.
h If the null is rejected, what is the effect size?

19 A researcher would like to determine whether the students at her univer-
sity sleep more thanmost students. Suppose it is known that the amount of
hours university students sleep is skewed to some degree with a
μ = 7.5 hours per night and σ = 2.4. The researcher takes a sample of
n = 200 students at her university and finds they average 7.2 hours of sleep
per night with a standard deviation of 1.8.
a What is the appropriate test statistic? Why?
b State H0 and H1.
c Does it matter that the population is skewed to some degree? Why or
why not?

d What are the critical values at α = .05?
e What is the obtained statistic?
f Reject the null hypothesis?
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g What type of decision error might have been made?
h Interpret the finding.
i If the null is rejected, what is the effect size?

20 An industrial/organizational psychologist believes that people who work at
home experience greater job satisfaction. Imagine that a job satisfaction
rating scale exists. The publishers of this scale claim the population is nor-
mally distributed with a mean of 50. The psychologist samples 20 people
who work at home finding M = 63 and s = 17.
a Should we use the z distribution or t distribution? Why?
b State H0 and H1.
c What are the critical values?
d What is the obtained statistic?
e Reject the null hypothesis?
f What type of decision error might have been made?
g Interpret the finding.
h If the null is rejected, what is the effect size?

21 How would we use the concept of sampling error in discussing hypothesis
testing?

22 Subjective life expectancy is a person’s belief in how long they will live. Sev-
eral years ago, Robbins (1988) found that a sample of biological females
estimated their life expectancy to be 77.2 years – close to the actual life
expectancy for women at the time (79.2 years). Biological males, on the
other hand, tend to overestimate their life expectancy. At the time of
Robbins research, the actual life expectancy for biological males was
72.4 years. The following hypothetical data are consistent with Robbins’
findings.

Subjective life expectancy for males (years)

77

74

80

72

82

76

78

75

79
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a Should we use the z distribution or t distribution? Why?
b State H0 and H1.
c What is the critical value?
d What is the obtained statistic?
e Reject the null hypothesis?
f What type of decision error might have been made?
g Interpret the findings.
h If the null is rejected, what is the effect size?

23 An anthropologist hypothesizes that physical stress in childhood
increases height (Landauer & Whiting, 1964). The researchers locate
a tribe of people in which physical stress is a by-product of frequent
tribal rituals (e.g. piercing and molding body parts, exposure to extreme
temperatures, etc.). The mean height of the people in the region who do
not use physically stressful rituals with their young is used as the pop-
ulation mean. The following raw data are for adult biological males and
women of the tribe in question. Conduct a t test for men and a t test for
women. The population mean height for men is 65 and 59 in.
for women.

Men Women

67 59

69 63

72 65

70 60

70 59

72 62

64 61

70 66

a What is tobt for men?
b What is tobt for women?
c What are the critical values for each test (α = .05)?
d Compare each tobt with its respective critical values and interpret the

findings; present the findings in a professionally appropriate manner.

24 The chairperson of a sociology department at a major research institution
claims that the mean number of publications by the department’s faculty is
higher than themean for other sociology departments at comparable schools
across the country. Suppose the mean number of publications in the
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population is 16. A random sample of eight professors is taken from the soci-
ology department in question. The sample mean is found to be 20, with a
standard deviation of 2.8. Is there any evidence to support the chairperson’s
claim?Set alphaat .05whenconducting the t test. Properlypresent the finding.

25 The director of the Department of Mental Health has received conflicting
reports about the frequency of patient assaults on inpatient units. The direc-
tor would like an idea of themean number of assaults in a one-month period.
A random sample of 18 inpatient units is taken. The average number of
assaults is found to be 24.50, per inpatient unit, with a standard deviation
of 2.61. Compute the 95% confidence interval for the population mean.

26 A drug manufacturer is researching a new medication for high blood pres-
sure. Early reports suggest that there are many negative side effects to the
drug. A random sample of 13 patients taking the drug is selected, and the
mean number of side effects is found to be 4.2, with a standard deviation of
0.86. Compute the 95% confidence interval for the population mean.

27 Atire company is interested inknowing the averagenumberofhighwaymiles
its tires can tolerate before the treadswear out.A randomsample of 60 tires is
selected, and each is placed on a highway simulator wheel. The mean for the
sample is found to be 56 000miles, with a standard deviation of 4 300 miles.
Compute the 95% confidence interval for the population mean.

Computer Work

28 A health psychologist is interested in educating high school students about
the negative effects of smoking. Fifty students who smoke are randomly
selected to participate in the program. To measure the success of the pro-
gram, the average number of cigarettes smoked per day among the parti-
cipants is obtained 10 weeks after the end of the program. Assume that
previous research had shown that, among all smoking students, the aver-
age number of cigarettes smoked in a day was 17. Set alpha at .05, and con-
duct a t test on the following data. Interpret the findings.

Average number of cigarettes consumed per day among participants

12 11 7 0 0 6 2 23 45 0

0 1 2 0 3 16 8 22 17 9

12 10 6 5 9 11 0 33 24 5

11 10 0 0 0 22 4 22 21 0

10 11 0 6 7 11 3 42 38 0
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29 An insurance company states that it takes them an average of 15 days to
process an auto accident claim. A random sample of 40 claims is drawn
from processed claims over the past six months. Based on the following
data, is there any evidence that the mean number of days to pay claims
is not 15? Set α = .05.

Number of days to process a claim

22 11 7 9 9 8 7 23 45 9

23 21 8 8 5 16 9 22 17 6

12 29 6 5 9 23 7 33 24 5

15 14 9 7 3 17 8 19 15 8

30 Every day a commuter records the amount of time the train is late. Over a
period of two months, the mean number of minutes that the train was late
is 24.5. The train authorities state that the problem has been resolved
by the addition of extra trains during rush hour. For the next 30 working
days, the commuter records the amount of time that the train is late. Based
on the following data, does there seem to be an improvement in service?

Number of minutes the train is late

22 11 25 19 9 8 7 23 45 20

23 21 8 1 5 16 3 22 17 24

12 16 22 32 9 10 7 11 10 2
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9

Testing the Difference Between Two Means: The
Independent-Samples t Test

9.1 The Research Context

In Chapter 8, the t test was used to contrast a sample mean with a specified
population value. Only one sample was drawn to infer the mean of a population;
the question was whether the population mean was or was not a given value.
A more common and interesting usage of the t test arises when means from
two different samples are compared to infer whether there is a difference between
the means of the two populations from which the samples came. If the two sam-
ples are scores coming from two different sets of participants, the appropriate t
test is called an independent-samples t test. This is the topic for Chapter 9. If the
two samples come from one set of participants measured under different circum-
stances, the appropriate t test is called a dependent-samples (or paired-samples) t
test. (That test is the topic of Chapter 10.) Here are three research examples in
which an independent-samples t test can be used to analyze the data.

► Example 9.1 Pham, Hung, and Gorn (2011) found that the more relaxed a
shopper is when they enter a store, the more money they will spend. The
researchers induced two states of relaxation in participants: One group was
induced to have a pleasant mind-set and become very relaxed, while the other
group felt equally pleasant but was not as relaxed. Participants were then asked
to assess the monetary value of a set of items. The findings showed that very
relaxed participants bid significantly higher for a whole range of auctioned items
than the less relaxed participants. ◄

► Example 9.2 Zakahi and Duran (1988) hypothesized that the very lonely
are less physically attractive than those who are not lonely. A loneliness
questionnaire was administered. Participants who scored in the top 25% were
considered very lonely, whereas participants who scored in the bottom 25%
were defined as not lonely. All participants’ photographs were rated by three
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judges for attractiveness (1 [very unattractive] to 10 [very attractive]). Biological
males rated biological females and vice versa. There was no statistical difference
in attractiveness ratings between very lonely and not lonely females. However,
lonely biological males were statistically rated as less physically attractive than
biological males who were not lonely. ◄

► Example 9.3 In 1972, Buffalo Creek, West Virginia, was the scene of a
major flood. The flood was a consequence of corporate negligence. Coal waste
that was dumped in a mountain stream created an artificial dam. After several
days of rain, the dam gave way, and a black wall of water, over 30 ft high,
descended on mining hamlets in the valley. In less than 1 hour, 125 people were
dead and 5000 people lost their homes. Simpson-Housley and DeMan (1989)
found that, 17 years later, the residents of Buffalo Creek scored higher on
a measure of trait anxiety in comparison with the residents of Kopperston, a
nearby mining town that did not experience the flood. ◄

The Between-Participants Design

Between-participants designs (also called between-groups, independent-sam-
ples, or independent-groups designs) are defined by the fact that each group of
participants comes from a different population.1 Moreover, no participant or
group of participants are members of both populations. Oftentimes this design
is used for experimental purposes. For instance, pulling a very simple but impor-
tant study out of psychology’s past, researchers Shelton and Mahoney (1978)
asked one group of athletes to employ their customary “psyching-up” strategies
and asked a control group to just count backward by sixes. Performance on a
strength task served as the dependent variable. The averages of the two groups
were then compared to evaluate the effect of using psyching-up strategies. Since
each group received a different treatment, this study was a between-participants
design. (The researchers found evidence suggesting “psyching-up” helped.)
The independent-samples t test can be usedwhen a researcher uses a between-

participants design, whether an experimental manipulation is involved or not.
The impact of different data gathering techniques for the two means does not
influence the statistical inference, but rather the interpretation. In experimental
settings, if participants are randomly assigned to two conditions, it might be
possible to make a causal statement about the relationship between the
independent and dependent variables, depending on the presence or absence
of confounding variables (see Chapter 1). However, the independent-samples

1 Older references may use the term between-subjects design; the term subjects was replaced with
the term participants in most social and behavioral science professional literature in the 1990s.
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t test can also be used to compare two means that are obtained from a study in
whichparticipants are not randomly assigned to groups (i.e. correlational designs
or quasi-experimental designs). The second and third described research exam-
ples at the beginning of the chapter are cases in point. Since there was no ran-
domization of participants, the research method was correlational in nature.
Even though a t test can be used to compare means, no causal statement can
be advanced about the relationship between variables. However, since Shelton
and Mahoney’s (1978) research on psyching-up strategies did randomly assign
participants to experimental and control conditions, a causal relationship
between the independent and dependent variables is possible. In general, the
interpretation of any inferential test depends on the manner in which the study
is designed. Methodology governs the interpretation of the statistical findings.
In Spotlight 9.1 we take a closer look at the person who is most responsible for

creating t tests.

Spotlight 9.1 William Gosset

William Gosset (1876–1937) developed the t distribution as well as the inde-
pendent- and dependent-samples t tests. After receiving a degree in chemistry
and mathematics from Oxford, Gosset was hired by the Guinness brewery in
Dublin in 1899. Around the turn of the century, many companies, especially
in the agricultural industry, attempted to apply a scientific approach to product
development. A typical research question would have been “Which fertilizer will
produce the largest corn yield?” or “What is the best temperature to brew ale so
as to maximize its shelf life?” Until Gosset’s work, statisticians dealt with very
large numbers of observations, in the hundreds and thousands. Traditional wis-
dom held that one should take a very large sample, compute the mean and
standard deviation, and refer to the z table to make probability statements.
The problem that confronted Gosset was how to make inferences about the
difference between populationmeans when sample sizes were small. For exam-
ple, suppose 10 plots of barley are treated with one fertilizer and 10 plots are
treated with another fertilizer. With such small samples (before Gosset), there
was no way to determine if the difference in yield was due to sample fluctuation
(chance) or the effect of the brand of fertilizer.
To test the mean of one sample against a specified population value or test

the difference between two sample means, the t table (instead of the z table) is
used to find critical values andmake probability statements when σ is unknown.
In his seminal 1908 article, “The Probable Error of a Mean,” Gosset addressed the
problem of small samples: “As we decrease the number of experiments, the
value of the standard deviation found from the sample of experiments becomes
itself subject to an increasing error, until judgments reached in this way become
altogether misleading” (Student, 1908; p. 2). He realized that the standard
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9.2 The Independent-Samples t Test

The independent-samples t test is used when two samples of participants
provide scores on a measure. The t test compares the means of the two samples.
The ultimate goal, however, is not to determine whether the means of the two
samples are different, but rather to make an inference about whether the
population means from which the samples are taken are different. Figure 9.1
depicts this arrangement.

normal curve, on which the z table is based, leads to inaccurate judgments
about the area under the curve of a sampling distribution when sample sizes
are small and σ is unknown. In the following quote, Gosset expressed the pur-
pose of his 1908 paper. “The aim of the present paper is to determine the point
at which we may use the tables of the probability integral in judging of the sig-
nificance of the mean of a series of experiments, and to furnish alternative
tables for use when the number of experiments is too few” (p. 2). (His reference
to the tables of the probability integral refers to the z table, and “alternative
tables” refers to the newly developed t table.) Gosset’s use of the term “signif-
icance” was prophetic since at this time the concept of significance testing had
not been developed. The conventional use of the 5% level of significance
emerged over the next 25 years.

Gosset’s classic 1908 article is one of the most important publications in
the history of inferential statistics. “With one stroke, he: (1) discovered a
new statistical distribution; (2) invented a statistical test that became the pro-
totype for a whole series of tests, including analysis of variance; and (3)
extended statistical analysis to small samples…” (Tankard, 1984, p. 99).
Although t tests are one of the cornerstones of modern statistics, Gosset’s
work was not greeted with enthusiasm. Fisher, the originator of the analysis
of variance, described the reaction of colleagues as “weighty apathy” (Fisher,
1939, p. 5), and Cochran stated that “the t distribution did not spread like
wildfire” (Cochran, 1976, p. 13). Even Gosset underestimated the impact that
his discoveries would have, as he wrote to Fisher, “I am sending you a copy of
Student’s Tables as you are the only man that’s ever likely to use them!”
(Gosset, 1970; Letter 11).

An interesting aspect of Gosset’s work is that he used a pseudonym when
publishing; he took the name Student. Not wanting the competition to know
of its scientific work, Guinness forbade their scientists from publishing. As a
result, Gosset secretly published all his articles under the name of “Student.”
It is for this reason that the t test is also known as “Student’s t test.”

Gosset remained with Guinness until his death, assuming the position of
head brewer a few months before he died in 1937.
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Suppose we decide to conduct a study on the effects of stress. Based on pre-
vious research, we hypothesize involvement in an exercise regimen to have a
beneficial effect. An experimental group receives 10 weeks of aerobic training,
whereas a control group does not receive any aerobic training. After 10 weeks,
both groups are asked to solve a series of simple mental arithmetic problems.
Participants are told to work as quickly as possible and that an electric shock
will be experienced if performance is inadequate. The measure of stress is
the participants’ heart rate during the task. The experimental hypothesis is that
those participants who participated in the exercise program will show lower
heart rates under stress in comparison with the control participants.
The two samples represent two hypothetical populations. One sample

represents the hypothetical population of all of the participants who theoreti-
cally could have participated in the exercise program, the hypothetical popula-
tion of treated participants. The control sample represents the hypothetical
population of untreated participants.

The Null and Alternative Hypotheses

As with all inferential tests, when performing an independent-samples t test, the
investigator specifies the null and alternative hypotheses beforehand. Recall that
in single-sample research, the null hypothesis is stated as an equality, μ = some
value known ahead of time, and the alternative hypothesis is stated as an
inequality, μ ≠ that same value. Similarly, in research involving two samples,
the null hypothesis is stated as an equality, and the alternative hypothesis is
expressed as an inequality. The null can be stated in two ways:

H0 μ1 = μ2 or H0 μ1−μ2 = 0

Sample A Sample B

Population A
Taught by method A

Population B
Taught by method B

Figure 9.1 An independent-samples t test uses two samples. Do the samples come from the
same or different populations?
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Note that these two statements are equivalent. One states that the two means
are equal, and the other states that there is no difference between the twomeans.
The alternative hypothesis can also be stated in two ways, depending on how we
choose to state the null hypothesis:

H1 μ1≠μ2 or H1 μ1−μ2≠0

In the exercise and stress study, the research hypothesis is that exercise
will reduce participants’ physiological reactions to a stressor. The statisti-
cal hypotheses, reflected in the null and alternative hypotheses, are state-
ments that the samples are either taken from one population (no
treatment effect) or come from two populations with different means (a
treatment effect).
One final note: the subscripts of 1 and 2 are typically used to represent the two

populations being compared. Researchers are free, however, to use other sub-
scripts that may more specifically communicate the nature of the population in
question, for example, μcontrol and μexp, or μdrug and μplacebo, or even letters such
as μA and μB. These are all appropriate.

The Sampling Distribution for an Independent-Samples t Test

Theoretically Constructing the Sampling Distribution
The sampling distribution for an independent-samples t test is a sampling dis-
tribution of the difference between independent sample means. In Chapter 8,
theoretical sampling distributions were constructed for single-sample t tests
where one population was repeatedly sampled. In the present case, two popula-
tions will be used for sampling.
Returning to the aerobic exercise and stress study, the two hypothetical popu-

lations are “treated” and “untreated” participants. We sample from these two
populations in the sense that one of our samples actually receives the exercise
treatment and the second sample does not. Theoretically, to construct the sam-
pling distribution, we would run the study, compute the mean heart rate under
stress for each sample, and take the difference between the group means. This
process would be repeated a near-infinite number of times. In each instance,
the value M1 −M2 would be computed and included in the frequency distribu-
tion. (The subscripts refer to sample 1 and sample 2, respectively.) The result
would be a sampling distribution that corresponds to the sample sizes used
in the study. It is not a requirement that the sample sizes be the same; n1 does
not have to equal n2 (though the test does assume they are at least similar). How-
ever, sampling distributions are built on situations where the repeated sampling
of a given population is the same. Therefore, even though n1 and n2 do not need
to be equal, n1 needs to be the same size for each sample in the sampling dis-
tribution (as does n2). This means there exists a large family of theoretical
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sampling distributions, each distribution corresponding to a particular combi-
nation of sample sizes (degrees of freedom).

Characteristics of the Sampling Distribution
Because statisticians have worked out the characteristics of all sampling
distributions, we have been spared the impossible task of constructing them.
The following list clarifies the characteristics of sampling distributions of
differences between independent means:

1) The mean of the sampling distribution ofM1 −M2 is equal to the difference
between the population means, μ1 − μ2. If the null hypothesis is true, that is,
there is no difference between μ1 and μ2, then the mean of the sampling
distribution of differences between means is 0. (M1 would be just as likely
to be larger than M2 as it would be to be smaller than M2 for all particular
pairs of samples gathered.) If the means of the populations differ by, say,
10 units, then the mean of the sampling distribution of differences is 10.

2) The central limit theorem holds for sampling distributions of mean differ-
ences. If the populations of raw scores are normally distributed, the sampling
distribution will likewise be normal. However, if the sample sizes are suffi-
ciently large, the sampling distribution will be normal even if the populations
of raw scores are not.

3) When two populations have the same variance (homogeneity of variances),
and the independent-samples t testassumes that theydo, thenthestandarddevi-
ation of the sampling distribution is given by Formula 9.1. The standard devia-
tion is called the standard error of thedifference, or simply the standard error.

The Standard Error of the Sampling Distribution of M1 −M2

Formula 9.1 is the standard error of the sampling distribution of differences. It
describes the relationship between the amount of variability in the population
and the variability of the sampling distribution of differences between means.
Recall from Chapter 8 that the denominator of the single-sample t test is the esti-
mated standard error of the sampling distribution of means, t = (M − μ)/sM,
where sM = s n

Standard error of the difference, σM1 −M2

σM1 −M2 = σ2
1
n1

+
1
n2

(Formula 9.1)

where

n1, n2 = the sample sizes of the two samples
σ2 = the variance of either one of the population distributions. Since it is

assumed that σ21 = σ
2
2 (homogeneity of variances), it does not matter which

variance is used
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The Estimated Standard Error of the Difference
The formula for the independent-samples t test is presented in this section. The
denominator of the independent-samples t test is the estimated standard error
of the difference, symbolized as sM1−M2 .
When σ is known, Formula 9.1 is the standard error of the difference. When σ

is unknown, which is usually the case, then s is used to estimate σ. The estimated
standard error of the difference is similar in form to the formula for the standard
error when σ is known. In Formula 9.2, a new term is introduced, pooled
variance, symbolized as s2p

Definitional formula for the estimated standard error, sM1 −M2

sM1 −M2 = s2p
1
n1

+
1
n2

(Formula 9.2)

where

s2p = the pooled variance

Since it is assumed that σ21 = σ
2
2, sample estimates of either population vari-

ance can be used to estimate σ2. Since there are two sample variances, there
are two estimates of σ2. To generate themost accurate estimate of σ2, a weighted
average of the two sample variances will be used. This weighted average of var-
iances is called the pooled variance.

Pooled variance

s2p =
s21 n1−1 + s22 n2−1

n1 + n2−2
(Formula 9.3)

Each variance in Formula 9.3 is multiplied by its degrees of freedom. Var-
iances from larger samples are weighted more than variances from smaller sam-
ples. This is how the “weighting” of the two samples is accomplished.
Substituting the formula for the pooled variance into the formula for the esti-
mated standard error gives Formula 9.4.

Variance formula for the estimated standard error, sM1 −M2

sM1 −M2 =
s21 n1−1 + s22 n2−1

n1 + n2−2
1
n1

+
1
n2

(Formula 9.4)

Formula 9.4 shows that the estimated standard error of the difference
combines the variances of both groups (samples) in the study. In addition, since
Formula 9.4 is the denominator of the t ratio, it can be used, for instance, to
analyze the results of a published study in which s2 or s is reported in the article.
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When working from raw data, Formula 9.5, the computational formula for
sM1−M2 , is easier to use.

Computational formula for sM1 −M2

sM1 −M2 =
Σ X2

1 − ΣX1
2 n1 + Σ X2

2 − ΣX2
2 n2

n1 + n2−2
1
n1

+
1
n2

(Formula 9.5)

Hypothesis Testing and the Sampling Distribution of Differences

Hypothesis testing operates statistically at the level of the sampling distribution.
The sampling distribution is a theoretical tool that allows researchers to
determine if the difference between two sample means is unlikely to be the
result of sampling error and therefore more likely the result of sampling from
two different populations. As the observed difference between the sample
means increases, it becomes less and less likely that this difference is only
due to sampling error, leaving us with the growing probability that there is a
real difference between the populations.
Now assume that a sampling distribution of means from each population is

theoretically established. Furthermore, assume that the population means are
the same, both populations have identical standard deviations, and the two
sampling distributions are based on repeated samples of the same size. Would
there be a difference between the two sampling distributions? No, they would
have the same means and standard errors. If we drew them on a graph, they
would overlap so that it would look like one sampling distribution.
Now assume that the populations have different means. The sampling

distributions would not show a perfect overlap. The mean of each sampling
distribution would be the same as the mean of its respective population. As
the difference between population means increases, the sampling distributions
diverge. The sampling distribution of mean differences is a way of combining
the two sampling distributions; it manages to take the difference between the
two sampling distributions. If the means of the two populations are the same,
the mean of the sampling distribution of differences will be 0. As the size of the
difference between the population means increases, the mean of the sampling
distribution of differences departs from 0. The null hypothesis assumes there is
no difference between the population means; therefore, the mean of the
sampling distribution of differences is 0.
In Figure 9.2a, the sampling distributions from identical populations overlap

perfectly. The mean of each sampling distribution is the same as the mean of
each population, 25. The sampling distribution of differences has a mean of
0, the difference between μ1 and μ2. In Figure 9.2b, the two sampling distribu-
tions are taken from different populations, one with μ1 = 25 and a second
population with μ2 = 27. The sampling distribution of differences has a mean
of 2, the difference between 27 and 25. (The sign of the difference can be ignored
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Sampling
distributions

The sampling 

distribution of the 

difference between means

Sampling

distributions

The sampling 

distribution of the 

difference between means

25

µ1= µ2= 25

µ1= 25 µ2= 27

µ1– µ2 = 0 

µ1– µ2 = 2

(a)

(b)

Figure 9.2 The sampling distribution of differences has the same mean as the difference
between the means of the sampling distributions of the two populations.
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since, at this point, the size of the difference between μ1 and μ2 is what is impor-
tant.) In Figure 9.2c the sampling distributions are generated from populations
with μ1 = 25 and μ2 = 35. As a result, the sampling distribution of differences has
a mean of 10.

From the Sampling Distribution of Differences to the t Distribution
for Independent Samples

The sampling distribution of mean differences, although theoretically of
fundamental importance, is not directly used to conduct the inferential test.
What the researcher would like to determine is if the difference between the
sample means is so unusual as to suggest they came from a distribution of
sample mean differences that does not have a mean of 0. If the obtained mean
difference, when plotted on the relevant t distribution, falls in one of the tails,
then the validity of the null hypothesis is questioned. The t ratio is a formula that
indicates the distance the difference between sample means is from 0 within a
sampling distribution. The logic of the independent-samples t test follows from
the discussion of z scores and the z test.
In Chapter 5, the z score formula was used to indicate the distance a score is

from the mean of the raw score distribution. In Chapter 8, we learned that the
z statistic provides a measure of how far a sample mean, in standard error units,
is from the mean of the sampling distribution.
The z statistic requires that we know σ. If σ is unknown, the t statistic is used

to transform all the scores of the sampling distribution into a t distribution. By
using the single-sample formula for t, we were able to determine how many

Sampling
distributions

The sampling 

distribution of the 

difference between means

µ1= 25 µ2= 35

µ1– µ2 = 10

(c)

Figure 9.2 (Continued)
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standard errors a sample mean was from the hypothesized mean of the sampling
distribution.
Whether we perform a z test or a single-sample t test, a ratio of the difference

between two means and the standard error is obtained:

zobt =
M−μ

σM

tobt =
M−μ

sM

With the (estimate of the) standard error in the denominator, the ratio indicates
the number of (estimated) standard error units the sample mean is from the
hypothesized mean. The independent-samples t statistic is also a ratio that spe-
cifies the distance (in estimated standard error units) between the sample mean
and the hypothesized mean of the sampling distribution of differences.

The t Ratio

Formula 9.6 is the formula for the independent-samples t test.

t statistic for independent samples

tobt =
M1−M2 − μ1−μ2

sM1 −M2

(Formula 9.6)

First, consider the numerator of the t ratio in Formula 9.6. To understand why
it looks as it does, it is helpful to recall the t ratio for a single-sample t test found
in Chapter 8:

tobt =
M−μ

sM

In the numerator of this formula, there is an obtained statistic, M, which is
contrasted with a hypothesized parameter, μ. The value of μ is the mean of
the sampling distribution of means if the null hypothesis is true. When the null
hypothesis is true, the difference M – μ will be close to 0. The formula for an
independent-samples t test also contrasts a hypothesized population parameter
with an obtained statistic. When the null hypothesis is true, the population
means are the same (μ1 − μ2 = 0). The sampling distribution of differences will
then have a mean of 0. The obtained sample statistic isM1 −M2. Therefore, we
are contrasting an obtained difference of sample means with a hypothesized
difference of population means. As the obtained difference between sample
means departs from the hypothesized difference between population means,
we begin to question the null hypothesis of no difference. Since the hypothe-
sized difference between population means is almost always 0, the expression
μ1 − μ2 can be dropped. As a result, the form of the t ratio used for an
independent-samples t test is given in Formula 9.7.
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The t ratio

tobt =
M1−M2

sM1 −M2

(Formula 9.7)

The t Distributions for the Independent-Samples t Test
and Degrees of Freedom

The t distribution for the independent-samples t test is a transformation of a
sampling distribution of differences between means. It is symmetric and has
a mean of 0. The t ratio specifies the number of standard errors the obtained
difference between sample means is from 0, the null hypothesized difference
between population means.
There is a different sampling distribution for every combined sample size.

One study may have two samples with 10 participants each, another study
may have one sample with 20 and the other with 15, and so on. Each situation
yields a different theoretical sampling distribution that can be transformed into
a t distribution. Therefore, there is a family of t distributions, each with its own
degrees of freedom. For an independent-samples t test, the degrees of freedom
associated with the t distribution are n – 1 from the first sample and n – 1 from
the second sample, or n1 + n2 – 2.
Table 9.1 summarizes the differences between the formulas for a z score, z sta-

tistic, single-sample t statistic, and independent-samples t statistic. The purposes

Table 9.1 A summary comparison of the transformation formulas for a z score, z statistic,
single-sample t statistic, and independent-samples t statistic.

z score

z =
X−μ

σ

Purpose
Transforms raw scores into a z distribution. A z score indicates the number of standard
deviations a raw score is from the mean of the raw score distribution.

Distribution characteristics
The z distribution has a mean of 0 and a standard deviation of 1. It is distributed normally if
the population is normally distributed.

z statistic

zobt =
M−μ

σM

Purpose
Transforms a sampling distribution of means into a distribution of z values. The zobt indicates
the number of standard error units a sample mean is from the hypothesized mean of a
sampling distribution.

(Continued)
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of the formulas and the underlying distributions of the formulas are presented. In
addition, the degrees of freedom are specified for the z test and the t tests.

An Example of Hypothesis TestingUsing the Independent-Samples t Test

With the logic of the t statistic in place and the requisite formulas provided, we
are now ready to work through a problem and decide whether to reject the null
hypothesis. Keep in mind that we are making an inference about whether the
means of two populations are unequal. In the context of an experiment,
deciding that the population means are not equal is tantamount to claiming
the independent variable has an effect on the dependent variable, assuming
no confounds. Consider once again the study about the effectiveness of aerobic
conditioning on participants’ ability to tolerate stress.

Worked Example
Twenty participants are randomly assigned to an experimental condition
(n1 = 10) and a control condition (n2 = 10). The experimental participants
exercise three times a week for 10 weeks. During each workout, they walk a

Table 9.1 (Continued)

Distribution characteristics
If the sampling distribution is normal, and since σ is known, the distribution of z statistics will
be normally distributed, with a mean of 0 and a standard deviation of 1.

Single-sample t statistic

tobt =
M−μ

sM

Purpose
Transforms a sampling distribution of means into a t distribution. The tobt indicates the
number of standard error units a sample mean is from the hypothesized mean of the
sampling distribution.

Distribution characteristics
All t distributions are symmetrical with a mean of 0. Each one has n − 1 degrees of freedom.
As the sample size of the sampling distribution increases, the t distribution approximates a
standard normal distribution.

Independent-samples t statistic

tobt =
M1−M2 − μ1−μ2

sM1 −M2

or tobt =
M1−M2

sM1 −M2

Purpose
Transforms a sampling distribution of differences between means into a t distribution. The
tobt indicates the number of standard errors the difference between sample means is from the
hypothesized difference between population means, typically 0.

Distribution characteristics
All t distributions are symmetrical with a mean of 0. Each t distribution is distributed with
n1 + n2 − 2 degrees of freedom. As the sample size of the sampling distribution increases, the t
distribution approximates a standard normal curve.
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treadmill for 20 minutes while their heart rate is maintained between 160 and
180 beats per minute. The control participants do not exercise during the 10-
week period. After 10 weeks, all participants are brought into the lab and asked
to solve mental arithmetic problems under the threat of electric shock for poor
performance. The measure of stress is the participants’ heart rate during the
task. The experimental hypothesis is that, during stress, the aerobic group will
have a lower heart rate than the control group. The null hypothesis is that the
population means are the same. The data, along with the computation of tobt,
are presented in Table 9.2.

Six Steps for Testing the Null Hypothesis Using the
Independent-Samples t Test
Step 1. Define the null and alternative hypotheses:

H0 μ1 = μ2
H1 μ1 ≠ μ2

Step 2. Set alpha. Alpha is set at .05.
Step 3. Compute tobt (see Table 9.2).
Step 4. Locate tcrit in Table A.2. Recall, the degrees of freedom formula for this
problem is n1 + n2 − 2. For this problem, this means 10 + 10 − 2 = 18. Enter
the left column of the t table and locate the number 18. Now move to the
column under alpha of .05 for a two-tailed test. The critical values are ±2.10.

Step 5. Compare the tobt of –2.23 with the critical value of ±2.10. Since tobt falls
outside of ±2.10, the null hypothesis is rejected.

Step 6. Interpret the findings. Statistical evidence suggests that aerobic training
leads to a reduction in the participants’ heart rate when solving mental
arithmetic problems under threat of electric shock for poor performance,
t(18) = –2.23, p < .05. Additional research would be required to determine
if other kinds of stressors could be managed as well through aerobic training.

Table 9.2 Computing tobt for an independent-samples t test.

Aerobic training Control

84 88

78 97

67 74

87 80

80 87

78 90

(Continued)
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Table 9.2 (Continued)

Aerobic training Control

78 90

79 86

82 84

81 78

M1 = 79.40 M2 = 85.40

s1 = 5.25 s2 = 6.69

ΣX1 = 794 ΣX2 = 854

ΣX2
1 = 63292 ΣX2

2 = 73334

n1 = 10 n2 = 10

tobt =
M1−M2

Σ X2
1 −

ΣX1
2

n1
+ Σ X2

2 −
ΣX2

2

n2

n1 + n2−2
1
n1

+
1
n2

tobt =
79 4−85 4

63292−
794 2

10
+ 73334−

854 2

10

10 + 10−2
1
10

+
1
10

tobt =
79 4−85 4

63292−63043 6 + 73334−72931 6
10 + 10−2

0 2

tobt =
−6

650 8 18 0 2

tobt =
−6

7 23

tobt =
−6
2 69

tobt = − 2.23

Raw scores are heart rates under stress. Since tobt falls outside of ±tcrit,
the null hypothesis is rejected.
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Box 9.1 presents a study of the effects of relaxation training on the frequency
of epileptic seizures. An independent-samples t test is used to determine if the
change in the number of seizures between groups is due to the experimental
manipulation of relaxation.

Box 9.1 Can Epileptic Seizures Be Controlled By Relaxation Training?

In the last 50 years, researchers have begun to discover an association between
emotionality and frequency of seizures amongpeople suffering from epilepsy (e.g.
Baslet, 2011). For instance, daily hassles, fear, anger, and anxiety have all been
found to correlate with seizure activity (Feldman & Paul, 1976; Standage, 1972;
Symonds, 1970; Temkin & Davis, 1984). At least one study has shown that symp-
toms of anxiety are twice as high in an epileptic sample compared with those in
persons with other kinds of physical problems (Standage & Fenton, 1975).

The standard medical treatment for epileptic seizures is the administration of
an antiseizure medication, like Dilantin or phenobarbital. Although the causal
role of emotionality in producing seizures is debatable (seizures could cause
negative emotions), the association between emotions and seizures leads
researchers to wonder if perhaps a stress-reduction treatment could reduce
the frequency of epileptic seizures.

Puskarich (1988) compared the effects of relaxation training versus a placebo
on the frequency of seizures among epileptics. After an eight-week baseline
period in which all patients recorded their frequency of seizures, 13 patients
received six weeks of relaxation training. Eleven placebo-control patients were
seen the same number of times as the experimental participants but were
placed in a room alone and told that sitting quietly would induce relaxation,
which would help reduce their seizures. All patients took their usual medica-
tions throughout the study. For eight weeks post-treatment, all patients
recorded their frequency of seizures. The dependent variable was the change
in the number of seizures from baseline through post-treatment.

The raw data are presented in the following table. A negative number means
a decrease in seizures; a positive number indicates an increase in seizures.
Because this was a relatively new area of research, and because it is important
to minimize the probability of failing to reject a false null hypothesis (a Type II
error), the investigator sets alpha at .10 when conducting the statistical test. By
not using the traditional alpha of .05, the investigator doubles the probability of
a Type I error.2 An independent-samples t test is used to compare the means of
the relaxation and placebo conditions.

2 If Puskarich submits the article for publication, it will have to include a convincing case for
“relaxing” the alpha level. Scientists are a conservative group. In most cases, they would prefer to
miss something that is there (Type II error) than think that they have found something that is not
there (Type I error).
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Relaxation Placebo

+7 –1

0 –5

–5 +16

–1 –7

–14 +3

–5 +4

–6 –6

–7 –2

–1 +2

–4 –4

–7 –3

–13

–8

M1 = −4.92 M2 = −0.27

s1 = 5.51 s2 = 6.51

n1 = 13 n2 = 11

H0: μ1 = μ2

H1: μ1 ≠ μ2

α = .10

df = n1 + n2 – 2 = 22

tobt =
M1−M2

sM1 −M2

Since the s1 and s2 are provided in the summary statistics, Formula 9.4 can be
used to compute the standard error:

sM1−M2 =
s21 n1−1 + s22 n2−1

n1 + n2−2
1
n1

+
1
n2

sM1−M2 =
5 51 2 12 + 6 51 2 10

13 + 11−2
1
13

+
1
11

sM1−M2 = 35 82 0 17

sM1−M2 = 6 09

tobt =
−4 92− −0 27

6 09
=
−4 65
2 47

tobt = −1 88

The critical values for t are t.10(22) = ±1.72. Since tobt falls outside of ±tcrit, the
null hypothesis is rejected. The author concluded that relaxation training is
more effective than a placebo treatment in reducing the frequency of seizures,
t(22) = −1.88, p < .10.



A Measure of Effect Size: Cohen’s d

One secondary question that can be asked when a null is rejected is the size of
the treatment effect. The tobt value is not designed to measure effect size, but
rather the likelihood that an effect exists, that is, the certainty of an effect,
not the size of an effect. These are related concepts, but not identical. As noted
in the previous chapter, a simple, direct, and often-used measure of effect size is
Cohen’s d. The formula is as follows.

Cohen’s d for independent-samples t test

d =
estimated mean difference

estimated st andard deviation
=
M1−M2

s2p
(Formula 9.8)

where

s2p = the pooled standard deviation

M1 −M2 is used as the best estimate of the mean difference between the two
populations, and the pooled standard deviation is used as the best estimate of
the population standard deviation (assuming equal variances; see assumptions
for the independent-samples t test). Notice this only allows us to estimate the
effect size. Nonetheless, this statistic is typically symbolized simply as d. As with
previous version of the statistic, Cohen’s d reflects the difference between the
means in standard deviation terms. Larger d values reflect larger effect sizes.

9.3 The Appropriateness of Unidirectional Tests

Up to this point, hypothesis testing has been discussed from a nondirectional
perspective, which means that our interest is in detecting differences between
populationmeans, irrespective of whether μ1 < μ2 or μ1 > μ2. The null hypothesis
has always been stated as an equality (i.e. μ1 = μ2 or μ=some known value), and
the alternative hypothesis has always been stated as an inequality (i.e. μ1 ≠ μ2 or
μ= some known value).
Research hypotheses (scientific hypotheses) are usually stated as predictions

about the expected direction of an effect or relationship. For example, persua-
sion technique A will induce greater attitude change than persuasion technique
B; participants’ perceptions of control over a stressor will decrease stress
reactions; or higher levels of physiological arousal will create stronger emotions.
Researchers, however, typically frame their statistical hypotheses in a nondirec-
tional form. In other words, even though the research hypothesis makes a
prediction about which of two means will be larger, the null and alternative
hypotheses allow the investigator to discover if a treatment effect or relationship
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between variables is opposite to the predicted effect. For instance, if a researcher
hypothesizes that an advertisement will increase the sales of a product, a non-
directional test of this hypothesis allows for the discovery that the advertisement
actually decreases sales. However, there are times when researchers have chosen
to use a directional test of the research hypothesis. A directional test is capable
of detecting only a difference between means in one direction. If a researcher
uses a directional test to see if an advertisement increases sales, then it will
be blind to the possibility that the advertisement decreases sales. As we will soon
learn, the decision to adopt a directional versus nondirectional test has implica-
tions for how the statistical hypotheses are stated and how to use the t table. In
addition, we will learn why directional tests of hypotheses are very controversial.
We begin the discussion of directional tests by specifying how they affect the

way the null and alternative hypotheses are stated; then the implications that a
directional test has for the critical value that is used are addressed; and finally
issues associated with if and when to use a directional test are discussed. As a
vehicle for presenting the concepts of directional and nondirectional tests, we
will use the research context in which the independent-samples t test is appro-
priate. Note: A nondirectional test is called a two-tailed test and a directional
test is called a one-tailed test. The reason for the two-tailed/one-tailed termi-
nology will become clear as we read the next section.

One-Tailed and Two-Tailed Tests

The discussion of hypothesis testing up to this point has addressed only two-
tailed tests. The null and alternative hypotheses for a two-tailed test have been
presented as follows:

H0 μ1 = μ2
H1 μ1≠μ2

When the null and alternative hypotheses are stated in this fashion, the
rejection region is divided equally between both tails of the t distribution.
For example, when testing at the 5% alpha level, 2.5% of the rejection region
is in both the right tail and the left tail of the t distribution. With the rejection
region in both tails, it is possible to detect a difference when μ1 > μ2 as well as
when μ1 < μ2. Since tests with a rejection region in both tails can detect a
difference between population means in either direction, they are called
two-tailed (or nondirectional) tests.
Two things change when conducting a one-tailed (or directional) test: the

manner in which the null and alternative hypotheses are stated and the
placement of the rejection region. (There are no new formulas associated with
a one-tailed test.) Consider the following research situation. Suppose a standard
drug for treating some illness exists, but this drug has a certain number of side
effects. A new, more expensive drug is being tested; despite its cost, if it has
fewer side effects, it will become the treatment of choice. Since the new drug
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is more expensive than the standard (old) drug, the old drug will remain the
treatment of choice if they both have the same number of side effects. The same
conclusion would be reached if the new drug hadmore side effects than the old
drug. In this way, whether the new drug has the same or more side effects makes
no difference; either way it will not be marketed. The only finding of interest is if
the new drug has fewer side effects.
Recall that when setting up the null and alternative hypotheses, two related

rules must be followed. Together, the null and alternative hypotheses must
be mutually exclusive and collectively exhaustive. The null and alternative
hypotheses for a directional test can be stated as

H0 μnew ≥ μold
H1 μnew < μold

These hypotheses are collectively exhaustive. The null hypothesis, H0,
includes the case in which the population means are the same and the case
in which the mean of the old drug is lower. The alternative hypothesis specifies
that the mean number of side effects for the new drug is less than the mean of
the old drug. The null and alternative hypotheses cover all of the possible
outcomes; therefore, they are collectively exhaustive. They are also mutually
exclusive because they both cannot be true at the same time.
In this example, note that the difference μnew > μold is embodied in the null

hypothesis. This is a bit of a misnomer since “null” implies no difference.
(This will be discussed further later on.) Right now, it is important to note that
even if it is true that μnew > μold, there is no way a directional test can come to this
conclusion; remember, we can only reject the null or fail to reject the null.
Setting up the null and alternative hypotheses as a directional test determines

the placement of the rejection region in the t distribution. Since only a differ-
ence between means in one direction can be detected, many researchers feel
justified in placing the entire rejection region in this one tail of the distribution.
If alpha is set at .05, the entire 5% of the rejection region is placed in one tail.
Whether the region is in the left tail or the right tail depends on the direction of
interest. In the drug example, we are only interested in detecting if the new drug
has fewer side effects, that is, when the mean of the new drug group is smaller
than the mean of the old drug group, μnew < μold. As a result, the rejection region
is to the left side of the t distribution. Figure 9.3 uses the t distribution to illus-
trate the rejection region for a two-tailed and one-tailed test when alpha is .05.

The Sign of tobt is Important in a Directional Test

When conducting a nondirectional test, the researcher allows that μnew > μold or
μnew < μold. As a result, it does not matter if the tobt is positive or negative in
value. For this reason, we always state tcrit as ± when conducting a nondirec-
tional test. The situation is different with a directional test, whether tobt is
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positive or negative matters. If the alternative hypothesis states that μnew < μold,
the null hypothesis is only rejected if tobt is a negative number equal to or greater
than tcrit (in absolute value terms). This is because the rejection region is entirely
to the left of the mean of the t distribution; all t values to the left of the mean are
negative. If our alternative hypothesis is stated as μnew > μold, then tobt must be a
positive number equal to or greater than tcrit for the null to be rejected. Recall
that when we are conducting a two-tailed test, it does not matter how we
arrange the means in the numerator. However, the sign of tobt is important
in a one-tailed test, so we must be careful to arrange and subtract means in
the numerator properly.

0

0

0

t = –1.96 t = +1.96

0.025 0.025

H0 : µnew= µold
H1 : µnew≠ µold

H0 : µnew≤ µold
H1 : µnew> µold

H0 : µnew≥ µold
H1 : µnew< µold

t = +1.65

t = –1.65

Figure 9.3 The rejection region of a t distribution for a one-tailed and two-tailed test, α = .05.
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Using the t Table for a Directional Test

We already have experience in finding tcrit for a two-tailed t test: Enter the
t table, find the appropriate df, and look under the alpha heading for a two-tailed
test. As we look at the t table (Table A.2), note that it has two rows of headings,
one for alpha levels for a one-tailed test and one heading for alpha levels used for
a two-tailed test. Notice for a given level of alpha, the critical value used in a one-
tailed test is closer to zero than the value used in a two-tailed test. Therefore, a
decision to reject the null is more likely to occur, if the mean difference is in the
predicted direction.

α levels for two-tailed test

df .10 .05

α levels for one-tailed test

.05 .025

6 1.943 2.447

7 1.895 2.365

8 1.860 2.306

9 1.833 2.262

■ Question Using alpha of .05, what is the critical value for an independent-
samples one-tailed t test if there are four participants in one group and five par-
ticipants in the other group?

SolutionThe df for an independent-samples t test is n1 + n2 − 2, or 4 + 5 − 2 = 7.
The critical value is either +1.895 or −1.895, depending on the predicted direc-
tion. ■

Use Caution in Deciding to Conduct a One-Tailed Test

Research hypotheses are almost always framed as a directional prediction.
Therefore, why not always use a directional t test? Well, if we use a one-tailed
test, we will be unable to detect differences between population means opposite
of the predicted direction. Unexpected findings, however, may be theoretically
important. Contrary results may lead to a revision in or rejection of the theory
being explored. Performing a one-tailed test implies that the researcher believes
findings in one direction are meaningless. However, just because the results of a
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study may not fit current theory does not mean they are meaningless. After all,
the history of science is littered with stories of unexpected yet truly meaningful
findings being uncovered without prior intention. Unexpected findings should
stimulate future research. For this reason, a researcher should never use a
one-tailed test simply because the research hypothesis is stated directionally.
The strongest justification for using a one-tailed test occurs when a new

course of action is to be taken only if the result of the test is in one direction.
We might think of this as a “theory versus application” issue. If the research
is theoretically important, there is simply no debate; use a two-tailed test. Many
feel, however, that if the main purpose behind the research project is one of
application and if that application will only be taken if one type of finding is
uncovered, then a direction test is justified. However, even in these situations
the use of a one-tailed test is controversial (e.g. Lombardi & Hurlbert, 2009).
If the purpose of the t test is to measure the likelihood that sampling error
can explain the difference between means, then moving half of the rejection
region from one side over to the other, thus correspondingly reducing the ability
for sampling error to explain a mean discrepancy in the selected direction, mis-
represents what we are trying to measure – the explanatory power of sampling
error. If the null is actually true, getting a t value around 1.6 or 1.7 is simply
much more likely than getting one around 2 or 2.1. Many argue the use of a
one-tailed test results in a Type I error rate that is effectively greater than
.05. If the critics are right, the use of directional tests constitute a form of sta-
tistical cheating, whether or not the primary purpose of the research project is
one of application (for more on the debate over directional and nondirectional
tests, see Kirk, 1972; Liberman, 1971).
One final point concerns when a decision is made to use a one-tailed test. If a

researcher believes a one-tailed test is warranted, the decisionmust be made and,
of course, justified before the data is gathered and analyzed. Supposewe conduct a
two-tailed test and find that the tobt is close, but does not fall in the rejection
region. If we then move the entire rejection region over to one tail so that the tobt
value falls within it, we will be engaging in professional misconduct. Although we
have claimed to use an alpha of .05, in actuality our alpha value is higher.
Despite these serious concerns, one-tailed tests continue to be used on occa-

sion. For this reason, the tables in Appendix A include references to one-tailed
critical values.

9.4 Assumptions of the Independent-Samples t Test

There are five assumptions that should be met when conducting an independ-
ent-samples t test. These are identical to the four assumptions for the single-
sample t test with one additional assumption. The first two are methodological
and the final three are statistical:
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1) Representativeness. It is assumed that the samples are representative of the
populations from which they are drawn. Random sampling is the best data
gathering method to meet this assumption; however, other sampling meth-
ods might be sufficient. Meeting this assumption allows us to generalize
from samples to populations.

2) Independent observations. Independent observations mean that each par-
ticipant is contributing only one score and that those scores are not influ-
enced by other participants. If a score from one participant in the study is
influenced by the behavior of another participant, then the scores from these
two participants are not independent.

3) Interval or ratio scale of measurement. The independent-samples t test
utilizes means and standard deviations. These concepts only have meaning
for data measured on a scale where the quantitative distance between inte-
gers is held constant, namely, an interval or ratio scale (see Chapter 2).

4) The populations fromwhich the samples are taken are normally distrib-
uted. This assumption assures that the sampling distribution will be nor-
mally distributed. If a population is not normally distributed, the
assumption of normality is violated unless the sample size is sufficiently
large. (Recall that sampling distributions approximate a normal curve as n
increases.) When sufficiently large, the resulting sampling distribution is
normal despite the nonnormality of the raw scores.

5) Homogeneity of variances.The independent-samples t test assumes the var-
iances of the two populations sampled are equal. An inferential test can be
conducted on the sample variances to see if the population variances are une-
qual (see Kirk, 1989). In lieu of this test, a rule of thumb to judge homogeneity
is to see if one of the sample variances is four times larger than the other. If so,
the assumption of homogeneity is probably violated. The t test may also be
robust to violations of this assumption, particularly if n1 = n2. However, when
sample sizes are unequal and variances are quite discrepant, the t test should
not be run. Thankfully, other tests can be used (see Chapter 18).

9.5 Interval Estimation of the Population Mean
Difference

Recall that there are two kinds of inferential procedures, hypothesis testing and
estimation. This chapter is focused on hypothesis testing, but we can also use
sample means, the t distribution concept, and an estimate of the standard error
to generate an interval estimation of the population mean difference. Further,
we can quantify the confidence we have that this difference falls within that
interval. Since each potential sample mean difference drawn has a correspond-
ing t value, we can use the t distribution and our obtained sample mean differ-
ence (which is an unbiased estimate of the population mean difference) to
generate a probability function for the value of the actual population mean
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difference. Choosing tcrit values corresponding to different probabilities within
the t distribution allows us to create intervals with differing degrees of certainty.
The formula for an interval in which we can have 95% confident follows.

Confidence interval for a population mean difference for independent samples

LL= M1−M2 − t 05sM1 −M2

UL= M1−M2 + t 05sM1 −M2

(Formula 9.9)

where

LL = the lower limit of the confidence interval
UL = the upper limit of the confidence interval
t.05 = the critical value for a t distribution of a given sample size

Since we are generating an interval, two values are calculated, one being the
value at the lower end of the interval and the other at the upper end. As the
interval widens and becomes less specific, the confidence grows that the actual
mean difference falls within that window. A 95% confidence rate is typical, but
the above formulas could easily be adjusted to find a 90 or 99% confidence
interval simply by finding the corresponding tcrit values using the t table
(Table A.2).

■ Question Using the same data from the exercise and stress study explored
earlier in the chapter, find the 95% confidence interval for the population mean
difference in heart rates due to aerobic training. (M1 = 79.4; M2 = 85.4; s1 = 5.25;
s2 = 6.69; n1 = 10; n2 = 10).

Solution
Step 1. Identify the null and alternative hypotheses:

H0 μ1 = μ2
H1 μ1≠μ2

Step 2. Set the confidence rate at 95% (equivalent to α = .05).
Step 3.Using the t table, find the cutoff values beyond which lie 2.5% in the right

tail of the t distribution and 2.5% in the left tail of the distribution. The task is
accomplished in the same way that we found tcrit for the t test.With df = 9 and
α = .05 (two-tailed test), the cutoff points are ±2.262.

Step 4. Compute the confidence interval.

LL= M1−M2 − t 05sM1−M2

UL= M1−M2 + t 05sM1 −M2

From having worked the problem previously, we know

M1−M2 = −6

sM1−M2 = 2 69
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LL= −6−2 262 2 69 = −0 08

UL= −6 + 2 262 2 69 = 12 08

Step 5. Interpret the findings. Statistical evidence suggests that we can be 95% con-
fident that aerobic training leads to a reduction in the participants heart rate
when solving mental arithmetic problems under threat of electric shock for
poor performance by somewhere between –0.08 and 12.08 beats per minute. ■

9.6 How to Present Formally the Conclusions for an
Independent-Samples t Test

Proper reporting of inferential statistics can be challenging. Following are exam-
ples of how to report, in sentence form, a rejection of the null as well as a fail to
reject the null. If rejecting the null, a sentence might read, “An independent-
samples t test found evidence suggesting aerobic training leads to a reduction
in participants’ physiological reaction to stress, t(18) = −2.23, p < .05.” If we also
wanted to include a measure of effect size, the sentence could finish with “…t
(18) = −2.23, p < .05, d = 1.05.” If failing to reject the null, a sentence might read,
“An independent-samples t test did not find evidence suggesting aerobic train-
ing leads to a change in participants’ physiological reaction to stress, t
(18) = −1.62, n.s.” For a more detailed analysis of the style, symbols, and punc-
tuation used in these sentences, please see Section 8.8.

Summary

The independent-samples t test is used for between-participants designs when
two separate samples of participants provide scores on a measure. The purpose
of the t test is to help us decide whether the two samples come from the same or
different populations.
The sampling distribution for an independent-samples t test is a distribution of

the differences between independent sample means. Sampling distributions of
differencesbetweenmeanshaveseveral characteristics.First, themeanof thesam-
pling distribution of M1 −M2 is equal to the difference between the population
means, μ1 − μ2; this is usually zero. Second, the central limit theorem holds for
sampling distributions of the differences between means. If the populations are
normally distributed, the sampling distributionwill likewise be normal. However,
if the sample sizes are sufficiently large, a sampling distribution of differences will
be normal, whether or not the populations are normally distributed. Third, the
standard deviation of a sampling distribution of differences is called the standard
errorof thedifferenceor the standarderror.The t testuses theweightedaverageof
two sample variances (the pooled variance) to estimate the population variance,
which is then used to estimate the standard error.
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The independent-samples t test relies on the t distribution – a family of nor-
mal distributions that vary based on sample size. The t distribution transforms a
sampling distribution of differences into a standardized curve by applying the t
formula to each mean of the sampling distribution. The t distribution, repre-
sented in the t table (Table A.2), is used to identify the critical values that tobt
must equal or be greater than (in absolute value) to reject the null hypothesis.
The tobt indicates the number of standard errors the difference between sample
means is from the hypothesized mean of the sampling distribution of differ-
ences. If tobt is small, the proper decision is to fail to reject the null. Sampling
error is a viable explanation for the differences between the two sample means.
This does not mean the null is true, merely that the sample data is not allowing
us to reject it. If tobt is large, the proper decision is to reject the null, although
there will be a chance (determined by the value of alpha) that a Type I error will
be made. If a null hypothesis is rejected, Cohen’s d can be calculated and used as
a measure of effect size.
The assumptions of the independent-samples t test are representativeness,

independent observations, interval or ratio measures, normally distributed
populations, and the homogeneity of population variances.
Research hypotheses are usually stated as predictions about the expected

direction of an effect or relationship. Statistical hypotheses, however, are typi-
cally presented in such a way as to detect a difference in either direction. Some
researchers argue that there are times when it is appropriate to use a one-tailed
or directional test of the research hypothesis, typically when dealing with a ques-
tion of application. However, even in these situations the use of one-tailed test is
problematic, controversial, and generally discouraged by statisticians. When
conducting a one-tailed (or directional) test, the placement of the rejection
region changes. The entire rejection region is placed in one tail. As a result,
the critical value moves closer to zero, making a decision to reject the null more
likely to occur if the mean difference is in the predicted direction. Many theor-
ists believe that this procedure inflates the alpha value beyond the stated level.
The standard error, sample means, and t distribution can also be used to cre-

ate a confidence interval for the actual value of the difference between the
means of the two populations.

Using Microsoft® Excel and SPSS® to Run an
Independent-Samples t Test

Excel

General instructions for data entry into Excel can be found in Appendix C.

Data Entry
Enter all of the scores from the samples into two adjacent columns, one sample
in each column. Label the columns appropriately.
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Data Analysis
1) Excel has built-in programs for many inferential tests, including the inde-

pendent-samples t test. To access it, click on the Data tab on the top menu,
and then click Data Analysis. If this option is not found, the Data Analysis
ToolPak needs to be installed. See Excel instruction materials for how to
install this feature.

2) WiththeDataAnalysisboxopen, select t-Test:Two-SampleAssumingEqual
Variances. (Do not select a similar option, t-Test: Two-Sample Assuming
Unequal Variances. This function does not create a pooled variance.)

3) Input the data range for one variable in boxVariable 1 Range. Input the data
range for the other variable in box Variable 2 Range. (If the labels were
included in the range, make sure to click the Labels box to exclude
those cells.)

4) Decide on an Output option. The default is to place it on a separate
worksheet.

5) Click OK.
6) The output box will present the means, variances, and observations (sample

sizes). Additionally presented will be the pooled variance, hypothesized
mean difference (0, unless otherwise specified), degrees of freedom (labeled
df ), observed t value (labeled “t stat”), and the critical scores and probabilities
for both one- and two-tailed versions of the test. Compare t stat with either
the probability value (labeled P(T<=t) two-tail) or the critical score (labeled
t Critical two-tail) associated with the two-tailed test to make a decision
regarding the null hypothesis. (See Figure 9.4 for a worked example.)

SPSS

General instructions for inputting data into SPSS can be found in
Appendix C.

Control Drug

2 16 t-Test: Two-Sample Assuming Equal Variances

0 20

10 2 Control
7 22 Mean 5

2 3 Variance 13.28 571 429

5 17 Observations 15

8 23 Pooled Variance 38.8

5 4 Hypothesized Mean Difference 0

6 23 df 28

0 14 t Stat –4.308 646 306

5 22 P(T<=t) one-tail 9.13838E-05

11 9 t Critical one-tail 1.701 130 934

2 22 P(T<=t) two-tail 0.000 182 768

10 20 t Critical two-tail 2.048 407 142

2 5

Drug
14.8

64.31 428 571

15

Figure 9.4 Aworked example of usingMicrosoft Excel to calculate an independent-samples t
test value.
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Data Entry
In SPSS, each row of the data file represents a participant. Since both samples in
an independent-samples t test have different participants, all of the dependent
variable data from both samples will need to be placed in one column. Within
Variable View, label this variable appropriately. However, also create a second
variable that will allow us to identify which data goes with which group.
A typical label for this variable might be “condition.” Then, go to Data View.
Input the sample data to the appropriate column, and use a nominal variable
in the “condition” column to distinguish the two samples (either “0” and “1”
or “1” and “2” are typical). See Figure 9.5 for a worked example.

Data Analysis
1) Click Analyze on the tool bar, select Compare Means, and then click

Independent-Samples T Test.
2) Highlight the dependent variable column label in the left box, and click the

arrow to move it into the Test Variable(s) box. Move the “condition” var-
iable to the Grouping Variable box.

heart_rate condition

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

84 1

78 1

67 1

87 1

80 1

78 1

78 1

79 1

82 1

81 1

88 2

97 2

74 2

80 2

87 2

90 2

90 2

86 2

84 2

78 2

Figure 9.5 An example of entered data for an independent-samples t test in SPSS.
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3) Because there may be more than two conditions identified under the group-
ing variable, click Define Groups to identify which two groups we want to
compare. Place the nominal values used to distinguish the groups into the
two group boxes, one in each. Click Continue.

4) Click OK.
5) The output will generate two boxes. The first box will identify how many

scores were in the sample (N) as well as the mean, standard deviation,
and an estimate of the standard error from the perspective of each variable
(neither of these is used in the t test). The second box will identify, among
other things we are not currently interested in, the t value, the degrees of
freedom, the significance level, mean difference, and the estimate of the
standard error (labeled as “Std. Error Difference”). The output will not gen-
erate the tcrit. We can find tcrit ourselves, or we can look at the given signif-
icance level to see if that value is equal to or lower than .05. If it is, we can
reject the null. If it is not, we need to fail to reject the null hypothesis. (Note:
SPSS does not compare the tobt value with a directional or one-tailed critical
score.) See Figure 9.6 for a worked example.

T-test
Group statistics

Condition N Mean
Std. 

deviation
Std. error

mean

heart_rate 1

2

10 79.40 5.254 1.661

10 85.40 6.687 2.115

Independent samples test

Levene’s test for 
equality of variances t-test for equality of means

F Sig. t df
Sig. (2-
tailed)

Mean 
difference

heart_rate Equal variances 
assumed

Equal variances not 
assumed

0.975 0.337 –2.231 18 0.039 –6.000

–6.000–2.231 17.046 0.039

Independent samples test

t-test for equality of means

Std. error 

difference

95% confidence interval
of the difference

Lower Upper

heart_rate Equal variances 

assumed

Equal variances not 
assumed

2.689 –11.650 –0.350

2.689 –11.672 –0.328

Figure 9.6 A worked example using SPSS to calculate an independent-samples t test.
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Key Formulas

Standard error of the difference, σM1−M2

σM1−M2 = σ2
1
n1

+
1
n2

(Formula 9.1)

Definitional formula for the estimated standard error, sM1 −M2

sM1−M2 = s2p
1
n1

+
1
n2

(Formula 9.2)

Pooled variance

s2p =
s21 n1−1 + s22 n2−1

n1 + n2−2
(Formula 9.3)

Variance formula for the estimated standard error, sM1 −M2

sM1−M2 =
s21 n1−1 + s22 n2−1

n1 + n2−2
1
n1

+
1
n2

(Formula 9.4)

Computational formula for sM1−M2

sM1−M2=
Σ X2

1 − ΣX1
2 n1 + Σ X2

2 − ΣX2
2 n2

n1 + n2−2
1
n1

+
1
n2

(Formula 9.5)

t statistic for independent samples

tobt =
M1−M2 − μ1−μ2

sM1−M2

(Formula 9.6)

The t ratio

tobt =
M1−M2

sM1−M2

(Formula 9.7)

Cohen’s d for independent-samples t test

d =
estimated mean difference

estimated st andard deviation
=
M1−M2

s2p
(Formula 9.8)

Confidence interval for a population mean difference for independent
samples

LL= M1−M2 − t 05sM1−M2

UL= M1−M2 + t 05sM1−M2

(Formula 9.9)
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Key Terms

Independent-samples t test Pooled variance
Between-participants designs Two-tailed (or nondirectional) test
Homogeneity of variances One-tailed (or directional) test
Standard error of the difference

Questions and Exercises

For the following problems that involve a t test, assume a two-tailed test is called
for unless otherwise specified.

1 Which of the following describes a situation in which an independent-
samples t test would be the proper inferential test to use?
a Two separate groups of participants are sampled from two separate

populations that will then be compared to see if there is a difference.
b One sample of participants will be measured under two different con-

ditions: one a control condition and one an experimental condition.
c One group of participants is used to obtain one sample and compared
with a known population mean.

d None of the above.

2 Independent-samples t tests use ______ means to draw inferences about
______ means.

3 Which of the following is an accurate way to represent the null hypothesis
for an independent-samples t test?
a M1 −M2 = 0
b M1 −M2 ≠ 0
c μ1 − μ2 = 0
d μ1 − μ2 ≠ 0
e μ1 = M1 and μ2 = M2

f μ1 = M2 and μ2 = M1

4 Which of the following is an accurate way to represent the alternative
hypothesis for an independent-samples t test?
a M1 −M2 = 0
b M1 −M2 ≠ 0
c μ1 − μ2 = 0
d μ1 − μ2 ≠ 0
e μ1 ≠M1 and μ2 ≠M2

f μ1 ≠M2 and μ2 ≠M1
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5 Suppose one sample has an n = 12 with an s2 = 14 and another sample has
an n = 10 with an s2 of 8. If we wanted to find a tcrit score, what df would
we use?
a 22
b 44
c 9
d 20

6 If the null hypothesis for an independent-samples t test is ultimately
true, then the observed difference between the sample means is due
to _____.

7 Must researchers only use the subscripts 1 and 2 when writing out null and
alternative hypotheses? Why or why not?

8 Which of the following statistical expressions reflects the proper formal
presentation of an independent-samples t test analysis?
a t(24) = 2.21, d = .29, p > .05
b t(24) = 2.21, p < .05, d = .29
c t(24) = 2.21, d = .29, p < .05
d t(24) = 2.21, p > .05, d = .29

9 Imagine a study that is looking to see if voice recognition software in cell
phones decreases the likelihood of car accidents among drivers. What sort
of concerns might come up regarding the assumptions of an independent-
samples t test?

10 What is the difference between a pooled variance and a pooled standard
deviation? How would one get one from the other?

11 State the critical values and the proper decision regarding the null hypoth-
esis for each of the following independent-samples t test results (all tests
are two-tailed).
a n1 = 8, n2 = 7, α = .05, tobt = 1.90
b n1 = 30, n2 = 30, α = .01, tobt = 7.82
c n1 = 9, n2 = 9, α = .10, tobt = −4.55
d n1 = 14, n2 = 12, α = .05, tobt = −.63

12 A hypothetical study is conducted to evaluate the hypothesis that two-
year-old children with no siblings will show more fear around unfamiliar
children than two-year-old children with one or more siblings. Each child
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is put in a playroom with an unfamiliar child, and fear ratings are obtained
through behavioral observations made by an evaluator who is blind to the
hypothesis. Fear ratings can range from 1 (no fear) to 10 (a great deal of
fear). For the following data:
a Specify the null and alternative hypotheses.
b Perform the appropriate inferential test.
c Identify the critical values for α = .05, two-tailed test.
d Reject the null hypothesis?
e If so, what is the size of the effect?
f What type of decision error might have been made?
g Properly present the findings.

No siblings Siblings

10 7

6 3

8 2

4 4

9 1

7 2

13 A social psychologist is interested in evaluating the hypothesis that anx-
iety increases biological males’ attraction to biological females. The sci-
entific hypothesis is that anxiety will increase interpersonal attraction
(see Dutton & Aron, 1974). All participants are told that they are to hear
several random bursts of noise in a learning experiment. Half of the par-
ticipants are led to expect a loud noise (high anxiety condition), and the
other half are led to expect a soft noise (low anxiety condition). While
waiting for the experiment to begin, participants are placed in a room
with a biological female confederate. Later, participants are asked to rate
the attractiveness of this female, from 1 (unattractive) to 5 (very attrac-
tive). Hypothetical summary statistics are presented in the following
tabular list.
a Specify the null and alternative hypotheses.
b Perform the appropriate inferential test.
c Identify the critical values for α = .05, two-tailed test.
d Reject the null hypothesis?
e If so, what is the estimated effect size?
f What type of decision error might have been made?
g Properly present the findings.
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High anxiety Low anxiety

M1 = 4.2 M2 = 2.2

s21 = 0 5 s22 = 0 7

n1 = 10 n2 = 10

14 For Problem 13, suppose that the variances of attraction ratings are
increased so that s21 = 5 2 and s22 = 5 4.
a Perform an independent-samples t test with α = .05.
b Interpret the findings.
c What effect has increasing the variability had on tobt and the conclusion
about the null hypothesis?

15 Using the variance in Problem 14, suppose the number of participants in
each group is increased to 30.

High anxiety Low anxiety

M1 = 4.2 M2 = 2.2

s21 = 5 2 s22 = 5 4

n1 = 30 n2 = 30

a Perform an independent-samples t test with α = .05.
b Interpret the findings.
c What effect has the increase in sample sizes had on tobt and our decision
to reject or fail to reject the null hypothesis?

16 For an independent-samples t test, to what does the standard error of the
difference refer?

17 How does the sample size influence tcrit and why?

18 In what way does sample size affect the probability of rejecting the null
hypothesis?

19 Biaggio (1989) administered a Personal Incidents Record to biological male
and female college students to assess the frequency of anger reactions. The
author found statistical evidence that biological males reportedmore anger
reactions in comparison with biological females. The following hypothet-
ical data presented are consistent with Biaggio’s findings.
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a Specify the null and alternative hypotheses.
b Perform the appropriate inferential test.
c Identify the critical values for α = .05, two-tailed test.
d Reject the null hypothesis?
e If so, what is the estimated effect size?
f What type of decision error might have been made?
g Properly present the findings.

Frequency of anger reactions

Males Females

16 9

18 10

15 8

20 4

9 14

20 Burke and Greenglass (1989) have concluded that, “It may be lonely at the
top but it’s less stressful.” These authors found evidence of a statistical
difference between teachers and principals on a measure of burnout, with
teachers exhibiting higher levels of stress than principals. The following
hypothetical data are consistent with their findings.
a Specify the null and alternative hypotheses.
b Perform the appropriate inferential test.
c Identify the critical values for α = .05, two-tailed test.
d Reject the null hypothesis?
e If so, what is the estimated effect size?
f What type of decision error might have been made?
g Properly present the findings.

Burnout scores

Teachers Principals

42 28

38 35

44 40

33 38

49 30

42 24
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21 Zakahi and Duran (1988) hypothesized that the very lonely are less phys-
ically attractive than those who are not lonely. A loneliness questionnaire
was administered. Participants who scored in the top 25% were considered
very lonely, while those participants who scored in the bottom 25% were
deemed not lonely. Three judges rated all participants’ photographs for
attractiveness (1 [very unattractive] to 10 [very attractive]). Biological
males rated biological females and vice versa. There was no evidence of
a statistical difference in attractiveness ratings between very lonely and
not lonely biological females. However, there was statistical evidence sug-
gesting lonely biological males were rated as less physically attractive than
biological males who were not lonely. The following hypothetical data are
in line with the findings of the authors.
a Specify the null and alternative hypotheses.
b Perform the appropriate inferential test.
c Identify the critical values for α = .05, two-tailed test.
d Reject the null hypothesis?
e If so, what is the estimated effect size?
f What type of decision error might have been made?
g Properly present the findings.

Attractiveness rating for biological males

Lonely Not lonely

3 8

6 9

5 7

4 5

7 8

22 In 1972, Buffalo Creek, West Virginia, was the scene of a major flood. The
flood was a consequence of corporate negligence. Coal waste that was
dumped in a mountain stream created an artificial dam. After several days
of rain, the dam gave way, and a black wall of water, over 30 ft high, des-
cended on mining hamlets in the valley. In less than 1 hour, 125 people
were dead and 5000 others lost their homes. Simpson-Housley and DeMan
(1989) found that, 17 years later, the residents of Buffalo Creek scored
higher on a measure of trait anxiety in comparison with the residents of
Kopperston, a nearby mining town that did not experience the flood.
The following data are hypothetical but are consistent with the findings
of the researchers.
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a Specify the null and alternative hypotheses.
b Perform the appropriate inferential test.
c Identify the critical values for α = .05, two-tailed test.
d Reject the null hypothesis?
e If so, what is the estimated effect size?
f What type of decision error might have been made?
g Properly present the findings.
h Are there any assumptions that should give the researcher cause for

concern?

Anxiety scores

Buffalo Creek Kopperston

50 35

45 37

48 36

40 39

42 40

38 38

23 Narcissism is characterized by self-centeredness, feelings of being
“special,” and possessing a sense of entitlement. When comparing college
students who were firstborns with students who were born later, Jourbert
(1989) found that firstborns were more narcissistic than those participants
who were born later in the family. The effect was the same for biological
males and biological females. Hypothetical summary data are presented for
biological males and females. Conduct an independent-samples t test
between firstborns and later-borns (a) for males and (b) for females.
Set alpha at .05.
a Biological males

Firstborns: M1: 23 s1: 7.84 n1: 10

Later borns: M2: 16 s2: 6.43 n2: 15

b Biological females

Firstborns: M1: 17 s1: 6.52 n1: 19

Later borns: M2: 12 s2: 6.57 n2: 28
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24 For the same data as in Problem 23, find the 95% confidence intervals for
the actual narcissism difference between firstborn and later-born males
and then firstborn and later-born females.

25 Seery, Holman, and Silver (2010) seem to have found statistical support for
the old adage, “that which doesn’t kill us makes us stronger.” In their study,
they found that individuals possessing a history marked by some adversity
reported better mental health and higher measures of subjective well-being
compared with participants with little or no history of adversity. Following
are some data consistent with their findings. Fifteen individuals with 2 or
fewer negative life experiences in the past 5 years possessed a mean sub-
jective well-being score of 41 with a s of 4, while 14 individuals more than 5
negative life events in the past 5 years possessed a mean well-being score of
47.2 with a s of 5.
a Specify the null and alternative hypotheses.
b Perform the appropriate inferential test.
c Identify the critical values for α = .05, two-tailed test.
d Reject the null hypothesis?
e If so, what is the estimated effect size?
f What type of decision error might have been made?
g Properly present the findings.

26 For the same data as in Problem 25, find the 95% confidence intervals for
the actual difference in subjective life expectancy between those who have
had 2 or fewer negative life experiences within the past 5 years compared
with those who have had 5 or more within the past 5 years.

27 A child psychologist has reason to believe that children who do not spend
much time with peers during recess have a problem starting conversations.
Sixty children are randomly assigned to 2 treatment conditions (30 chil-
dren per condition). In the Experimental condition, children learn how
to begin a conversation. Children in the Control condition are given talks
about the importance of having friends. For a 30-day period after treat-
ment, the children are observed during recess. Each child’s average amount
of time spent with peers is recorded. The mean playtime for the Experi-
mental condition is 17.0 minutes; the mean for the Control condition is
13.5 minutes. The standard error of the difference is 2.0.
a State the null and alternative hypotheses.
b Conduct an independent-samples t test.
c What is tcrit?
d Reject the null hypothesis?
e Properly present the findings.
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28 Using the summary data from Problem 27, conduct a one-tailed test that
will detect a mean difference only if the Experimental condition produces a
higher level of peer interaction.
a State the null and alternative hypotheses.
b Conduct the t test.
c Interpret the findings.
d Is the researcher justified in performing a directional test? Why or

why not?

29 Think of a study where a defense could be made for it to be analyzed with a
one-tailed t test. Explain why this test would be appropriate.

30 Where students study may be as important as how much they study. Stu-
dents who have one setting in which they regularly study may perform dif-
ferently than students who have no regular study location. To test this, a
random sample of 15 Introductory Psychology students is asked to study
their class material for one hour every day in a special quiet room in the
university library. A second sample of 15 students from the same class
is also asked to study their class material one hour every day but rotating
among various settings (dorm room, cafeteria, and library). At the end of
the semester, point totals for the psychology class are obtained and com-
pared, with the following summary statistics:

One setting Various settings

M1 = 80 M2 = 69

s21 = 106 09 s22 = 156 25

n1 = 15 n2 = 15

a Specify the null and alternative hypotheses.
b Perform the appropriate inferential test.
c Identify the critical values for α = .05, two-tailed test.
d Reject the null hypothesis?
e If so, what is the estimated effect size?
f What type of decision error might have been made?
g Properly present the findings.
h Should the researcher be concerned about a potential confound in

this study?

31 Whichof themethodological assumptionsof the independent-samples t test is
effectively dealtwith by randomly sampling fromthe populations in question?
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32 Which of the statistical assumptions of the independent-samples t test is
most benefited by having n1 = n2?

Computer Work

33 Weobserve that people seem to be happier when they are wearing a new arti-
cleofclothing.To test this,weprovidea small randomsampleof studentswith
new t-shirts and instruct them towear the shirts all day. At the end of the day,
we ask theseparticipants to rate, ona10-pointLikert scale, theirhappiness (or
what social psychologists call “subjectivewell-being”).A control groupof stu-
dents is also asked for this self-rating at the end of the day, but without the
experimental manipulation. Ratings for each participant are reported below.
Higher scores indicate greater happiness. Perform an independent-samples t
test on the followingdata set (α= .05) and interpret the findings.Are there any
assumptions that should give the researcher cause for concern?

Happiness

New t-shirt Control

8 4

7 6

9 5

6 4

8 6

4 4

5 6

3 8

8 3

5 5

7 3

9 7

34 Social psychologists hypothesize that when a person believes they have
unintentionally harmed someone, the person will bemotivated to compen-
sate the victim. However, if compensation is not possible, the “harm doer”
will bemore likely to act generously to some other person (e.g. Carlsmith &
Gross, 1969). Fifty participants are randomly assigned to two treatment
conditions (25 participants per condition). Participants are told that they
will be in a problem-solving study. When a participant arrives, they are
asked to wait in the hallway while the apparatus is being set up. Soon
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afterward, two confederates, one carrying a camera, approach the partic-
ipant and ask if they could have their picture taken together. The camera is
handed to the participant, and the experimental manipulation begins. In
the Compensation condition, the camera is rigged so that it breaks when
the participant adjusts the focus. The confederates appear mildly dis-
traught over the mishap but, if offered, refuse any compensation. In the
Control condition, the camera does not break.
During the problem-solving phase of the study, participants are asked

to write down their answers to 75 arithmetic questions. A stack of
answer sheets that has been ostensibly completed by other participants
is next to the participant. At the end of the experiment, the researcher
asks if the participant would mind staying and scoring a few of the
answer sheets.
In order for the data to be in a form appropriate for a t test, let us assume

that all participants agree to help. The dependent variable is how many
answer sheets the participant scores before leaving. (If the dependent var-
iable were the percentage of people in each condition who agreed to help, a
different statistical analysis would have to be used [see Chapter 17].) The
research hypothesis is that participants in the Compensation condition will
score more answer sheets than participants in the Control condition. Per-
form an independent-samples t test on the following data set (α = .05) and
interpret the findings. Would our conclusion be different if we had per-
formed a one-tailed test at the same alpha level?

Number of answer sheets scored

Compensation condition

40 34 48 22 35 16 67 84

33 22 50 54 60 68 59 22

30 29 32 33 19 55 54 49

40

Control condition

22 30 40 22 35 16 40 79

13 22 25 40 54 61 59 22

28 24 20 18 19 42 34 40

29

35 A social psychologist hypothesizes that snake-phobic individuals would be
more likely to approach a snake if they believe that they are not experien-
cing anxiety (see Valins & Ray, 1967). Sixty college students who reported
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on a “questionnaire of fears” that they were very frightened of snakes
served as participants. Upon arriving at the laboratory, all participants
were asked to walk over to a large, nonpoisonous snake and pick it up.
Heart rate sensors were attached to them, and a speaker on the recording
device sounded heartbeats that the participants believed were accurate
recordings of their own heart rate. In the High-Arousal condition, partici-
pants heard a heart rate that was 120 beats per minute. In the Low-Arousal
condition, participants heard a heart rate of 75 beats perminute. In truth, the
heart rates were prerecorded and did not reflect the true heart rates of the
participants. The scientific hypothesis was that participants in the Low-
Arousal condition, believing that they were not experiencing anxiety,
would walk closer to the snake than those who believed that their hearts
were beating fast. Participants were told that they could stop approaching
the snake whenever they felt too uncomfortable to continue. Markings on
the floor allowed the investigator to determine how close participants
were to the snake when they stopped their approach. Hypothetical data
are presented. Lower numbers reflect greater approach behavior. Perform
an independent-samples t test and interpret the findings. Set alpha at .05.
Approach behavior (in ft)

Low arousal

6.0 5.8 3.2 4.5 6.8 8.2

7.4 6.9 4.3 5.5 6.2 7.0

5.2 6.1 5.9 4.4 3.2 1.3

8.7 5.2 4.8 3.2 1.6 4.8

6.6 7.6 8.0 8.5 4.5 7.9

High arousal

2.0 3.8 2.2 4.5 5.8 6.1

1.2 2.2 2.3 4.5 3.2 4.0

2.2 1.1 5.9 3.4 3.2 1.3

6.7 4.2 8.8 3.2 1.6 4.8

6.6 5.6 4.0 8.5 4.5 7.9

36 One of the more exciting areas of recent research concerns the dispar-
ity between our perceptions of personal honesty and our practices of
deceit and cheating. Gino and Ariely (2012) examined the relationship
between creativity and honesty by having participants answer general
knowledge questions and then transfer their answers to a proper coding
form. These forms, the participants were told, mistakenly had faint
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impressions of the right answers on them from a previous project. By
secretly gaining access to both the participants’ original answers and
the answers they transferred to the coding forms, the researchers were
able to gain a measure of cheating. The participants had been premea-
sured on a task of creativity and placed into a high creativity group and
a low creativity group. The following data are representative of what the
researchers found. Higher numbers represent more occurrences of
cheating. Perform an independent-samples t test and interpret the find-
ings. Set alpha at .05.

High creativity

8 6 5 6 9 14

9 9 0 14 7 6

15 2 7 0 0 1

11 14 1 2 3 13

8 8 9 13 15 8

Low creativity

3 1 3 0 0 2

8 11 0 8 0 0

16 0 1 7 7 7

12 15 3 2 3 2

2 1 7 0 6 18
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10

Testing the Difference Between Two Means:
The Dependent-Samples t Test

10.1 The Research Context

The independent-samples t test is used to contrast means computed from two
unrelated samples of scores. In dependent sampling, each score in one sample is
related to another score in a second sample. Pairs of scores are formed by either
the way conditions are presented or the manner in which participants are
assigned to conditions. First, a discussion of the case in which pairs of scores
are formed by the way conditions are presented will be discussed. Then the
situation in which pairs of scores are formed by the manner in which partici-
pants are assigned to conditions will be considered. The appropriate t test
for dependent sampling is called a dependent-samples t test (also known as
a paired-samples t test, related-samples t test, or correlated-samples t test).

Repeated-Measures Designs

Most designs utilizing a dependent-samples t test for analysis are experimental
in nature. For that reason, the language of experimentation will be used in the
following sections. However, dependent sampling designs can be nonexperi-
mental. A repeated-measures design (or within-participants design) assesses
one group of participants under two or more treatment conditions; however, in
this chapter, only the case in which two treatment conditions are evaluated is
addressed.1 The following research example is presented as a between-
participants design and then as a repeated-measures design.
Suppose a cognitive psychologist is interested in assessing the relative merits

of two kinds of memory strategies that can be used to remember the names of
people. The first strategy involves imagery. A sample of participants is taught to
associate unfamiliar names of people with a relatedmental image of the person’s

1 Chapter 14 addresses the analysis of repeated-measures designs in which more than two
treatment conditions are used.
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face. For instance, when they are presented with a snapshot of the Hall-of-Fame
baseball player Ty Cobb, the participants could picture him eating corn on the
cob. The next time they see an image of the famous outfielder, these participants
will presumably think of corn on the cob and remember “Cobb.” The second
method uses repetition and employs a separate group of participants. When
viewing snapshots of people, these participants repeat the person’s name three
times before moving on. Because two separate samples of participants are used,
this is a between-participants design; each participant is only in one of the two
groups. In this case, an independent-samples t test would be used to compare
the means of the two groups.
This same study might also be conducted using a repeated-measures design.

Unlike the between-participants design in which participants are assigned to
one of the two experimental conditions (imagery vs. repetition), in the
repeated-measures design, all participants receive both experimental treat-
ments. Each participant supplies a pair of scores, one score for each condition.
In this way, the imagery method would be taught and assessed, and then the
repetition method would be taught and assessed. The means of the two
experimental groups are compared with a dependent-samples t test. The
repeated-measures design is an efficient design because the researcher can
use fewer participants in comparison with the between-participants design.
More importantly, the repeated-measures design also increases the powerwhen
testing the null hypothesis.2 The power of a statistical test is the probability of
correctly rejecting a false null hypothesis, the probability of avoiding a Type II
error. That is, if the null is actually false, how likely are we to find evidence to
show it is false? As likelihood increases, power increases. The power of a
dependent-samples t test is greater than the power of the independent-samples
t test. This is due to the ability of the dependent-samples test to remove some of
the variability associated with using different participants. (This concept will be
explored in greater detail in Chapter 14.) As a result, the denominator in the
dependent-samples test will be smaller than the denominator in the independ-
ent-samples test. Smaller denominators yield larger t values, and larger t values
are more likely to fall into the rejection region of a distribution.
Two research examples from the psychological literature are presented in the

following sections. A repeated-measures design is used in each instance, and a
dependent-samples t test can be used to analyze the data from these studies.

► Example 10.1 Lehman et al. (2013) tested a variety of hypothesis regarding
the features of music listened to and walking gait of the participants. Eighteen
individuals walked around while listening to a variety of different playlists. One
hypothesis concerned the influence of strong tempos. The research team found

2 See Chapter 11 for an extensive discussion of the concept of power.
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that stronger tempo songs influenced participants’ walking gait more so than
softer tempo songs. ◄

► Example 10.2 Addison (1989) tested the hypothesis that people perceive
bearded men differently from nonbearded men. Addison used a repeated-
measures design in which one group of participants rated pictures of bearded
(Condition 1) and nonbearded men (Condition 2) on a number of dimensions.
The results indicated that, compared with nonbearded men, males with beards
are rated as more masculine, more aggressive, stronger, and more dominant.
However, they are not viewed as more intelligent. ◄

Another example of repeated-measures design occurs when participants
supply scores both before and after a treatment. This type of repeated-measures
design is called a pretest/posttest repeated-measures design.3 It is useful when
evaluating behavior change that is caused by the introduction of an independent
variable. Studies that examine learning, performance, or therapy effects
frequently employ pretest/posttest designs.
Before leaving repeated-measures designs, it is important to note the

methodological challenges that are introduced when participants are measured
more than once. The primary issue concerns whether the second measurement
of a participant is influenced by the first measurement. If so, then the difference
between the participant’s two scores may be influenced by practice effects or
fatigue effects. This explanation competes with the independent variable and
creates a confound. There are potential methodological solutions for some of
these situations, but they are not always applicable. In the memory task
described above, it would be important to have two separate lists of names that
have been judged ahead of time to be of equal difficulty to memorize. Further-
more, it might be necessary to have half of the participants associate a particular
list of names with a particular mnemonic technique while having the other half
switch these associations; this is called counterbalancing. Furthermore, it
might be necessary to counterbalance the order of exposure – having half of
the participants experience the imagery condition first, while the other half
experience the repetition condition first. The statistical advantages of
repeated-measures designs are attractive, but these are often more than offset
by the corresponding methodological challenges that accompany them.
A full exploration of the reasons researchers decide to use one design or the

other are beyond the scope of this text. Please consult a research methodology
resource for more information.

3 More accurately, this is an example of a quasi-experimental design. There are some inherent
weaknesses with this type of design regarding the adequate control of all extraneous variables.
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Matched-Samples Design

Another type of design in which a dependent-samples t test is used involves two
independent but related samples of participants; the matched-samples (or
matched-participants) design. A matched-samples design derives its name
from the way participants are assigned to conditions. In this design, participants
are assigned based on prior information about the participants.
Imagine comparing two educational programs designed for a grade school.

One program uses behavior modification, emphasizing individually tailored
performance goals, positive reinforcement for increasing mastery of material,
and the provision of teaching machines. The other program employs the
Montessori method, a program in which students are free to learn in an unstruc-
tured environment. In this pedagogical system, the teacher makes learning
opportunities available and assumes that students will learn different topics
as their interests guide them to new content areas. When comparing the impact
of the two programs, the experimenter wants to ensure that the two groups are
the same for any important extraneous variable, like intelligence. (If the children
in one program had higher IQs than children in the other program, then IQ
could explain group differences instead of the educational program.) Random
assignment is an adequate technique to control participant variables (see
Chapter 1). However, it is unlikely that parents will allow their children’s grade
school educational experience to be determined by the random assignment of a
researcher.4 Another way to ensure that groups do not differ on an important
extraneous variable is to employ a matched-samples design. To do this, we
would obtain IQ scores for each student before beginning the programs. Next,
we would pair up students with identical IQ scores, one from each program.
Only students who could be paired with another from the other educational
system would be included in the study. This matching procedure controls IQ
between the treatment conditions.
Yet another way tomatch participants, but which would not work in the above

example, is to premeasure participants on some important variable, create
identical pairs based on this premeasure, and then randomly split the pairs
placing one in each condition. (See methodology texts for more detailed infor-
mation about forming matched samples and the methodological challenges that
accompany this procedure.)
This chapter will use the repeated-measures design to illustrate the depend-

ent-samples t test. However, the formulas and basic concepts of the test are the
same for any dependent sampling design that compares two means, including
matched samples.

4 The inability to assign randomly students to the type of educational experiencemakes this a quasi-
experimental study as well.
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10.2 The Sampling Distribution for the Dependent-
Samples t Test

The sampling distribution for the dependent-samples t test is based on
differences between means of dependent samples. Consider a repeated-
measures design in which one group of participants is exposed to two
treatment conditions. Since there are two measurements taken from each
participant, there are two samples of scores. Each sample represents a hypo-
thetical population, the population of potential participants operating under
each condition.

Using Dependent Sampling to Form a Theoretical Sampling
Distribution

The sampling distribution formed by dependent sampling is theoretically con-
structed in the following manner.

Step 1. Take one group of participants, and administer the two treatment con-
ditions, measuring the effects of each treatment and with each participant
supplying one pair of scores.

Step 2. For each participant, subtract the second score from the first. This gives
us one distribution of difference scores.

Step 3. Compute the mean of this distribution of difference scores, symbolized
as D.

Step 4. Using the same sample size, repeat steps 1–3 an infinite number
of times.

Step 5. Plot the relative frequencies of D to obtain the sampling distribution of
differences.

The sampling distribution is a distribution of mean differences. The mean of
the sampling distribution, symbolized as μD, will be the same as the difference
between themeans of the two hypothetical populations. If there is a difference of
five units between the two populations, then the mean of the sampling
distribution will be 5. If there is no difference between the populations, then
the mean of the sampling distribution will be 0. The null hypothesis is that
the mean of the sampling distribution is 0. This is the same as saying that there
is no treatment effect. Under the null hypothesis, μX − μY = μD = 0. (The X and Y
subscripts refer to the first and second set of scores, respectively.) Recall that the
mean of a sampling distribution is the same as the mean of the population from
which it is taken. Therefore, μMX

= μX , μMY
= μY , and μD = μD. Figure 10.1a

shows two populations with different means. Figure 10.1b is the sampling dis-
tribution of differences derived from the populations. (Ignore Figure 10.1c
for now.)
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The Standard Error of the Sampling Distribution
for Dependent Samples

The standard deviation of the sampling distribution is called the standard error
of the difference, or standard error. The estimate of the population standard
error of the difference is symbolized sD. The formula uses the standard deviation

µY= 70 80 = µX

(a)

Population
distributions

Sampling 
distribution 
of differences 
between means

t Distribution

µD= 10_

t= 0

(c)

(b)

Figure 10.1 In (b), the mean of the sampling distribution of differences, μD, equals the
difference between populationmeans, μX − μY, found in (a). In (c), the t statistic transforms the
sampling distribution to a t distribution with a mean of 0.
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of the difference scores, sD, divided by the square root of the number of pairs of
scores. Formula 10.1 computes the estimated standard error once sD is known.

The estimate of the standard error of the difference, sD

sD =
sD
np

(Formula 10.1)

where

sD = the standard deviation of the difference scores
np = the number of pairs of scores

The computational formula for sD is given in Formula 10.2.

Computational formula for the standard deviation of the difference scores, sD

sD =
ΣD2− ΣD 2 np

np−1
(Formula 10.2)

where

D = X − Y, a participant’s score in treatment 1 minus the same participant’s
score under treatment 2

np = the number of pairs of scores

A word of caution: Remember to calculate the standard error (sD) by dividing
sD by the square root of np. The standard deviation of the difference scores sD is
not equal to the estimate of the standard error of the difference sD.
Before discussing the formula for a dependent-samples t test, let us use raw

data to compute sD. Since sD is the estimate of the standard error of the sampling
distribution, it will be placed in the denominator of the t statistic.

■ Question What is sD for the following data set?

Solution

Scores

X Y D D2

5 3 2 4

6 4 2 4

7 7 0 0

6 7 –1 1

ΣD = 3 ΣD2 = 9
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Using Formula 10.2 to compute sD,

sD =
ΣD2− ΣD 2 np

np−1

sD =
9− 3 2 4

4−1
=

6 75
3

sD = 2 25 = 1 50

The standard deviation of the difference scores is 1.50. Now place 1.50 in the
sD formula.

sD =
sD
np

sD =
1 50

4

sD = 0 75

The estimate of the standard error of the difference is 0.75. Remember that
this estimate is the standard deviation for a distribution of means; for depend-
ent-samples t tests, the standard error is the standard deviation for a distribu-
tion of mean differences, given a particular sample size (np). ■

10.3 The t Distribution for Dependent Samples

To see if there is a difference between the means of two dependent samples, the
sampling distribution must be transformed into a t distribution, and the sample
mean difference must be positioned on it. Recall that the mean of the sampling
distribution will equal the difference between the means of the populations. The
null hypothesis typically assumes this difference to be 0, and the t test is set up
accordingly. The difference between the obtained sample means is divided by
the estimate of the standard error. This step registers how likely it is to get that
sample mean difference if the null hypothesis is true. In this way, a sample mean
difference is transformed and placed onto a t distribution. Similar to the
independent-samples t test, the proper formula for the dependent-samples t test
also acknowledges the contrast between sample means (MX −MY) and the
hypothesized difference between the populations (μX − μY) in the numerator
(see Formula 10.3). However, since μX − μY is normally hypothesized to be 0,
the formula typically used for this t test simplifies the formula by omitting this
term (see Formula 10.4).
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Dependent-samples t statistic

tobt =
MX −MY − μX −μY

sD
(Formula 10.3)

Dependent-samples t test

tobt =
MX −MY

sD
(Formula 10.4)

The tobt in these formulas is the number of estimated standard error units; the
sample mean difference is from the mean of the t distribution. Therefore, if t =
1.45, the mean difference (MX −MY) is 1.45 estimated standard error units
above the mean of the t distribution.
The degrees of freedom for the dependent-samples t test is np − 1, the number

of pairs of scores minus one. There is a different t distribution for every sample
size (i.e. every number of pairs of scores). Similar to the independent-samples
t test, the number of degrees of freedom is used to find tcrit in the t table
(Table A.2).

The Null and Alternative Hypotheses for the Dependent-Samples t Test

The null hypothesis states that the population means are the same. The alter-
native hypothesis states that the means are not the same.

H0 μ1 = μ2 or μD = 0

H1 μ1≠μ2 or μD≠0

The requisite formulas are now in place to conduct a dependent-samples
t test.

Worked Example
A cognitive psychologist is interested in the effects of alcohol intoxication on
learning and recall. A repeated-measures design is used in which one group
of participants is exposed to both an experimental as well as a control condition.
In the experimental condition, participants consume an amount of alcohol
sufficient to raise their blood alcohol level to 0.10%, the legal criterion for
intoxication in many states. While participants are intoxicated, slides of geo-
metric designs and a nonsense word printed below each design (e.g. “geostatic”
or “gravoserv”) are projected one at a time. After 20 presentations, the slides are
presented again, in random order, without the associated nonsense word. The
participants are to provide the word associated with each design. The dependent
variable is the number of incorrect responses.
The control condition is administered one week later. Different designs and

nonsense words are presented, but now the participants are given drinks that
taste like alcohol but contain no alcohol (placebo). Since improvement in
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performance between the experimental and control conditions may be because
the control condition comes after the experimental condition, one-half of the
participants are run through the control condition first, followed one week later
by the experimental condition. Table 10.1 presents the raw data (number of
errors) for each condition, as well as the computation of tobt.

Table 10.1 A worked problem using the dependent-samples t test.

Alcohol (X) Placebo (Y) D D2

8 4 4 16

12 8 4 16

6 2 4 16

4 6 −2 4

11 8 3 9

15 9 6 36

8 5 3 9

7 4 3 9

Mx = 8.88 My = 5.75 ΣD = 25 ΣD2 = 115

tobt =
MX −MY

sD
sD =

sD
np

sD =
D2− D 2 np

np−1

sD =
115− 25 2 8

8−1

sD =
115−78 3

7
sD = 5 27
sD = 2.30

sD =
2 30

8
sD = 0 81

tobt =
8 88−5 75

0 81

tobt =
3 13
0 81

tobt = 3.86
df = np − 1 = 7
tcrit = ± 2.365

Since tobt falls outside of the tcrit values, reject the null hypothesis that claims μX = μY.

The raw scores are number of errors in recall.
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A dependent-samples t test is used to compare the effects of alcohol on learn-
ing and recall. The procedural steps in the analysis and interpretation of the data
are presented in the following list:

Step 1. Define the null and alternative hypotheses:

H0 μX = μY
H1 μX ≠μY

Step 2. Set alpha. Alpha is set at .05.
Step 3. Compute tobt (see computations in Table 10.1).
Step 4. Locate the critical t value in Table A.2 in the Appendix. The degrees
of freedom is np − 1, that is, 8 – 1 = 7. Enter the left column of the t table,
and locate the number 7. Move to the column under alpha of .05 for a
two-tailed test. The critical value is 2.365 (understood as ±2.365 for a
two-tailed test).

Step 5. Compare the tobt of 3.86 with the critical value of ±2.365. Since tobt falls
outside of the critical values, the null hypothesis is rejected in favor of the
alternative hypothesis.

Step 6. Interpret the findings. Statistical evidence suggest learning and/or
recall of names is negatively affected by the ingestion of an intoxicating
amount of alcohol, t(7) = 3.86, p < .05. Additional research is needed to
see if other forms of learning are likewise affected.

A Measure of Effect Size: Cohen’s d

One secondary question that can be asked when a null hypothesis is rejected
concerns the size of the treatment effect. As noted in previous chapters, tobt
is not designed to measure effect size. A simple, direct, and often used effect
size measure is Cohen’s d. Here is the formula:

Cohen’s d for dependent-samples t test

d =
sample mean difference

standard deviation of difference scores
=
MX −MY

sD
(Formula 10.5)

MX −MY is used as the best estimate of the mean difference between the
two populations, and sD is the best estimate of σD, the standard deviation of
the population of difference scores. Notice, this only allows us to estimate
the effect size. As with previous versions of the statistic, Cohen’s d
reflects the difference between the means in standard deviation terms.
Larger d values reflect larger effect sizes. A word of caution, however, is
needed; Cohen’s d is susceptible to overestimating effect size in this partic-
ular test.
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10.4 Comparing the Independent- and Dependent-
Samples t Tests

As stated earlier, the dependent-samples t test is more sensitive to detect an
experimental effect than the independent-samples t test. In other words, the
probability of rejecting an incorrect null hypothesis is greater when using the
dependent-samples t test compared with the independent-samples t test, all
other things being equal. A good way to demonstrate this point is to imagine that
the alcohol and learning study (in the Worked Example) was conducted using
independent samples; that is, two unrelated groups of participants. Table 10.2
presents the summary statistics of the data in Table 10.1 and the computation of
tobt for an independent-samples t test. The obtained t value is 2.06, which just
misses the critical value of ±2.145. In this case, the difference in designs and type
of t test makes the difference between rejecting and failing to reject the null
hypothesis. This is largely because the use of a repeated-measures design and

Table 10.2 An independent-samples t test on the raw data of Table 10.1.

Alcohol Placebo

M1 = 8.88
s21 = 12 67
n1 = 8

M2 = 5.75
s22 = 5 90
n2 = 8

Formula for independent-samples t test

tobt =
M1 −M2

s21 n1−1 + s22 n2−1
n1 + n2−2

1
n1

+
1
n2

tobt =
8 88−5 75

12 67 8−1 + 5 90 8−1
8 + 8−2

1
8
+
1
8

tobt =
3 13

88 69 + 41 30
14

0 25

tobt =
3 13

9 29 0 25

tobt =
3 13
1 52

tobt = 2.06
df = n1 + n2 − 2 = 8 + 8 − 2 = 14
α = .05
tcrit = ± 2.145

Since tobt does not fall outside of the tcrit values, fail to reject the null hypothesis that claims
μ1 = μ2.
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the corresponding dependent-samples t test reduces the variability of the data,
making the standard error smaller (0.81 compared with 1.52) and generating
a larger tobt value (in terms of absolute value). If we can manage the methodo-
logical problems associated with a repeated-measures design and use a depend-
ent-samples t test to analyze the data, it will be statistically advantageous.

10.5 The One-Tailed t Test Revisited

The difference between a one-tailed and two-tailed t test was discussed in
Chapter 9. A one-tailed, or directional, test places the entire rejection region
in one tail of the t distribution. Consequently, for a given alpha level, the critical
value to which tobt is compared is smaller when using a one-tailed test. Therefore,
it is more likely for t values in the predicted direction to fall into the rejection
region. However, when using a one-tailed test, we will be unable to detect mean
differences opposite of the predicted direction. We have learned that one-tailed
tests are very problematic. Never should a directional test be used when testing a
theory, since findings that oppose a theoretical prediction may be important to
detect. The strongest justification for the use of a one-tailed test is when a course
of action will only be taken if the mean of a particular group is larger than the
mean of the other group. Box 10.1 presents a study in which a one-tailed depend-
ent-samples t test is used. Were the authors’ justified in using a one-tailed test?

10.6 Assumptions of the Dependent-Samples t Test

The assumptions for the dependent-samples t test are nearly identical to the
assumptions for the independent-samples t test (see Section 9.4). However,
two observations coming from the same participant (as in a repeated-measures
design) are clearly not independent. For the dependent-samples t test, it is
assumed that scores within a given treatment condition will be independent
of each other. In addition, the normality assumption for the dependent-samples
t test refers to the population of difference scores. Finally, just as in previous
tests, as np increases a test becomes robust to violations of this assumption.
The first published use of the t test utilized the dependent-samples version.

Box 10.2 provides a closer look at the study which employed it.

10.7 Interval Estimation of the Population
Mean Difference

Just as in previous chapters, we can use statistical information from the depend-
ent samples to generate an interval estimate for themean difference between the
populations. Since each potential sample mean difference drawn has a
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corresponding t value, we can use the t distribution and our obtained sample
mean difference (which is an unbiased estimate of the population mean differ-
ence) to generate a probability function for the value of the actual population
mean difference. Choosing tcrit values corresponding to different probabilities
within the t distribution allows us to create intervals with differing degrees of

Box 10.1 Is the Scientific Method Broken? The Questionable Use of
One-Tailed t Tests

This is another box in the series exploring the various reasons for the cur-
rent reproducibility crisis in the social, behavioral, and medical sciences.
Fellow researchers sometimes wonder if the use of one-tailed tests in
the literature occurs because it is the only way to reject the null hypoth-
esis. The following study may be a case in point. Buttery and White (1978)
were interested in the relationship between affective states (feelings) and
biorhythms. According to biorhythm theory, people experience a 28-day
emotional cycle. At the peak of the cycle, people are expected to be
cheerful and optimistic. At the bottom of the cycle, people are prone
to be irritable and negative.

Twenty participants were asked to provide ratings of 11 emotionally related
concepts. Ratings were obtained from participants at both the high and low
points of their emotional biorhythm. Since each participant supplied two scores,
a dependent-samples t test was conducted. The number of paired scores is 20;
therefore, the df is 19. The critical value for a two-tailed test when df = 19 is
±2.09. The critical value for a one-tailed test, with the same df, is 1.73. The
authors’ tobtwas 1.76, which they reported as evidence to reject the null hypoth-
esis given the use of a one-tailed test. This raises at least a couple issues. First,
how can readers know that the decision to run a one-tailed test was made
ahead of time, for this study or any other one that uses a one-tailed test? Sec-
ond, even if the authors decided on a one-tailed t test before the data were col-
lected, this decision fails to allow for the possibility that the direction of the
effect could have been contrary to their prediction. Perhaps people at the bot-
tom of their cycle are more cheerful than when they are at the top of their bio-
rhythm cycle. In an area that does not have strong theoretical or empirical
reasons for expecting a directional finding, the use of a one-tailed t test is highly
questionable. In this situation, the chance of a Type I error may be greater than
5%. The libertarian view taken bymany researchers toward the use of one-tailed
tests may be another reason for the current reproducibility crisis in the social,
behavioral, and medical sciences.

324 10 Testing the Difference Between Two Means



Box 10.2 The First Application of the t Test

The first application of a t test is found in Gosset’s classic 1908 paper, published
in the biostatistical journal Biometrica. A dependent-samples t test was applied
to data from a previously published 1904 study by Cushny and Peebles on the
effects of sleep medication.
The authors had used a repeated-measures design to contrast the effects of

dextro-hyoscyamine hydrobromide and laevohyoscyamine hydrobromide on
sleep duration. The participants used were ten residents from the “Michigan
Asylum for the Insane at Kalamazoo.” The following data are the changes in
hours of sleep from a baseline (no drug) period to the period under one or
the other drug. A positive score reflects an increase in sleep duration, and a neg-
ative score reflects a decrease in sleep duration, relative to baseline.
Since the t test had not been invented when Cushny and Peebles conducted

their study, the authors merely “eyeballed” the raw data and concluded that one
compound was more effective than the other. It turned out that their conclu-
sions were supported by Gosset’s subsequent statistical analysis. As we follow
the data analysis and the null hypothesis test, keep in mind that the convention
of using a 5% level of significance was not yet standard. The data using Gosset’s
dependent-samples t test is analyzed first, and then a test of the null hypothesis
is conducted following modern practices.

Patient Dextro-X Laevo-Y D D2

1 0.7 1.9 −1.2 1.44

2 −1.6 0.8 −2.4 5.76

3 −0.2 1.1 −1.3 1.69

4 −1.2 0.1 −1.3 1.69

5 −0.1 −0.1 0 0

6 3.4 4.4 −1.0 1

7 3.7 5.5 −1.8 3.24

8 0.8 1.6 −0.8 0.64

9 0 4.6 −4.6 21.16

10 2.0 3.4 −1.4 1.96

MX = 0.75 MY = 2.33 ΣD = − 15.80 ΣD2 = 38.58

tobt =
MX −MY

sD
sD =

sD
np

sD =
D2− D 2 np

np−1

sD =
38 58− −15 80 2 10

10−1

sD =
38 58−24 96

9
sD = 1 51 = 1 23

sD =
1 23

10
sD = 0 39

tobt =
0 75−2 33

0 39
tobt = − 4.05

df = np − 1 = 10 − 1 = 9
tcrit = ± 2.262

Since −4.05 falls outside of ±2.262, reject the null hypothesis that claims μX = μY.



certainty. The formula for an interval in which we can have 95% confident
follows:

Confidence interval for a population mean difference for dependent samples

LL= MX −MY − t 05sD

UL= MX −MY + t 05sD
(Formula 10.6)

where

LL = the lower limit of the confidence interval
UL = the upper limit of the confidence interval
t.05 = the critical value for a t distribution of a given sample size

Since we are generating an interval, two values are calculated, one being the
value at the lower end of the interval and the other at the upper end. As the
interval widens and becomes less specific, the confidence grows that the actual
mean difference falls within that window. A 95% confidence rate is typical, but
the above formulas could easily be adjusted to find a 90 or 99% confidence inter-
val simply by finding the corresponding tcrit values using the t table (Table A.2).

■ Question Using the same data from the alcohol and learning study explored
earlier in the chapter, find the 95% confidence interval for the population mean
difference in performance between the two conditions. (MX = 8.88; MY = 5.75;
ΣD = 25;ΣD2 = 115; np = 8)

Solution

Step 1. Identify the null and alternative hypotheses.

H0 μX = μY
H1 μX ≠μY

Step 2. Set the confidence rate at 95% (equivalent to α = .05).
Step 3.Using the t table, find the cutoff values beyond which lie 2.5% in the right
tail of the t distribution and 2.5% in the left tail of the distribution.With df = 7
and α = .05 (two-tailed test), the cutoff points are ±2.365.

Step 4. Compute the confidence interval.

LL= Mx−My − t 05sD

UL= Mx−My + t 05sD

From having worked the problem previously, we know

MX −MY = 3 13

sD = 0 81
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LL= 3 13−2 365 0 81 = 1 21

UL= 3 13 + 2 365 0 81 = 5 05

Step 5. Interpret the findings. Statistical evidence suggests we can be 95% con-
fident that ingesting an intoxication amount of alcohol negatively affects
learning and/or recall of names in this particular experimental task by some-
where between 1.21 and 5.05 names. ■

10.8 How to Present Formally the Conclusions for a
Dependent-Samples t Test

Proper reporting of inferential statistics can be challenging. Following are
examples of how to report, in sentence form, a rejection of the null as well as
a fail to reject the null. If rejecting the null, a sentence might read, “A depend-
ent-samples t test found statistical evidence suggesting learning and/or recall of
names is negatively affected by the ingestion of an intoxicating amount of
alcohol, t(7) = 3.86, p < .05.” If we also wanted to include a measure of effect
size, the sentence could finish with, “…t(7) = 3.86, p < .05, d = 1.36.” If failing
to reject the null, a sentence might read, “A dependent-samples t test did not
find statistical evidence suggesting learning and/or recall of names to be affected
by the ingestion of an intoxicating amount of alcohol, t(7) = −1.62, n.s.” For a
more detailed analysis of the style, symbols, and punctuation used in these
sentences, please see Section 8.8.

Summary

In dependent sampling, each score in one sample is related to another score in a
second sample. Pairs of scores are formed either by matching or by the use of a
repeated-measures design. Matching is a method used to assign participants to
groups so that a particular important variable cannot account for the results of
the study. A repeated-measures design exposes each participant to every con-
dition in the study. The sampling distribution for the dependent-samples t test
is based on differences between means of matched or paired samples. The mean
of the sampling distribution of differences equals the difference between means
of the populations. The null hypothesis for the dependent-samples t test is
μX = μY or μD = 0. The alternative hypothesis is μX ≠ μY or μD ≠ 0.
A dependent-samples t test can be performed on pairs of scores. This t test is

more powerful than an independent-samples t test because, all other things
being equal, there is less variability associated with paired scores. This means
the resulting t values tend to be larger and, as a result, more likely to fall into
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the rejection region. If the null hypothesis can be rejected, a version of Cohen’s d
can be calculated and used as a measure of effect size.
The assumptions of the dependent-samples t test are very similar to the

assumptions for an independent-samples t test. However, dependently sampled
scores are obviously not independent between conditions. For this test, the
assumption pertains only to scores within a given condition.
As with the independent-samples t test, the standard error, sample means,

and the t distribution can be used to create a confidence interval for the actual
value of the difference between the means of the two populations.

Using Microsoft® Excel and SPSS® to Run
a Dependent-Samples t Test

Excel

General instructions for data entry into Excel can be found in Appendix C.

Data Entry
Enter all of the scores from the samples into two adjacent columns, one sample
in each column. Make sure the data from each participant is placed into the
same row across the two columns. (See Figure 10.2 for an example.) This is cru-
cial; it is needed to establish a difference score for each participant. Label the
columns appropriately.

Alcohol Placebo

8 4 t-Test: paired two sample for means

12 8

6 2 Alcohol Placebo

4 6 Mean 8.875 5.75

11 8 Variance 12.69 643 5.928571

15 9 Observations 8 8

8 5 Pearson correlation 0.769 782

7 4 Hypothesized mean difference 0

df 7

t Stat 3.85 104

P(T<=t) one-tail 0.003 142

t Critical one-tail 1.894 579

P(T<=t) two-tail 0.006 284

t Critical two-tail 2.364 624

Figure 10.2 A worked example of using Microsoft Excel to calculate a dependent-samples t
test value.
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Data Analysis
1) Excel has built-in programs for many inferential tests, including the depend-

ent-samples t test. To access it, click on the Data tab on the top menu and
then clickData Analysis. If this option is not found, the Data Analysis Tool-
Pak needs to be installed. See Excel instruction materials for how to install
this feature.

2) With the Data Analysis box open, select t-Test: Paired Two-Sample
for Means.

3) Input the data range for one variable in box Variable 1 Range and the data
range for the other variable in box Variable 2 Range. (If the labels were
included in the range, make sure to click the Labels box to exclude
those cells.)

4) Decide on an Output option. The default is to place it on a separate
worksheet.

5) Click OK.
6) The output box will present the means, variances, and observations

(sample sizes). Additionally presented will be the Pearson correlation
(covered in Chapter 15), hypothesized mean difference (0, unless other-
wise specified), degrees of freedom (labeled df ), and observed t value
(labeled “t stat”), as well as the critical scores and probabilities for
both one- and two-tailed versions of the test. Compare “t stat” with either
the probability value (labeled P(T<=t) two-tail) or the critical score
(labeled t Critical two-tail) associated with the two-tailed test to make
a decision regarding the null hypothesis. (See Figure 10.2 for a worked
example.)

SPSS

General instructions for inputting data into SPSS can be found in
Appendix C.

Data Entry
In SPSS, each row of the data file represents a participant. Since each participant
is being measured twice, we will need two columns to hold the raw data. Within
Variable View, label the two column headings using terms that will distinguish
between the two conditions of the study (e.g. Exp/Control, TechA/TechB,
Cond1/Cond2, etc.). Then, go to Data View. Input the sample data to the
appropriate column, being careful to keep the data from each participant within
the same row; this will be essential for creating the proper difference score. See
Figure 10.3 for a worked example.
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Data Analysis
1) Click Analyze on the tool bar, select Compare Means, and then click

Paired-Samples T Test.
2) Highlight one variable, and use the right arrow key to move it into the Var-

iable1 box. Move the other variable to the Variable2 box in the same man-
ner. (Disregard the new row of boxes that are added underneath. These are
for running more than one dependent-samples t test at once.)

Alcohol Placebo

1 

2 

3 

4 

5 

6 

7 

8 

8 4

12 8

6 2

4 6

11 8

15 9

8 5

7 4

Figure 10.3 An example of entered data for a
dependent-samples t test in SPSS.

T-test
Paired samples statistics

Mean N
Std. 

deviation
Std. error

mean

Pair 1 Alcohol

Placebo

8.88 8 3.563 1.260

5.75 8 2.435 .861

Paired samples correlations

N Correlation Sig.

Pair 1 Alcohol and Placebo 8 .770 .025

Paired samples test

Paired differences

t dfMean
Std. 

deviation
Std. error 

mean

95% Confidence interval
of the difference

Lower Upper

Pair 1 Alcohol and Placebo 3.125 2.295 .811 1.206 5.044 3.851 7

Paired samples test

Sig. (2-
tailed)

Pair 1 Alcohol and Placebo .006

Figure 10.4 A worked example using SPSS to calculate a dependent-samples t test.
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3) Click OK.
4) The output will generate three boxes. The first box will identify some

descriptive statistics, including the sample means. The second box runs a
correlation analysis that can be disregarded. The third box will identify,
among other things we are not currently interested in, the mean difference
(Mean), the estimate of the standard error (Std. Error Mean), the obtained t
value (t), the degrees of freedom (df), and the probability of obtaining a t
value of that size given a true null and a two-tailed test (Sig. [two-tailed]).
It will not generate tcrit.We can find tcrit ourselves, or we can look at the given
significance level to see if it is equal to or lower than .05. If so, we can reject
the null. If it is not, we need to fail to reject the null. (Note: SPSS does not
compare the tobt value to a directional or one-tailed critical score.) See
Figure 10.4 for a worked example.

Key Formulas

The estimate of the standard error of the difference, sD

sD =
sD
np

(Formula 10.1)

Computational formula for the standard deviation of the difference
scores, sD

sD =
ΣD2− ΣD 2 np

np−1
(Formula 10.2)

Dependent-samples t statistic

tobt =
MX −MY − μX −μY

sD
(Formula 10.3)

Dependent-samples t test

tobt =
MX −MY

sD
(Formula 10.4)

Cohen’s d for dependent-samples t test

d =
sample mean difference

standard deviation of difference scores
=
MX −MY

sD
(Formula 10.5)

Confidence interval for a population mean difference
for dependent samples

LL= MX −MY − t 05sD

UL= MX −MY + t 05sD
(Formula 10.6)

Key Formulas 331



Key Terms

Dependent-samples t Test Counterbalancing
Repeated-measures Design Matched-samples Design

Questions and Exercises

1 Which of the following describes a situation in which a dependent-samples
t test would be the proper inferential test to use?
a Two separate groups of participants are sampled from two separate

populations; the samples will then be compared to see if there is a
difference.

b One sample of participants will be measured under two different
conditions, one a control condition and one an experimental
condition.

c One group of participants is used to obtain one sample and compared
with a known population mean.

d None of the above.

2 A ______ design measures each participant under each condition of the
study, while a ______ design premeasures participants, pairs them up based
on this measure, and then randomly assigns them to conditions.
a Repeated-measures; matched-samples.
b Matched-samples; repeated-measures.
c Repeated-measures; within-participants.
d Within-participants; repeated-measures.
e None of the above.

3 Why is it important when calculating a dependent-samples t test to keep
each participant’s data aligned across the conditions?

4 Think of a study where it would be necessary to employ counterbalancing.

5 Think of a study where it would be beneficial to use a matched-samples
design.

6 The sampling distribution for a dependent-samples t test is a distribu-
tion of:
a Mean differences gathered from two independent samples.
b Mean differences gathered from two dependent samples.
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c Means gathered from one population of raw scores.
d None of the above.

7 Explain the difference between sD and sD. Why is this difference
important?

8 Why is Formula 10.4 much more frequently used than Formula 10.3?

9 For a repeated-measures study comparing two conditions with 12 scores in
each condition, what is the df value for the t statistic?
a 11
b 12
c 22
d 24

10 A dependent-samples t result was as follows: t(21) = 2.31, p < .05.Which of
the following analyses is consistent with this statement?
a The study used a total of 23 participants and the null was not

rejected.
b The study used a total of 23 participants and the null was rejected.
c The study used a total of 22 participants and the null was not
rejected.

d The study used a total of 22 participants and the null was rejected.

11 Which of the following, if increased, would have little to no influence on
the effect size as measured by Cohen’s d?
a The sample size.
b The size of the sample mean difference.
c The sample variance.
d All three would clearly influence Cohen’s d if increased.

12 Which of the following can be seen as a clear advantage of an independent-
groups design over a repeated-measures design?
a It usually requires fewer participants to get stronger power.
b It eliminates the methodological problems associated with measuring

participants multiple times.
c It eliminates the need for a two-tailed test.
d All other things being equal, there tends to be a smaller error terms,

therefore larger t values.

13 Addison (1989) found that we perceive bearded men differently from non-
bearded men. Compared with nonbearded men, males with beards are
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rated as more masculine, more aggressive, stronger, and more dominant.
The researcher used a repeated-measures design in which one group of
participants rated pictures of both bearded and nonbearded men. The fol-
lowing data are hypothetical but were generated to reflect Addison’s
results regarding beardedness and masculinity. A score can range from
1 (feminine) to 10 (masculine).
a State the null and alternative hypotheses.
b Perform the appropriate inferential test.
c Identify the critical values for α = .05, two-tailed test.
d Reject the null hypothesis?
e If so, what is the effect size?
f What type of decision error might have been made?
g Properly present the findings.
h Are there any assumptions that should give the researcher cause for

concern?

Participant Bearded Nonbearded

P1 10 6

P2 8 8

P3 5 4

P4 7 3

P5 10 5

P6 6 6

P7 5 5

P8 10 8

14 For the same data as in Problem 13, find the 95% confidence intervals for
the actual difference in masculine ratings between those images of men
with beards compared with those without beards.

15 Ruth, Mosatche, and Kramer (1989) tested the hypothesis that people
would state a preference for purchasing a liquor product if the product
were advertised with sexual symbolism. One group of participants
was shown advertisements both with and without sexual symbolism.
In each condition, the participant was asked to indicate their
likelihood of purchasing the product. The following hypothetical data
are generated to yield results consistent with those found by the
researchers. Higher scores indicate a greater willingness to purchase
the product.
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a State the null and alternative hypotheses.
b Perform the appropriate inferential test.
c Identify the critical values for α = .05, two-tailed test.
d Reject the null hypothesis?
e If so, what is the effect size?
f What type of decision error might have been made?
g Properly present the findings.

Participant Sexual symbolism No sexual symbolism

P1 6 3

P2 5 5

P3 4 2

P4 5 3

P5 4 1

P6 6 3

16 An industrial psychologist working for a marketing firm wants to
know which of two cheeses are preferred by college students, Gouda or
Swiss. After tasting both, ratings are obtained that can range from 1 (lousy)
to 7 (fantastic).
a State the null and alternative hypotheses.
b Perform the appropriate inferential test.
c Identify the critical values for α = .05, two-tailed test.
d Reject the null hypothesis?
e If so, what is the effect size?
f What type of decision error might have been made?
g Properly present the findings.
h Are there any assumptions that should give the researcher cause for

concern?
i Are there any methodological issues that need to be cleared up?

Participant Gouda cheese Swiss cheese

P1 5 3

P2 7 6

P3 9 4

P4 8 7

P5 6 8
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17 For the same data as in Problem 16, find the 95% confidence intervals
for the actual difference in students’ ratings between the two types of
cheeses.

18 What is the advantage of being able to use a dependent-samples t test
instead of an independent-samples t test? (Hint: The answer is not that
the dependent-samples t test is easier to compute.)

19 A psychologist tests a new drug for insomnia. The average amount of
time (in minutes) it takes participants to fall asleep is assessed before
treatment, over a one-week period. These data are presented in the Pret-
est column of the following table. Posttest scores indicate the average
time to fall asleep during the following week in which the medication
is administered.
a State the null and alternative hypotheses.
b Perform the appropriate inferential test.
c Identify the critical values for α = .05, two-tailed test.
d Reject the null hypothesis?
e If so, what is the effect size?
f What type of decision error might have been made?
g Properly present the findings.

Participant Pretest Posttest

P1 120 30

P2 60 40

P3 90 30

P4 100 80

20 A preschool teacher would like to make sure the students rest during
quiet time. The teacher wonders if the children will relax more quickly
if a story is read to them or soft music is played. For one week, a story
is read every day at quiet time, and the average number of minutes it takes
each child to fall asleep is recorded. For the second week, soft music is
played every day at quiet time, and the same measures are taken. Assume
all methodological challenges have been addressed. Data for each child
are shown below.
a State the null and alternative hypotheses.
b Perform the appropriate inferential test.
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c Identify the critical values for α = .05, two-tailed test.
d Reject the null hypothesis?
e If so, what is the effect size?
f What type of decision error might have been made?
g Properly present the findings.

Participant Story Music

P1 6 4

P2 6 8

P3 9 7

P4 8 6

P5 8 10

P6 10 6

P7 12 5

21 Which of the methodological assumptions of the dependent-samples t
test is different from the assumptions for the independent-samples
t test?

Computer Work

For all of the following inferential tests, set α = .05 and use a two-tailed test
unless otherwise specified. Also, assume all methodological issues are properly
addressed.

22 A now antiquated study referenced in the Chronicle of Higher Education
(1990) showed students wrote papers of higher quality when they used a
PC instead of aMacintosh (Mac) computer. One explanation of the finding
was that the Mac was so user-friendly that students tended to write very
casually. The following hypothetical data are based on a repeated-
measures design. Each participant writes a paper using a PC and a Mac.
We will find that the interpretation of the dependent-samples t test is con-
sistent with the findings of the original study. Each raw score in the table
represents a composite measure of the length of the paper and its quality.
Higher numbers reflect greater quantity and quality. One wonders what
might be found today if the study were rerun using current models of both
types of computers.
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PC Mac PC Mac

95 80 29 32

88 70 88 66

99 88 42 42

79 54 55 39

80 80 71 65

77 87 97 84

92 75 75 72

55 34 45 65

79 72 84 77

65 70 73 56

23 A manufacturer of sunglasses wants to know if vision is affected by the
color of the lens. A test of vision is administered when participants wear
glasses with a blue lens and glasses with a yellow lens. Test the null hypoth-
esis that there is no difference in vision between the two sets of glasses.
Higher numbers indicate better vision.

Blue Yellow Blue Yellow

12 15 14 12

7 4 9 15

22 16 8 4

16 12 21 21

14 14 12 14

10 8 11 10

17 17 11 4

16 22 10 19

24 An orthopedic surgeon is interested in whether the firmness of a mattress
influences the amount of back pain experienced by patients. For one week,
all participants sleep on a firmmattress and provide pain ratings eachmorn-
ing. Amonth later, the same participants sleep on a soft mattress, again pro-
viding pain ratings each morning for a week. In the following table, higher
ratings indicate more back pain, with each rating an average for the week.
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Test the null hypothesis that there is no difference in pain ratings between
the firm-mattress condition and the soft-mattress condition. Since the sur-
geon desperately wants to avoid a Type I error, set alpha at .01.

Firm mattress Soft mattress

4 8

2 2

1 7

8 10

6 6

3 6

1 4

5 7

7 9

2 5

4 7

7 10

25 Imagine an internet provider wanted to know which of two package fea-
tures were more satisfying to their customers, a free music streaming
account or free basic TV. The company randomly surveyed customers
whose plan included both features. Satisfaction was determined by custo-
mers’ numeric responses to a question for each feature. The response scale
ranged from 1 (not at all satisfied) to 7 (completely satisfied). Test the null
hypothesis that each feature is equally liked. Properly present the findings.
Is there a potential problem with a statistical assumption? If so, which one
and why?

Customer Free music streaming Free basic TV

C1 6 4

C2 5 6

C3 7 4

C4 5 5

C5 6 5

(Continued)

Questions and Exercises 339



Customer Free music streaming Free basic TV

C6 5 7

C7 7 5

C8 7 5

C9 6 2

C10 4 6

C11 7 1

C12 6 7

C13 7 6

C14 6 3

C15 5 3

26 An academic psychologist notices that some students prefer to sit in the
same seat during every lecture, while others prefer to switch. The psychol-
ogist wonders if seating behavior has an effect on performance in the class.
For the third and fourth weeks of the semester, all students are assigned a
permanent seat for the two-week period. At the beginning of the fifth week,
students are assigned to different seats, and again are reassigned to differ-
ent seats at the beginning of the sixth week. Quizzes are given at the end of
weeks 4 and 6. Below are the scores for 15 students on each quiz. Test the
null hypothesis that seating behavior does not influence test performance.
Properly present the findings.

Participant Quiz 1 (same seat) Quiz 2 (different seats)

P1 2 5

P2 9 5

P3 2 8

P4 7 3

P5 4 5

P6 8 2

P7 10 6

P8 9 7

P9 6 8

(Continued)
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Participant Quiz 1 (same seat) Quiz 2 (different seats)

P10 5 4

P11 8 3

P12 4 6

P13 6 5

P14 6 7

P15 7 1

P16 8 7

P17 9 3

P18 6 5

P19 5 2

(Continued)
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11

Power Analysis and Hypothesis Testing

11.1 Decision-Making While Hypothesis Testing

In the experimental context, a hypothesis test is used to determine if there is a
treatment effect. The researcher attempts to reject the null hypothesis, which
always states that there is no effect due to treatment. (Even though hypothesis
testing is not limited to experiments, we will use the language of experimenta-
tion as we discuss statistical power.) Hypothesis testing using inferential statis-
tical tools is a decision-making process; as a result, there is always the possibility
of making a decision error. A Type I error is made when a true null hypothesis is
rejected; that is, the investigator states that there is a treatment effect when, in
fact, there is not. The probability of making a Type I error is controlled directly
when setting an alpha level. A Type II error is committed when a false null
hypothesis is not rejected. In other words, there is a treatment effect, but the
researcher does not find evidence of it and must decide that the null is still a
viable explanation. Analyzing the probability of making Type I and II errors
focuses attention on the mistakes that can be made. In this chapter, the topic
of hypothesis testing is approached from another angle. Instead of asking ques-
tions about the probability of making an error, we will explore ways of improv-
ing our chances of arriving at a correct decision. More specifically, if there is a
treatment effect, what is the probability that our test will detect it? The power of
a statistical test is the ability it has to reject a false null hypothesis. We can think
of power as test sensitivity. How sensitive is our inferential test to detecting an
effect, if one exists? It may also be helpful to recollect the concept of power in
visual enhancement systems like microscopes. The more powerful microscope,
the more likely small objects will be seen when inspected. A microbe that is
detected by a high-powered microscope may be unseen when inspected by
one possessing lower power.
In terms of probability, there is not a complementary relationship between

Type I and Type II errors; they do not sum to 1. If the probability of a
Type I error is .05, it does not mean that the probability of a Type II error is .95.
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These errors inhabit different “worlds.” In one world the null is true, and we are
measuring the chance of improperly inferring it is not (Type I error). In the other
world thenull is false, andwearemeasuring the likelihoodwewill not findevidence
to show it to be false. (Although the errors are not complementary, there is a rela-
tionship between them; to be described in Section 11.4.)Within each given world,
there is a trade-off as indicated inTable11.1. For example, if theprobabilityofmak-
ing a Type I error is .05, the probability of not rejecting a true null hypothesis is .95.
In other words, if there is a 5% chance of saying that there is an effect when, in fact,
there isnoeffect, it stands to reason that there is a 95%chanceof saying that there is
no effect when, in reality, there is no effect.
The probability of committing a Type II error is symbolized as β (beta). If the

probability of making a Type II error is β, then the probability of correctly reject-
ing a false null hypothesis is 1 – β. In other words, if there is a 20% chance of
failing to find an existing effect, there must be an 80% chance of correctly iden-
tifying an effect. The probability of correctly detecting an effect is the power of the
statistical test. Therefore, power equals 1 – β.

11.2 Why Study Power?

Understanding the concept of power will increase our “research IQ.” For exam-
ple, now that we know how t tests work, we have probably adopted the attitude
that large samples are preferred to small samples. Large samples give us better
estimates of population parameters and, therefore, make it easier to reject a false
null hypothesis. However, consider this situation: A friend is going to conduct a
study that evaluates the effectiveness of a new treatment for depression. Suppose
it is determined, prior to the treatment, that the patient population of depressed
individuals has amean depression score that is two standard deviations above the

Table 11.1 The four outcomes when rejecting or failing to reject a true or false null
hypothesis.

Our decision

True state of affairs

H0 is true H0 is false

Fail to reject H0

Correct
1– α

1– β

(95%)

Type II error
β

(20%)
Type I error

α
(5%)

Correct

(Power)(80%)
Reject H0

100% 100%

The values given to the Type I and Type II error are just examples.
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mean of a typical population. The goal of the treatment is to bring the depression
scores back into the normal range. Our friend asks us, “How many participants
should I use to see if the treatment works?” If we are only interested in determin-
ing if the treatment improves the scores to any degree, wemight suggest that big
samples are better than small samples. Our friend might respond by telling us
that their resourcing (time, energy, finances, and access to patients) allows them
to get as many as 500 participants. A sample of this size will allow our friend to
detect even a very small effect. However, would finding evidence of a rather small
effect be worth the time, energy, and financial resources? A better question for a
researcher to ask might be, “Does the treatment meaningfully reduce depres-
sion?” We might decide that a meaningful reduction for the depression scale
we are using is a drop in the average score of depressed individuals by more than
one standard deviation. If this is the case, the chances are that we will not need
500 participants to detect such a large effect. Understanding the concept of
power and the procedures of a power analysis can lead us to offer intelligent
advice to our friend regarding the number of participants needed to detect an
effect of a given size. In this situation, after a power analysis, we might be able
to tell our friend, “If you create a sample size of 40 patients, there is an 80% chance
you will be able to detect an effect size that is one standard deviation or more.
Reduce your sample size; save your money, time, and resources.” That would
be helpful information to know ahead of time, would it not?
Here is another example of how an understanding of power can raise our

research IQ. Suppose other friends are distraught over the failure of their study
to reject the null hypothesis. They had tested the hypothesis that viewing aggres-
sive pornography leads to negative attitudes towardwomen (which, by theway, is
the case; for example, see Donnerstein, 1980; Hald, Malamuth, & Yuen, 2009;
Malamuth, Heim, & Feshback, 1980). We examine the details of their research
method, including the sample size, and because of our grasp of statistical power,
we are able to tell them, “Given theway you conducted your study, there was very
little chance of rejecting the null hypothesis, unless the effect of viewing aggres-
sive pornography is exceptionally strong. It would be theoretically interesting, if
not pragmatically important, to be able to identify even a small effect. Do not give
up on the hypothesis; here is how you canmodify your study…”Apower analysis
is valuable inplanning a study aswell as evaluating a study after the fact.However,
clearly much more is gained by considering the issue of power before a study is
conducted. It is hard to justify the time and expense that go into running a study if
it has such little power that it is doomed to fail from the start.

11.3 The Five Factors that Influence Power

There are several factors influencing power, and some of these factors can be
easily adjusted by the researcher. The factors are: (i) the magnitude of the dif-
ference between the means of the two populations being studied, (ii) the size of
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the standard deviations of these population distributions (or sampling error),
(iii) the sample size used by the study, (iv) the alpha value selected, and
(v) the nature of the inferential test (one-tailed or two-tailed). The last two
are decisions made by the researcher; these are decision-driven factors. The first
three are data-driven factors. These can be understood by examining the math-
ematical mechanics of an inferential test. Think of a generic t test; it is composed
of a numerator comparing two means and a denominator composed of a meas-
ure of the variability in the distributions as well as the sample sizes being used.
Below is the formula for the single-sample t test. The denominator sM has been
replaced with an equivalent expression s n, so that each of the data-driven
factors that influence power can be identified. Other inferential tests cannot
be segmented this cleanly, but all inferential tests are composed of the same
three elements.

tobt =
M−μ
s
n

1
2
3

We will look at each of these three factors separately. As a working example
to help us explore them, let us suppose we want to evaluate the effectiveness of
a study program designed to increase scores on the Scholastic Achievement
Test – Verbal (SAT-V). Suppose we know that the national mean for the
SAT-V is 500. We want to know whether our sample of students, once having
participated in the program, will now show evidence that the program has
helped improve their SAT performance. The null and alternative hypotheses
can be stated as

H0 μ= 500

H1 μ≠500

Although the alternative hypothesis is stated specifically, μ ≠ 500, it is a rather
broad statement. We may reject H0 and accept H1 when μ is 550, and, under
certain circumstances, we may reject H0 and accept H1 when μ is 501. There-
fore, with H0 stated as μ = 500, the null hypothesis can be correct, a little bit
incorrect, or very incorrect. It may not surprise us to learn that the likelihood
a statistical test will find evidence of a difference increases as the difference
between the null and alternative means increases. (Think about it this way: given
equal error terms for denominators, the larger the difference between means in
the numerator, the larger the resulting t value. Large t values are more likely to
fall into the rejection region.) In other words, the power of the test will be influ-
enced by the size of the difference between the means. A researcher, wanting to
increase power, then, should create conditions that are believed tomaximize the
difference between means. In our example, assuming more time in the study
program leads to greater SAT-V improvement, the power to show the
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difference in an inferential statistical test should increase as participants spend
time in the study program.
The second data-driven factor is the amount of variance in the distributions of

raw data, which is reflected in the size of the standard deviation. If the two popu-
lations being sampled have similar means, high power can still be achieved if the
variability of the scores in the populations is low. This concept is hard to rep-
resent in the SAT-V example because the standard deviations are known to be
around 100. However, if we imagine the distribution of SAT-V scores to be
much more narrow (e.g. σ = 10), then an improvement of only 5 points or so
would be much more easily noticed. We will not spend too much time with this
factor since it is usually very hard, if not impossible, for the researcher to influ-
ence the standard deviations of populations or the samples that are drawn from
them. Nonetheless, as the researcher is able to shrink the standard deviation of
the scores, power to detect differences between population means increases.
The third data-driven factor that influences power is the sample size. As the

sample size increases, the estimate of the standard error decreases. If we are hav-
ing trouble understanding this, imagine a situation where the sample size is so
large that it is equal to N − 1 (one less than the total population). If a sampling
distribution were created using a sample of that size, would not the standard
error be virtually zero? Each and every sample mean found would be virtually
identical. As n increases, the error term decreases. If the null hypothesis is false, t
tests utilizing small error terms are much more likely to generate large t values.
As the standard error decreases, power is increased.
The first two data-driven factors, the difference between the means of the

populations and the standard deviation(s) of the distribution(s), are often com-
bined and referred to as the “treatment effect.” Recall that the null hypothesis
can be false to varying degrees. The extent to which the H0 is false is the size of
the effect in the population. When determining the power of an anticipated sta-
tistical test, the size of the effect must be specifically stated ahead of time. The
size of the effect is stated as the number of standard deviations the true popu-
lation mean is from the null population mean. Since we do not know the true
population mean (is it the null? is it something else?), questions of power take
the form of “what if” questions. “What if the true population mean is 0.25 stand-
ard deviations from the null population mean, then what is the probability of
detecting that difference with this inferential test in this research situation?”
or “What if the true population mean is 0.89 standard deviations from the null
population mean, then what is the probability of detecting that difference?”
Obviously, we want tomaximize our chances of discovering an effect in the pop-
ulation if one exists.
The second two data-driven factors, the standard deviation(s) of the

distribution(s) and the sample size, can also be thought of as being combined;
these two constitute the standard error. From this perspective, the researcher
can think about a proposed study in terms of the difference between the means
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(1) and the standard error (2 and 3). There is not one proper way to conceptu-
alize the data-driven factors that influence power, but it is important for
researchers to develop some strategy for thinking about measuring and adjust-
ing the power of a study prior to running it.

11.4 Decision Criteria that Influence Power

As noted earlier, in addition to the data-driven factors, power is also influenced
by policies adopted for decision-making; namely, the selection of an alpha level
and Type of t test (one- or two-tailed). The more we avoid the risk of a Type I
error, the more likely it is that we will make a Type II error if the null hypothesis
is false. Smaller alpha values correspond to more extreme tcrit values, which, in
turn, require larger t values to reject the null hypothesis. In these situations, a
false null is harder to detect. This is why the decision regardingwhat is an accept-
able Type I error rate influences the chance of making a Type II error. Some
researchers may try to have their cake and eat it too by setting a low alpha value
but then attempt to offset the implications of this decision by placing their entire
rejection region in one tail of the distribution, thereby making the tcrit value a bit
closer to zero and reducing the Type II error rate. (Recall the many concerns
related to the use of one-tailed t tests discussed in Section 9.3.)
A hypothetical study based on our working example is presented to further

clarify the concept of power and illustrate its calculation. The manner in which
we go about computing power will vary, depending on the experimental design
and type of statistical analysis used. The illustrative worked example below
involves a one-tailed, single-sample z test.

Worked Example
Aprivate company would like to offer a college entrance preparation course that
will help students increase their SAT-V (verbal) scores. Before marketing the
program, the company decides to evaluate the program’s effectiveness. The
president of the company comes to us with the following problem: “Our com-
pany is planning to evaluate the effectiveness of a course that we have developed.
This course is designed to increase the SAT-V test scores of students, and, as
you may know, the national average of the SAT-V is 500, with a standard devi-
ation of 100. We plan to sample 36 graduates of our program and determine
their mean SAT-V. We are not particularly interested in discovering if our pro-
gram increases scores by an average of only 5 or 10 points. However, we would
like to be fairly certain that our study will detect a 25-point difference. Given the
information I have provided, what is the probability that we will detect an effect
size of 25 points or more?”
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The president has given us all the information we need to answer the question.
Aswework toward the solution, examine theproblem from theperspective of the
sampling distributions implied by the problem. Figure 11.1 depicts two sampling
distributions. Figure 11.1a represents the casewhenH0 is true; the distribution in
Figure 11.1b represents the casewhenH0 is false by 25 rawpoints. Given the find-
ings of the study seem to be only meaningful if the training program increases
performance, and given our desire to minimize the Type II error rate, we have
decided to use a one-tailed z test. (Temporarily set aside any misgivings we
may have about one-tailed tests for the purpose of this worked example.) Since
we are conducting a one-tailed test, the critical value when α = .05 is +1.65
(instead of ±1.96). Figure 11.1a is the null distribution because it depicts the sam-
pling distribution of means when H0 is true. Figure 11.1b is the alternative dis-
tribution because it illustrates the sampling distribution of means when the null
hypothesis is incorrect by 25 raw points.
The first step in computing power is to identify the sample mean that corre-

sponds to the critical value, +1.65. This sample mean sits 1.65 standard errors

95%

μ0= 500

(a)

(b)

H0: μ = 500
Assumed to be true

zcrit= 1.65

Reject H0 if
M≥ 527.51

5%

Mcrit= 527.51

β
56%

Correctly
reject

Not reject 
when the null 
hypothesis should 
be rejected :

Power of statistical
test: 1– β
1–56% = 44%

H1 : μalt= 525
is, in fact, true

M= 527.51
μalt= 525

Figure 11.1 Sampling distributions of means. (a) Under H0 : μ = 500. (b) Under H1 : μ = 525.
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above the mean of the null sampling distribution. Since the cutoff is +1.65, the
formula used to identify the sample mean that is 1.65 standard errors above the
mean of the null hypothesis is

M = μ+ zcrit σM

M = 500 + 1 65
100

36

M = 500 + 1 65 16 67

M = 527 51

All sample means equal to or larger than 527.51 fall into the rejection region of
the null sampling distribution. Note that we are using the null sampling distri-
bution to define the rejection region since it is the null hypothesis that is directly
tested. If the null hypothesis is true, 5% of the means of the sampling distribu-
tion in a one-tailed test will fall above the mean of 527.51.
Now look at the alternative distribution in Figure 11.1b. Even though the true

population mean is 525, obtaining a sample mean of 525 would not place it in
the rejection region of the sampling distribution under the null hypothesis. We
would need a sample mean equal to or greater than 527.51 to reject the null
hypothesis. Now, if the true population mean is 525 and we need a sample mean
greater than 527.51, what is the probability, when we run our study, of randomly
selecting a mean from the alternative sampling distribution that falls at or above
527.51? It is another z score problem. A new symbol is specified here, μalt, to
indicate that we are using the mean of the alternative sampling distribution.
First, using the population mean of the alternative sampling distribution, trans-
form 527.51 into a z value.

z =
M−μalt
σM

z =
527 51−525

16 67

z = 0 15

The number 0.15 is the number of standard error units 527.51 is above themean
of the alternative distribution, 525. Next, using the third column of the z table
(Table A.1 in the Appendix), look up a z of 0.15. We find that the probability of
randomly selecting a sample mean above the critical mean of the alternative dis-
tribution is .44. (See the unshaded area of the alternative distribution in
Figure 11.1b.) Therefore, the power of the test is .44. Forty-four percent of
the sample means of the alternative distribution fall above the critical sample
mean of 527.51. In other words, the probability of rejecting the null hypothesis
in this particular research scenario is .44. This means that if we were to run this
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identical study multiple times, less than half of the time would we expect to get a
t value that would allow us to reject the null: the other times we would be failing
to reject the null and (unknowingly) making at Type II error. Of course, all of
this analysis is assuming that the effect of the training program is an increase of
25 points.
With the power analysis completed, we are now in a position to advise the

president of the company offering the SAT-V study program. Do we think
the study should be conducted as proposed? There is only a 44% chance of
detecting the effect of interest. In fact, there is a higher probability of making
a Type II error (.56) than there is of correctly rejecting the null hypothesis
(.44)! We should probably advise against it.
At this point two questions can be raised. First, what can the company do to

increase the power of the test? To answer this question, think about the three
data-driven factors that influence power. Can any of them be altered?Well, per-
haps the study program can be improved, thus increasing the hypothesized dif-
ference between μnull and μalt. More easily, however, the sample size of 36 can be
increased.
Second, how much power is enough? There is no set or easy answer to this

question, but most researchers would like power to be in the range of
.70–.90 with .80 as the conventional probability value. When a statistical test
has a .80 probability of correctly rejecting the null hypothesis, there is a .20 prob-
ability of making a Type II error. We may note that a probability of .20 is four
times greater than the conventional .05 probability of making a Type I error.
Researchers are usually comfortable with that kind of trade-off. It reflects a con-
servative approach to hypothesis testing; concluding that there is an effect when
there is no effect is considered a more serious mistake than failing to identity an
effect when, in fact, there is one. However, each separate test of a hypothesis
requires an investigator to consider what the acceptable probabilities are for dif-
ferent types of errors. The nature of the consequences for each type of error will
guide the decision-making process.

11.5 Using the Power Table

The preceding section discussed how to compute the power of a one-tailed
single-sample z test. The problem required knowing the sample size, the pop-
ulation standard deviation, the mean hypothesized under the null hypothesis,
and a mean specified under the alternative hypothesis. There is a shortcut
method, which can be used to arrive at the power of an inferential test.
A couple simple calculations and a power table is all that is needed. Let us
use the data from the worked example to illustrate this method for determining
the power of a statistical test.
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To use the power table (Table A.3), two new terms must be introduced: δ
(delta) and γ (gamma), the symbol for the size of the treatment effect.

Formula for delta

δ= γ n (Formula 11.1)

where

γ = the size of the treatment effect

Note that δ combines the size of the hypothesized treatment effect (γ) and the
sample size (n) into a single measure. Delta will be used by the power table
(Table A.3) to determine the proportion of the alternative sampling distribution
that falls into the rejection region of the null sampling distribution (recall
Figure 11.1).

Formula for gamma

γ =
μalt −μ0

σ
(Formula 11.2)

where

μalt = the mean of the alternative (treated) population
μ0 = the population mean when the null hypothesis is true
σ = the population standard deviation; if σ is unavailable, use s

Note in Formula 11.2 that γ, the size of the treatment effect, determines the
number of standard deviations between the population mean hypothesized
by the null and the population mean specified when the null hypothesis is false
(the proposed true population mean). If, by chance, the smaller mean is sub-
tracted from the larger mean in the numerator, gamma will be a negative value.
However, the resulting power value is always understood to be positive. There is
no concept in statistics called negative power.
Keep inmind, this process does not discover the true populationmean; rather, it

is hypothetically specified ahead of time. A power analysis does not identify the
difference between population means, and it does not test to see if there is a dif-
ference between population means. The power analysis merely calculates the
probability of detecting a specified difference between population means (assum-
ing that specified difference exists). Here is how the shortcut method works.
The steps below use the data from the worked example to demonstrate how to

use the shortcut formulas.

Step 1. Use Formula 11.2 to specify an effect size, γ (gamma).

γ =
μalt −μ0

σ
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γ =
525−500

100

γ =
25
100

γ = 0 25

The number 0.25 is the number of standard deviation units the treated popu-
lation mean is from the mean of the population stated in the null hypothesis.

Step 2. Compute delta using Formula 11.1.

δ= γ n

δ= 25 36

δ= 1 50

Step 3. Determine the power by using the power table (Table A.3). In the
worked example, use a one-tailed test, with α = .05. With δ computed as
1.50, find δ in the first column of the table, and move to the column for
α = .05, one-tailed test. The power of the test is .44, the value found in the
original worked example.

As a review, let us use the power table to demonstrate the relationship between
effect size and power as presented in Section 11.3. Suppose the effect that we
want to detect is actually 50 raw score units from the population mean of
500. The power question now becomes, “What is the power of my test to detect
a population difference of 50 raw score units?” Use the data and sample size of
the worked example.

γ =
μalt −μ0

σ

γ =
550−500

100
γ = 0 50

δ= γ n

δ= 0 50 36

δ= 3 00

Now go to the power table with δ = 3.00, for a one-tailed test when α = .05. The
power of the test jumps to .91. If the populationmean for the alternative hypoth-
esis is 550, we now have a 91% chance of detecting the effect.
Let us try onemore. Recalculate δwhen μalt = 505. The power of the test drops

to .12. There is only a paltry 12% chance of detecting a false null hypothesis if the
effect of the training course creates a new population mean is 505. These exer-
cises demonstrate how effect size (factors 1 and 2) influences the power of a sta-
tistical test. As the effect size increases, so does statistical power.
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These hypothesized effect sizes do not need to be drawn out of thin air. Many
times researchers establish hypothesized effect sizes based on existing theory
and/or previous research findings (see Section 11.6 for a broader discussion).
Please note that power analyses have nothing to do with what we hope to be
the effect size. A power analysis essentially says, “Given a particular effect size,
alpha, test type, and sample size, here is the probability that the null hypothesis
will be correctly rejected.” This information can be very valuable to a researcher
who is contemplating the start of a research project.

11.6 Determining Effect Size: The Achilles Heel
of the Power Analysis

Researchers can directly control the alpha level and the type of test to use
(one- or two-tailed), and, within reason, they can select the sample size.
The problem arises when they have to specify the size of the effect. The
difficulty inherent in postulating an effect size might be one reason why
researchers do not routinely perform a power analysis before conducting a
study. However, we are not rendered helpless when having to state an effect
size. There are two good sources of information for making a reasonable state-
ment about effect size.
First, most studies have a heritage. Although we may be the first to conduct

this exact study, it is likely that others have been working in this area as well,
studying the same phenomenon. By familiarizing ourselves with effect sizes
other researchers have detected, we can make an estimate of the effect size that
applies to our experiment. It is true that this effort is hampered by unwillingness
in the scientific community to publish failed findings (see Boxes 8.1 and 11.1).
Nonetheless, we can oftentimes gain a better understanding of what effect size
we should expect by familiarizing ourselves with the existing published litera-
ture on our topic. Second, we may be able to conduct a pilot study. A pilot study
is a trial run of the study we wish to conduct. It is conducted with a sample smal-
ler than we will ultimately use and provides an opportunity to adjust experimen-
tal procedures. By examining the data of the pilot study, we can get a feel for the
strength of our independent variable, as well as the amount of variability in
the data.
For example, one of the authors of this textbook (Grimm), as a graduate

student, was involved in a research project to examine self-control techniques
that could be taught to people to help them tolerate pain. A pilot study was
run where it was discovered there is a tremendous variability among people
in their ability (willingness) to tolerate a painful stimulus. The sample data
allowed us to take a sneak peek at the variability relating to pain tolerance.
As we recall from Section 11.3, increased variability reduces power.
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Formula 11.2, the formula for gamma, mathematically shows how increased
variability decreases the effect size.

γ =
μalt −μ0

σ

Box 11.1 Is the Scientific Method Broken? The Need to Take Our Own Advice

Using the 1960 volume of the Journal of Abnormal and Social Psychology, Cohen
(1962) conducted an interesting study. Although the authors of the articles in
that volume did not use power analyses, Cohen computed the power of the
statistical tests used in each of the studies. According to Cohen’s (1962) early
guidelines, a small effect size is about .20; a medium effect size is around .50;
and a large effect size is around .80. Assuming that the researchers would want
to detect a medium treatment effect size, the average power of the tests in that
volume was .46. This means that, on the average, there was only a 46% chance
of detecting a medium effect size! This realization prompts us to contemplate
just how many other studies might have been potentially included in the liter-
ature but were abandoned, perhaps prematurely, because not enough power
was marshaled to detect a treatment effect. Cohen’s admonition to use power
analyses became widely known among researchers (Cohen, 1977; Sedlmeier &
Gigerenzer, 1989). Yet, 24 years later, a study similar to Cohen’s (1962), using the
1984 volume of the Journal of Abnormal Psychology, found that the average sta-
tistical power for detecting amedium effect size had actually gone down to only
.37 (Sedlmeier & Gigerenzer, 1989)! There is little reason to believe the situation
is much different today. Despite the urging of statisticians, power analyses have
not become a standard practice among researchers.

If a performed and reported power analysis were to become a standard step
in the research process, it would both give studies that are investigating a gen-
uine treatment effect a better chance of finding supporting evidence and give
studies that end up failing to reject the null hypothesis more validity. For
instance, if a study was set up to detect a small difference and the appropriate
statistical power was generated for the test, then a finding of a failure to reject
the null might be seen as theoretically and practically important to other
researchers. For one thing, it might keep others from spending time and energy
asking the same question, and, secondly, it might stimulate the development of
different ideas about how that part of the world works. Unfortunately, power
analyses tend not to be performed, and null findings tend not to be published
(see Box 8.1). Scientists can be a stubborn bunch, and the standards of the sci-
entific process can be hard to change. However, with each new generation of
scientists comes a new opportunity to do things differently. Will a new gener-
ation of researchers choose to use the tools of power?
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Because the variability in the sample data was so large, it was clear that the
treatment effect was going to be rather small. Now consider the formula for
δ (Formula 11.1):

δ= γ n

We know that a larger delta is associated with greater power. If gamma is small,
how can delta be increased? There is only one option: the sample size needs to
be increased. Therefore, because of the pilot study, we were able to determine
that our treatment effect was likely to be small, necessitating the need for a large
sample size to detect the treatment effect we believed to be present.

11.7 Determining Sample Size for a Single-Sample Test

In this section, we will discuss how to explicitly arrive at a sample size that will
allow a researcher to detect a given effect size. Sometimes we will not have any
reliable information to help us specify a treatment effect size. In these situations,
we can still perform a power analysis. All we need to do is ask ourselves, “What
size of a treatment effect do we want to detect?” Once this is answered, the fol-
low-up question becomes, “How many participants do we need to detect an
effect of this size?”
To determine the sample size required to detect a specified effect size, we will

need to state, beforehand, α, γ, the desired power, and our preference for a one-
or two-tailed statistical test. Alpha is usually set at .10, .05, or .01, with .05 being
the most common value for alpha. Desired power can be set at any value from
just above 0 to just below 1. However, setting power low, for instance, .20, is
saying that we will accept a 20% chance of detecting a treatment effect of that
given size. (Stated in other terms, we are accepting an 80% chance of making a
Type II error if the null hypothesis is false.) With the odds so low of correctly
rejecting the null hypothesis, the study will most likely be a waste of time. Why
not set the desired power at .99? The problem here is similar to the trade-off
between Type I and Type II errors that was discussed in Chapter 8. Recall that
in trying to minimize a Type I error, we could set alpha at .0001, but the prob-
ability of a Type II error would then become unacceptably large. Likewise, if we
insist that the power of our statistical test be .99, we will pay a big price in the
vast number of participants required. As stated earlier in the chapter, the con-
ventional compromise is to set power at .80.
Let us return once again to the worked problem in which we are a consultant

to a company that wants to market a course for improving SAT-V scores. Recall
that the population mean is 500 with a standard deviation of 100; the company
wants to detect an average increase in SAT-V scores of 25 points (525). The
company proposed to use 36 participants. We found that if only 36 participants
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are used, there is only a 44% chance of detecting an effect. Since 44% is unac-
ceptably low, we now must advise the company how many participants should
be used to detect a 25-point difference.

Formula for determining sample size for a single-sample t test

n=
δ

γ

2

(Formula 11.3)

Remember that γ is not the number of points between 500 and 525; rather, γ
is the number of standard deviations 525 is from 500. In our example, γ was
calculated as 0.25: (525 − 500)/100 = 0.25. Now we need delta, δ, to find n in
Formula 11.3. We can use Table A.3, locate the desired power in the proper
column, and work backward to determine δ, or we can use Table A.4, input
the desired power, and let the table determine δ. Let us use Table A.4 since
it generates a δ that is more precise. Since our desired power is .80, look
down the left-hand column and find .80. The column immediately to the
right is for a one-tailed test, when α = .05. Here we find δ = 2.49. We
now have the values needed to use Formula 11.3 to determine the needed
sample size.

n=
δ

γ

2

n=
2 49
25

2

n= 99

To detect a 25-point difference in SAT-V scores, the study must include
99 participants.

■ Question Suppose we wanted to be almost certain of detecting a treatment
effect size of .25, so power is set at .99. How many participants would we
now need?

Solution Using Table A.4 to find δ for a power of .99, δ is found to equal 3.97.

n=
3 97
0 25

2

n= 252

Increasing the probability of detecting a 25-point difference between the popu-
lations from .80 to .99 requires using 153 more participants. If participants are
easy to come by and the cost of gathering data is low, the investigator may want
to use a level of power greater than the conventional 80%. ■
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11.8 Failing to Reject the Null Hypothesis: Can a Power
Analysis Help?

Hypothesis testing is a probabilistic endeavor. Whether we are referring to a
Type I error, a Type II error, or power, there is always some probability asso-
ciated with every aspect of hypothesis testing. Moreover, there is no way to
prove the null hypothesis. If we do not identify an effect, we say that we have
“failed to reject” the null hypothesis. We do not claim that we have proved
the null hypothesis to be true; we cannot even say that we have evidence that
the null hypothesis is true. All we can say is that the null hypothesis was not
rejected.
Researchers are usually in the position of wanting to reject the null hypothesis.

Rejecting the null hypothesis typically means that an effect has been identified,
which is something to report to other researchers. However, what do we say if
we fail to find an effect? Studies that fail to reject the null hypothesis are often
assigned to the circular file (the wastepaper basket). (See Boxes 8.1 and 11.1 for
brief discussions as to why this practice is unfortunate.) However, a researcher
may attempt to learn from a failed study, by either redesigning it or adjusting the
hypothesis. A power analysis of a failed study may show that there was low
power in the original design to detect the hypothesized effect. If so, the study
can be run again with more participants. However, what if the researcher con-
ducts a power analysis before the study, conducts the study so that the power of
identifying a small effect is, say, .80, and then fails to reject the null hypothesis?
Is this a potentially important finding? Perhaps. Although the researcher could
not conclude that the null hypothesis is true, if the study is shown to have high
power, it could be asserted that if there is a difference in population means, that
difference is likely to be very small and perhaps not worthy of additional
research. Even null findings like this can be important.
Consider a different example. There are times when failing to reject the null

hypothesis can have important theoretical and/or practical significance. Sup-
pose a researcher wants to see if there is a decrease in intellectual performance
when antipsychotic medication is administered to schizophrenics. One sample
of schizophrenic patients receives the drug, and another sample receives a pla-
cebo. The patients are later tested, and the two groups were found not to differ
in intellectual performance. This is a useful finding but only if the analysis has
sufficient power to detect a small difference. Box 11.2 more closely examines this
issue by presenting a study where the researchers argue that a failure to reject
the null hypothesis has theoretical value.
This chapter provides us with only a brief introduction to the topic of power.

Power analyses can be conducted in many more test situations than are covered
in this textbook. The interested reader is referred to textbooks pertaining to
advanced statistical analysis.
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Box 11.2 Psychopathy and Frontal Lobe Damage

Psychopathy (more generally referred to as antisocial personality disorder) is a
diagnostic label applied to people who exhibit a reckless disregard for the rights
of others, an inability to maintain relationships, irresponsibility, lying, lack of
remorse for transgressions, interpersonal manipulations, and an inability to sus-
tain employment. Some clinicians have noted a behavioral similarity between
psychopaths and individuals who have frontal lobe damage (Elliott, 1978; Schal-
ling, 1978), although the connection may not be as firm as once believed (e.g.
Brower & Price, 2001).
A study by Gorenstein (1982) seems to support the notion that psychopathic

behavior is, in part, due to cognitive deficits associated with the frontal lobe of
the cortex. (One function of the frontal lobe is to inhibit impulsivity.) Gorenstein
administered a number of problem-solving tasks to a group of psychopaths and
two control groups. These tasks have previously shown sensitivity in identifying
frontal lobe damage. Gorenstein found a significant difference between the
means of the psychopathy and control groups, with the psychopaths showing
poorer performance.
Robert Hare, a well-known researcher in the area of psychopathy, criticized

the findings of Gorenstein. Hare raised two important issues (Hare, 1984). First,
Hare questioned the adequacy of Gorenstein’s diagnostic methods for classify-
ing individuals as psychopaths. Second, Hare pointed to a confounding variable:
there were a disproportionate number of individuals with substance abuse pro-
blems in the psychopathy group (85%). Using a different research design, Hare
administered the same problem-solving tasks to three groups of participants
classified as high, medium, and low on measures of psychopathy. Hare failed
to reject the null hypothesis for any of the problem-solving measures. In other
words, there was no statistical evidence of a difference found between the
groups. Hare concluded that “…there is little support for the position that psy-
chopaths have specific cognitive deficits in the processes associated with fron-
tal lobe functioning” (p. 139).
Note that Hare is making an interpretation of the null hypothesis, which is a

risky proposition since the null hypothesis cannot be proven true. However, let
us see if a power analysis can justify Hare’s “assertion of the null hypothesis.”

Power Analysis

As previously noted, the power of a statistical test is influenced by several fac-
tors, including the treatment effect size. One difficulty in conducting a power
analysis is the specification of the treatment effect size. In 1988, Cohen offered
revised guidelines for interpreting effect sizes: .10 (small), .25 (medium), and
.40 (large). The larger the effect size in the population, the more powerful
the statistical test.
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Suppose we postulate a medium effect size (using current standards) and
ask the following question: “What is the probability that Hare’s analysis
would detect an effect size of .25?” Using the alpha level and sample size
stated in the article, power was determined to be .299.1 In other words,
Hare had only a 30% chance of detecting a medium effect size. Accordingly,
there was a 70% chance of making a Type II error; that is, failing to reject a
false null hypothesis. When it is considered that power should ideally be
approximately 80%, Hare’s significance test seems inadequate. About 150
participants would have had to be included in the study to have had an
80% chance of detecting a medium effect size. Hare used only
46 participants.

Interpreting a failure to reject the null hypothesis as saying something impor-
tant about the phenomenon under study, when there is only a 30% chance of
rejecting the null hypothesis, is difficult to justify. However, in conducting our
power analysis, we selected an effect size of .25. Statisticians recommend a use-
ful strategy for specifying effect size: find other studies in the same area, and
estimate the effect size from their sample data. Since Hare’s study was based
on the findings of Gorenstein, there is information available to estimate the
effect size in the population.

Based on the group means, standard deviations, and the number of par-
ticipants per group reported in Gorenstein’s article, the estimated effect size
was found to be .56, much larger than .25. Now, what implications does this
have for the power of Hare’s statistical analysis? Even with only 46 partici-
pants, the probability of detecting an effect size of .56 is .93! With a 93%
chance of correctly rejecting the null hypothesis, and only a 7% chance
of failing to reject a false null hypothesis (Type II error), there is a much
stronger justification for interpreting the importance of failing to reject
the null hypothesis.

Returning to the original intent of the research, what does all of this mean
about psychopathy and frontal lobe damage? Can a researcher conclude that
psychopaths do not have frontal lobe damage? In other words, is the null
hypothesis true? There is no way of knowing. What can be asserted is that it
is highly unlikely that there is a large difference between psychopaths and nor-
mal people in frontal lobe damage, at least as measured by the tests used in this

1 This power analysis was performed using Borenstein and Cohen’s software package (1988),
Statistical Power Analysis: A Computer Program. Obtained means and standard deviations for the
Wisconsin Card Sorting Test were taken from the Gorenstein (1982) and Hare (1984) articles.
A power analysis using the other “significant” dependent variables in theGorenstein study would not
alter the present findings.
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Readers should also know that power analysis software exists online. One very
handy program is called G∗Power. It is a free download and is easy to learn how
to use. It allows users to select the type of test to be run (e.g. t tests) and the
specific output variables needed (e.g. sample size, power, effect size). Once
selected, the program asks for the necessary input variables and then generates
the requested values.

Summary

The probability of rejecting a false null hypothesis is the power of a sta-
tistical test. Power is greatest when the magnitude of the treatment effect
is large. (The treatment effect is the number of standard deviations
between μalt and μ0.) Increasing the sample size in a study will also
increase the power of a statistical test. Furthermore, two features of
the decision criteria for hypothesis testing influence power: the desired
alpha value (Type I error rate) and the choice of a one- versus two-tailed
statistical test.
The conventional figure for the desired power of a statistical test is .80,

meaning there is an 80% chance of detecting a specified effect (if one exists).
There is a complementary relationship between power and a Type II error (β)
in that power equals 1 − β. If an investigator wants to advance a substantive
interpretation about the importance of failing to reject a null hypothesis, it
is essential that there has been sufficient power to detect a meaningful effect
size.
When calculating power, there are formulas and tables designed to aid in

quick analysis. There are also helpful and free resources available online such
as G∗Power.

research. On the other hand, since Hare’s statistical power was inadequate for
detecting a medium effect size, a researcher cannot conclude that there is not a
moderate difference between the groups in cognitive functioning.

The plausibility of “asserting the null hypothesis” lies on a continuum. It is
impossible to prove that there is no effect in the population. However, as the
power of a statistical test to detect smaller and smaller effect sizes increases,
an investigator can persuasively argue, “If there is an effect, it is probably quite
small, and most likely trivial.”
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Key Formulas

Formula for delta

δ= γ n (Formula 11.1)

Formula for gamma

γ =
μalt −μ0

σ
(Formula 11.2)

Formula for determining sample size for a single-sample t test

n=
δ

γ

2

(Formula 11.3)

Key Term

Power

Questions and Exercises

1 Power is the ability of a statistical test to:
a Incorrectly fail to reject null hypotheses.
b Incorrectly reject null hypotheses.
c Correctly fail to reject null hypotheses.
d Correctly reject null hypotheses.

2 How are the lenses of a microscope analogous to the concept of statisti-
cal power?

3 If β equals .10:
a The Type I error rate = .10.
b The Type II error rate = .10.
c Alpha = .10.
d Alpha = .90.

4 As the power of a statistical test increases, what happens to the
Type I error rate?

5 As the power of a statistical test increases, what happens to the Type II
error rate?

6 How is a hypothesized treatment effect calculated?
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7 How does the size of the treatment effect influence power?

8 Compute treatment effect sizes for each of the following problems.
a μ0 = 300, μalt = 345, σ = 70
b μ0 = 300, μalt = 345, σ = 20
c μ0 = 300, μalt = 310, σ = 20
d μ0 = 300, μalt = 310, σ = 50

9 A researcher is interested in studying the effects of sleep deprivation on
cognitive performance; however a power analysis performed on pilot data
shows low power for detecting an effect for a loss of 3 hours of sleep
(power = .24). If the researcher does not have enough money to increase
their anticipated sample size, what other option do they have to increase
power and demonstrate the relationship between loss of sleep and cogni-
tive performance?

10 How does sample size influence the power of an inferential test?

11 Using the numbers found in Problem 8, how many participants would be
needed to detect each effect in the population? (Assume α = .05, two-tailed
test, and desired power is .80.)

12 A researcher conducts several studies and performs single-sample t tests
with each set of the following summary data. For each case, compute
the power of the statistical test. Use s as an estimate of σ. (Assume
α = .05, two-tailed test, and round off delta to the nearest first deci-
mal place.)
a μ0 = 130, μalt = 120, s = 15, n = 10
b μ0 = 130, μalt = 120, s = 15, n = 40
c μ0 = 50, μalt = 52, s = 10, n = 15
d μ0 = 50, μalt = 52, s = 10, n = 100
e μ0 = 25, μalt = 30, s = 7, n = 30

13 A researcher is interested in running a power analysis before the research is
started. Use the same means and standard deviations in Problem 12, parts
a, c, and e, to determine what sample size is needed for each study to
achieve power = .80, α = .05, two-tailed test. (Round to the nearest whole
integer.)

14 Which of the following three factors influencing power does the researcher
typically have the least ability to adjust? Why?
a The difference between the null and hypothesized mean.
b The sampling error.
c The sample size.
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15 How does increasing or decreasing alpha influence power?

16 How does a choice of a one- versus two-tailed statistical test influ-
ence power?

17 Formulate a scientific hypothesis in which support for the null hypothesis
would have theoretical or practical significance. How would a researcher
use power-related terminology to impress a journal editor if the null
hypothesis is not rejected?
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Part 4 Review

The z Test, t Tests, and Power Analysis

Review of Concepts Presented in Part 4

The purpose of this brief review section is to revisit both the similar concepts
that hold Chapters 8–11 together and the concepts that distinguish them one
from another. First let us look at the similarities. All four of the inferential tests
presented in these chapters (single-sample z test, single-sample t test, independ-
ent-samples t test, and dependent-samples t test) are based on the same basic
logic. That is, each one is designed to test a null hypothesis of no difference by
taking a found difference between means and interpreting that difference in
terms of the amount of sampling error we might expect to find if the null were
true. Inmathematical terms, a ratio is created where a difference betweenmeans
is placed in the numerator and a measure of sampling error is placed in the
denominator. The resulting value of this ratio is then compared with all of
the values one might expect to find if we were working under conditions where
the null is true, that is, where no difference between the population means actu-
ally exists. If it is determined that the difference between the means is not likely
to be explained by sampling error, a “treatment effect” is said to occur. In these
situations, a follow-up analysis measuring the size of the treatment effect can
be run. Cohen’s d statistic measures the size of a mean difference in standard
deviation units, and various versions of this statistic exist that correspond to
the various z and t tests.
Another common theme running through these tests is that each one is

an inference, that is, an extrapolation from known sample data to unknown
population data. As a result, there is always a likelihood that the sample data
used for the test may misrepresent the population and render a misleading
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conclusion. Nonetheless, a decision logic is employed that leads the researcher
to cautiously conclude that either the null is wrong or the null may be true.
This means that two types of decision errors can occur. A Type I error occurs
when we conclude there is a difference or treatment effect when, in fact, there
is none, and a Type II error occurs when we do not conclude there is a differ-
ence or treatment effect when, in fact, there is one. To help avoid making Type
II errors, the concept of a power analysis is introduced in Chapter 11. This is
an a priori technique using several factors, two key ones being the expected
sample size and the expected treatment effect size. The analytical tool is
designed to help researchers predict ahead of time how likely a sample mean
will be generated that will allow the null to be rejected. If the likelihood is low,
the researcher may opt to not conduct the study (thereby saving time and
energy by moving on to a more promising area of investigation), or they
may decide, prior to running the study, to make adjustments to the research
design that would improve the chance of gathering data that would lead to a
rejection of the null.
Each inferential test presented, however, is different and is used under differ-

ent methodological situations. Chapter 8 tests compare a known population
mean with a gathered sample mean. The null claims the sample mean came
from the same population that produced the given population mean. For this
test, the numerator is a sample mean subtracted from a known population
mean. If the standard deviation of the population is known as well, then the
standard error can be determined, and a single-sample z test can be run. The
inferential decision is based on the values in the z table (Table A.1) with the typ-
ical critical values being ±1.96. If the population standard deviation is unknown,
then the sample standard deviation is used to estimate the standard error. This
technique is called the single-sample t test, and the resulting t value is compared
against critical values found in the t table (Table A.2). For situations when a
sample mean is compared with a known population mean, the key diagnostic
question concerns whether or not σ is known.
The independent-samples t test found in Chapter 9 is employed when com-

paring two sample means coming from two independent samples. (Independent
samples occur when two separate and unmatched groups of participants are
used to create the two sample means.) The error term in the denominator uses
the standard deviation from both samples to help estimate the standard error. If
the two means to be compared are either matched or come from the same set of
participants, the test to use is Chapter 10’s dependent-samples t test. Exercises
requiring this test usually convey the dependent relationship between the sam-
ples in the wording of the research scenario. However, the manner in which data
are presented may also suggest each participant is generating two scores. This
test, relative to the independent-samples t test, increases the statistical power
(i.e. ability to reject correctly false null hypotheses) by reducing the amount
of error in the estimate of the standard error, thus generating larger t values
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(in terms of absolute value). Therefore, for situations when two samples are
being compared, the key diagnostic question concerns whether the samples
come from independent or dependent groups.
Since real-world research problems do not come with a label informing the

researcher of which test to use for analysis, it is important for us to work on
our diagnostic skills. Understandably, the exercises at the end of each particular
chapter require the use of the test(s) found within that chapter for solution.
These end-of-chapter work exercises are designed to get us familiar with solving
a known type of problem; however, they are not designed to challenge our diag-
nostic skills (i.e. knowing which test to use for a given situation). The following
review section, however, is designed to help us with this skill.
The exercises below will help us review the statistical differences between the

various tests. The hypothesis testing exercises (numbers 3–9) will not identify
which test is appropriate for the described scenario. We will need to use the
available information to make that determination. (Note: Most of the exercises
below can be solved either with or without the use of statistical software.)

Questions and Exercises

1 Which of the previously presented tests can be run prior to the gathering of
any data?

2 Identify the critical values for the following situations (use online table if
needed).
a Dependent-samples t test, α = .05, df = 19, two-tailed test.
b Independent-samples t test, α = .10, df = 16, two-tailed test.
c Single-sample z test, α = .01, n = 40, one-tailed test.
d Dependent-samples t test, α = .10, df = 7, two-tailed test.
e Dependent-samples t test, α = .01, df = 100, two-tailed test.
f Single-sample t test, α = .01, df = 8, two-tailed test.
g Dependent-samples t test, α = .05, np = 5, two-tailed test.
h Independent-samples t test, α = .05, n1 = 6, n2 = 4, one-tailed test.
i Single-sample z test, α = .05, n = 22, two-tailed test.
j Single-sample t test, α = .10, n = 30, two-tailed test.
k Independent-samples t test, α = .01, n1 = 14, n2 = 15, two-tailed test.
l Dependent-samples t test, α = .01, np = 3, two-tailed test.

3 A school psychologist in a rural area is concerned that the children in the
local grade school do not have enough social interaction with peers. Suppose
that previous research suggests that grade school children average
2.60 hours per day playing with friends. The psychologist samples 18 chil-
dren at the school and records the following results.
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Number of hours/day spent playing with friends

0.80 1.30 1.90 2.40 2.00 2.70

1.25 0.75 1.60 1.50 0.80 2.20

0.75 2.10 0.95 0.60 2.80 0.90

a State the null and alternative hypotheses.
b What is the appropriate inferential test? Why?
c What is the observed statistic?
d Identify the critical values for α = .05, two-tailed test.
e Reject the null hypothesis?
f If so, what is the effect size?
g If the null is not rejected, what was the statistical power of this test if the

size of the treatment effect is .5 (α = .05; two-tailed test)?
h What type of decision error might have been made?
i Properly present the findings.

4 A sleep researcher believes that people will experience a different number of
dreams depending on the temperature of the room in which they are sleep-
ing. Adult volunteers are asked to sleep for 10 nights in an 80 F room and
for 10 nights in a 65 F room. The temperature is alternated randomly to
prevent habituation. The total number of dreams reported by each partic-
ipant is given below.

Participant 80 F room 65 F room

P1 5 8

P2 7 7

P3 15 20

P4 12 17

P5 10 11

a State the null and alternative hypotheses.
b What is the appropriate inferential test? Why?
c What is the observed statistic?
d Identify the critical values for α = .05, two-tailed test.
e Reject the null hypothesis?
f If so, what is the effect size?
g If the null is not rejected, what was the statistical power of this test if the

size of the treatment effect is .5 (α = .05; two-tailed test)?
h What type of decision error might have been made?
i Properly present the findings.
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5 A psychology professor believes the current class of statistics students is
more intelligent than most of the previous classes. To test this hypothesis,
the psychologist has theWAIS-R, an intelligence test, administered to a ran-
dom sample of 12 students. Previous offerings of the WAIS-R to statistics
students have generated a population mean of 110 and a standard deviation
of 15. The psychologist obtains the following scores from the students.

WAIS-R scores

110 113

112 117

109 119

118 121

116 104

111 130

a State the null and alternative hypotheses.
b What is the appropriate inferential test? Why?
c What is the observed statistic?
d Identify the critical values for α = .05, two-tailed test.
e Reject the null hypothesis?
f If so, what is the effect size?
g If the null is not rejected, what was the statistical power of this test if the

size of the treatment effect is .5 (α = .05; two-tailed test)?
h What type of decision error might have been made?
i Properly present the findings.

6 Oishi and Schimmack (2010) found that people who move frequently as
children tend to have lower average levels of subjective well-being (happi-
ness) as adults. To further explore this idea, suppose a psychologist samples
15 people who experienced 4 or more different homes before they were
12 years old. These participants were given a standard well-being question-
naire with a known μ = 50. (Higher scores register greater subjective well-
being.) The data from the 15 participants follows.

Subjective well-being scores

40 51 53

47 52 44

43 50 38

43 48 44

46 45 46
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a State the null and alternative hypotheses.
b What is the appropriate inferential test? Why?
c What is the observed statistic?
d Identify the critical values for α = .05, two-tailed test.
e Reject the null hypothesis?
f If so, what is the effect size?
g If the null is not rejected, what was the statistical power of this test if the

size of the treatment effect is .5 (α = .05; two-tailed test)?
h What type of decision error might have been made?
i Properly present the findings.

7 A physician is interested in comparing the relative effects of a synthetic
anabolic steroid with a recently manufactured natural growth stimulant
on weight gain. Sixteen patients in a nursing home are randomly assigned
to two treatment conditions. One group (eight patients) receives the steroid
for 30 days, and a second group (eight patients) receives the growth stimu-
lant for 30 days. The dependent variable is the amount of weight gained at
the end of the 30 days. The data follow.

Weight gained (lb)

Steroid Growth stimulant

6 2

5 5

7 0

2 1

6 2

5 3

4 4

8 7

a State the null and alternative hypotheses.
b What is the appropriate inferential test? Why?
c What is the observed statistic?
d Identify the critical values for α = .05, two-tailed test.
e Reject the null hypothesis?
f If so, what is the effect size?
g If the null is not rejected, what was the statistical power of this test if the

size of the treatment effect is .5? (α = .05; two-tailed test)?
h What type of decision error might have been made?
i Properly present the findings.
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8 Another researcher asks the same question posed in Exercise #7. However,
in this research setting four participants are given the steroid for 30 days,
followed by a 30-day period with the growth stimulant. A different set of
four patients receive the two compounds in reverse order. Use the same
data found in Exercise #7.
a State the null and alternative hypotheses.
b What is the appropriate inferential test? Why?
c What is the observed statistic?
d Identify the critical values for α = .05, two-tailed test.
e Reject the null hypothesis?
f If so, what is the effect size?
g If the null is not rejected, what was the statistical power of this test if the

size of the treatment effect is .5 (α = .05; two-tailed test)?
h What type of decision error might have been made?
i Properly present the findings.

9 A men’s collegiate soccer coach wants to see if student/athletes in this pro-
gramaremore fit than collegiate student/athletes in general. Suppose anation-
ally normed collegiate-athlete fitness test exists which reports that the mean
mile time for the population of biological male collegiate athletes is 5 minutes
with a standard deviation of 30 seconds. The coach randomly samples a roster
and gathers the following data. (Times have been adjusted to fractions of a
minute to avoid the problem of converting 60 seconds into a minute.)

Mile times

5.3 4.7

4.4 4.9

4.8 4.6

5.1 4.6

a State the null and alternative hypotheses.
b What is the appropriate inferential test? Why?
c What is the observed statistic?
d Identify the critical values for α = .05, two-tailed test.
e Reject the null hypothesis?
f If so, what is the effect size?
g If the null is not rejected, what was the statistical power of this test if the

size of the treatment effect is .5 (α = .05; two-tailed test)?
h What type of decision error might have been made?
i Properly present the findings.

10 A researcher is interested in the effect of emotion on concentration. A two-
sample study is designed in which anger is induced in one sample by having
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a confederate provoke an argument in the lab waiting room. The control
group does not undergo this mood induction. Both samples are then tested
on a computer stunt driving game, and the number of times the participant
runs the vehicle into an object (crashes) is counted. The data follows:

Angry group Control group

6 6

9 5

13 8

11 6

5 9

10 7

a State the null and alternative hypotheses.
b What is the appropriate inferential test? Why?
c What is the observed statistic?
d Identify the critical values for α = .05, two-tailed test.
e Reject the null hypothesis?
f If so, what is the effect size?
g If the null is not rejected, what was the statistical power of this test if the

size of the treatment effect is .5? (α = .05; two-tailed test)?
h What type of decision error might have been made?
i Properly present the findings.

11 A sports psychologist would like to compare the effects of different exercise
programs on cardiovascular fitness. The measure of fitness is the resting
heart rate of participants after they complete the program, with lower heart
rates indicating greater physical fitness. Twelve college students are ran-
domly assigned to three groups (four participants per group). Participants
in the Aerobic condition walk a treadmill for 30minutes, three times a week.
Participants in the Circuit condition perform exercises on weight machines
for 30 minutes, with a 10-second rest between exercises. In the Control
condition, participants are asked to simply maintain their usual amount
of exercise. The resting heart rates of all participants are taken after 10weeks.
Data from this hypothetical study are presented in the following table.

Aerobic Circuit Control

65 74 74

62 65 78

56 62 86

60 72 75
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a What is the appropriate inferential test? Why?
b What is the observed statistic?
c Identify the critical values for α = .05, two-tailed test.
d Reject the null hypothesis?
e If so, what is the effect size?
f If the null is not rejected, what was the statistical power of this test if the
size of the treatment effect is .5? (α = .05; two-tailed test)?

g What type of decision error might have been made?
h Properly present the findings.
i State the null and alternative hypotheses.
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Inferential Statistics

Analyses of Variance
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12

One-Way Analysis of Variance

12.1 The Research Context

An independent-samples t test can be used to test a null hypothesis of no
difference between two means. The t test is ideal for studies that require a
comparison between two groups. However, it is frequently the case that a
researcher will use more than two groups in a study. Comparing three
education programs, contrasting the effectiveness of two psychotherapy
groups and a control group, and evaluating the effects of three kinds of
persuasive messages on attitude change are all examples that require an
analysis of more than two group means. Indeed, any study that has more
than two groups lends itself to the use of an analysis of variance
(ANOVA). It is true that we could avoid using an ANOVA and simply
conduct t tests on all possible two-group (also called pairwise)
comparisons. For example, in a study with three groups, we could calculate
t values for group 1 versus group 2, group 1 versus group 3, and group 2
versus group 3. However, conducting multiple t tests raises a serious sta-
tistical problem.

Multiple t Tests and the Type I Error

Recall that Type I errors are committed when a true null hypothesis is mistak-
enly rejected. The probability of making a Type I error is determined directly
when setting the alpha level. This means that when the alpha level is set at
.05, and a t test is conducted, the probability of mistakenly rejecting a true null
hypothesis is .05, for that one t test. Over a series of t tests, however, the
probability of making a Type I error becomes inflated. For example, if we
performed three t tests, the probability of making at least one Type I error is
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closer to .14. If 10 t tests were conducted, the probability of making at least 1
Type I error would be an astonishing .40. Over a series of t tests, the Type
I error rate inflates by 1 − (1 − α)c, where c is the number of independent
comparisons. (To help envision this problem, imagine a 20-sided die, each side
representing the statistical outcome when a null hypothesis is being tested.
Nineteen of the sides would be white, representing a proper decision to fail
to reject the null hypothesis. However, one of the sides, representing 5%, is
colored in red and marked “Type I error.” With each t test run where the null
is true, the die must be rolled. The cumulative probability of the die, at least
once, landing on the “Type I error” side increases in an almost additive fashion
as the number of rolls accumulate.)
This alpha inflation is eliminated by using an ANOVA since only one test is

performed: the F test. The F test, named after its originator, Sir Ronald Fisher
(see Spotlight 12.1), provides a comparison of all the population means in one
test, just one roll of the 20-sided die. A sufficiently large F value means there is
statistical evidence suggesting at least two of the sample means come from
different populations. The problem is that a sufficiently large overall F test
does not tell us which pairs of means are statistically different from one
another. To make pairwise comparisons among all the means, special fol-
low-up (or secondary) analyses are used that control the Type I error rate.
A couple different versions of these analyses are presented near the end of this
chapter.
A one-way ANOVA is used on designs having one independent variable (or

factor) of three or more levels, each level having its own group of participants.
(Even though ANOVAs are used to analyze data from nonexperimental designs,
to simplify the language in the chapter, and in keeping with the terminology
used in previous chapters, we will use experimental language when describing
research designs.) Interestingly, an ANOVA can be used even if the design has
only two levels. For these designs, ANOVAs are actually equivalent to t tests.
Commonly, however, t tests are used for two-condition studies. If our design
has two factors, a two-way ANOVA is used. (The two-way ANOVA is discussed
in Chapter 13.) If our design uses the same participants for each level of the
factor, a repeated-measures ANOVA is used. (The repeated-measures ANOVA
is discussed in Chapter 14.)
The test’s name, analysis of variance, may seem to suggest that it is a test of

variances. In actuality, means are still being compared, but the comparison is
based on the sources of variation within the data, including the variation
between group means. Just as with the t tests, the ANOVA will help us decide
if we can conclude that the sample group means are coming from different
populations. How this is accomplished will become clear as the chapter
progresses.
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Spotlight 12.1 Sir Ronald Fisher

Ronald Fisher (1890–1962) was born in England. He is considered a child prod-
igy. His daughter and biographer offers the following story.

At about age three when he had been set up in his high chair for break-
fast, he asked: “What is a half of a half?” His nurse answered that it was
a quarter. After a pause, he asked, “And what’s a half of a quarter?” She
told him that it was an eighth. There was a longer pause before he
asked again, “What’s a half of an eighth, Nurse?” When she had given
her reply there was a long silence. Finally, Ronnie looked up, a plump
pink and white baby face framed with waving red-gold hair, and said
slowly, “Then, I suppose that a half of a sixteenth must be a thirty-toof.”
(Box, 1978, pp. 12–13)

Fisher’s early mathematical ability flourished and led to the development of the
most popular inferential test in experimentation: the analysis of vari-
ance (ANOVA).

Fisher received his training in mathematics at Cambridge and subsequently
taught math in public schools. His daughter points out that he was a lousy
teacher and did not like the profession of an educator. In 1917, he married Ruth
Guinness, the cousin of the well-known Irish brewery operators. (We may recall
that Gossett developed the t test while employed by Guinness.) When he quit
teaching, Fisher was offered two jobs. One offer came from Karl Pearson, a
person Fisher disliked because he, as the editor of Biometrica, kept rejecting
Fisher’s articles. The other offer, the one he accepted, was from the Rothamsted
Experimental Station, the oldest agricultural research station in the world. It was
during his tenure here that Fisher mademany of his most brilliant statistical and
research design contributions.

One of the problems in agricultural experimentation at that time was how to
determine the effects of a multitude of variables on plant yields; factors for con-
sideration were soil, fertilizer, weeds, seeds, and weather. Fisher devised several
experimental designs suited to answer these questions. The nature of these
experimental questions led Fisher to develop the factorial design and the
ANOVA. To appreciate the context within which Fisher was working, it is inter-
esting to note that the article that presented the ANOVA is titled “Studies in
Crop Variation. II. The Manurial Response of Different Potato Varieties”
(Fisher & MacKenzie, 1923).

Fisher’s contributions were broad. He is responsible for coining many of the
common terms in statistics including variance, randomization, and even the
term statistic itself. Fisher also worked out many of the sampling distributions
required for hypothesis testing and was an influential figure in establishing the
5% alpha level for rejecting null hypotheses.
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12.2 The Conceptual Basis of ANOVA: Sources
of Variation

Between-Group Variation

If we conduct a study with two or more groups, the resulting group means will
almost never be identical. This would be true even if the null hypothesis were
true. Our task is to decide if the independent variable has influenced the group
means. Our decision will be based on the outcome of an inferential test. When
the group means are similar, there is little variation between the means. When
the means are very different, there is a greater degree of variation between the
means. The difference between the group means is called between-group var-
iation. When considering what can account for this between-group variation,
three possible explanations emerge:

1) Treatment variance (or primary variance). This is the effect due to treat-
ment, that is, the degree to which the mean differences are caused by the
influence of an independent variable. This source of variation is what
researchers attempt to maximize and then detect with statistical analysis.
(In a nonexperimental situation, the more general term, “primary
variance,” may be more readily used.)

2) Individual differences. Each research participant comes to the experiment
with a unique constellation of personality traits, called participant variables
(see Chapter 1). Since each participant is unique, each one will inevitably
respond differently to the task used to assess the influence of the independ-
ent variable. The random assignment of participants usually does a good job
of balancing these individual differences across the conditions. However,

Unfortunately, like many of the other statisticians of that time who were
carving out the mathematical tools for the new social and behavioral sciences
(e.g. Galton, Pearson, Spearman), Fisher was a strident eugenicist, holding,
among other distasteful beliefs, the strong opinion that there were intellectual
differences between various races of humans. This conviction even resulted in
him registering a dissenting opinion to the United Nations Educational, Scien-
tific and Cultural Organization (UNESCO) project on racism (UNESCO, 1952).

Although the personal beliefs of so many of the pioneers of inferential
statistics are offensive, the power of the statistical tools they created should
not be diminished by these associations. These tools, though originally created
from motives to show differences between races and classes of people, are
thankfully not limited to use for those sorts of questions.
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even when participants are randomly assigned to treatment conditions, it is
possible for group means to differ due to differences between the individuals
that comprise the groups. For example, consider a study comparing three
teaching techniques. If, by chance, a few more of the sharper students are
randomly assigned to one treatment condition than the other two, that par-
ticular group mean may reflect this lack of homogeneity. The larger the
group of participants in the study, the less likely variation due to individual
differences will become a problem. (See Chapter 6 to review the positive
probabilistic benefits that come with large sample sizes.) In nonexperimental
designs, individual differences are assumed to be largely balanced across
groups by the random sampling of the respective populations.

3) Experimental error. This variance reflects the difference between a meas-
urement and the true value. There are three potential sources of experimen-
tal error: the unreliability of measuring instrumentation (e.g. intelligence
tests do not generate the same value each time they are administered to a
given person), inconsistent interactions between the experimenter and the
participants (e.g. the experimenter may state the instructions differently
or with different enunciation or body language to different participants),
and random forms of environmental disturbances during the experiment
(e.g. the turning off and on of an air-conditioning system). In short, any
uncontrolled aspect of the experiment could account for the variation
among group means. These uncontrolled aspects of the experiment are
assumed to be somewhat equally spread across the breadth of the research
design and do not intrude systematically. (Do not confuse experimental
error with confounding error. Confounds systematically or somewhat
systematically vary among the groups and provide unintended, yet plausible
explanations for differences among group means. Because experimental
error influences data in an unsystematic manner, confounding variance is
not introduced.)

Individual differences and experimental error are considered random
factors. They are called random because they are not intentionally or system-
atically manipulated by the experimenter, yet they may intrude and produce
differences between means. In summary, any one, or combination, of the
foregoing reasons can influence the variation among group means. A second
way to examine the variance in an experiment is to look at it from the
within-group perspective.

Within-Group Variation

Between-group variation considers the variation between means. Within-
group variation refers to the variation among scores within a group. Irrespec-
tive of whether a group of scores is a treatment or control group, would we

12.2 The Conceptual Basis of ANOVA: Sources of Variation 381



expect every person within a given group to produce the exact same score? Of
course not, for the following two reasons:

1) Individual differences. Some variation among means could be due to
individual differences. However, when considering the variation of scores
within a group, individual differences always produce variability. Once again,
let us use the teaching technique example. With respect to between-group
variation, an individual difference variable (e.g. achievement motivation)
could be unequally distributed across groups and account for differences
among means. With respect to within-group variation, the focus shifts to
each particular group. Students within a given group will vary in achieve-
ment motivation. Some measure of the effectiveness of the teaching
technique will be administered. Whether or not a treatment effect exists,
there will be within-group variation among the scores of the dependent
variable because of the differences among the students in terms of their
achievement motivation. Each group in the study will have within-group
variability. For the study as a whole, the amount of within-group variability
is based on a combination of the within-group variation from each group.

2) Experimental error. The variation among scores within a group could also
be due to experimental error. These errors are the same as those that occur
in between-group variation. Since individual differences and experimental
error are random factors, the only sources of within-group variation are
due to random factors.

It is important to realize that the treatment administered to each group does
not contribute to within-group variability since each participant in a group is
exposed to the same treatment. The ANOVA is a statistical technique that
analyzes the sources of variability within the experiment. The sources of
variation are depicted in the diagram of Figure 12.1.

Sources of Variation When the Null Hypothesis Can Be
and Cannot Be Rejected

The amount of variation due to treatment is called treatment variance or
primary variance. The variation due to random factors (individual differences
and experimental error) is called error variance (or secondary variance).
(These terms will be used somewhat interchangeably.)

Total variation

Between-group variation

1. Treatment effect

2. Individual differences

3. Experimental error

Within-group variation

1. Individual differences

2. Experimental error

Figure 12.1 The ANOVA
partitions the sources of
variation in an experiment
into between-group variation
and within-group variation.
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Suppose the H0 is true (i.e. there is no primary variance, only secondary
variance). In this instance, any difference between the means is completely
due to the random variation of scores within the groups. Since groupmeans will
never be identical (even if the H0 is correct) the statistical question becomes,
“How different do the means have to be to conclude there is evidence of
treatment variance?” To reject the null hypothesis, the between-group variation
(treatment variance + error variance) has to be sufficiently greater than the
overall within-group variation (error variance). The F test is the ratio between
these two measures of variation:

F =
treatment variance+ error variance

error variance
Stated differently,

F =
between-group variance
within-group variance

In the absence of a treatment effect, the between-group variance will be nothing
but error variance. This means that when the H0 is correct, the F ratio will be close
to 1 (one measure of error variance divided by another measure of error variance).
As the influence of treatment variance becomes stronger, the F ratio becomes lar-
ger. The larger the value of F, themore likely the null hypothesis should be rejected.
When the null hypothesis is correct, any differences between groups are due

entirely to error variance. When the null hypothesis is false, at least some of the
difference between means is due to the treatment effect. As the amount of
between-group variation due to treatment increases, the numerator of the
F ratio increases. If the effect of treatment is sufficiently great, then the F ratio
will prompt the rejection of the null hypothesis. Figure 12.2 summarizes the
sources of variance when the null hypothesis is correct and incorrect.

When H0 is incorrect

When H0 is correct

Between-group

variance

Within-group
variance

Treatment variance + 

error variance

Error variance

is

is

Between-group variance

Within-group variance

(Error variance)

F =

Between-group

variance

Within-group

variance

Error variance

Error variance

is

is

Between-group variance

Within-group variance
(Error variance)

F =

Figure 12.2 Sources of variance when the null hypothesis is correct and incorrect.
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12.3 The Assumptions of the One-Way ANOVA

Following is a list of assumptions underlying the ANOVA. Note that the
assumptions are the same as those for the independent-samples t test:

1) Representativeness. It is assumed that each sample is representative of the
population from which it has been drawn. Random sampling is the best data
gathering method to meet this assumption; however, other sampling meth-
ods might be sufficient. Meeting this assumption allows us to generalize
from samples to populations.

2) Independent observations. Independent observations mean that the scores
within each sample are independent of one another. If the behavior of one
participant in the study is influenced by the behavior of another participant,
then the scores from these two participants are not independent.

3) Interval or ratio scale of measurement. The one-way ANOVA utilizes
means and standard deviations. These concepts only have meaning for data
measured on a scale where the quantitative distance between integers is held
constant, namely, an interval or ratio scale (see Chapter 2).

4) The populations fromwhich the samples are taken are normally distrib-
uted. This assumption states that each sample is drawn from a population
that is normally distributed.

5) Homogeneity of variances. The variances of each population distribution
are the same; thus σ21 = σ

2
2 = σ

2
3 =…= σ2k , where k is the last group.

Since the F test is robust, it is not essential that the last two assumptions be
met, particularly if each sample contains a sufficiently large and equal number of
observations. However, gross violations of these assumptions will adversely
affect the validity of the F test. Strong violations would require the use of anal-
ysis tools that do not make assumptions about the shape of the population dis-
tributions (see Chapter 18).

12.4 Hypotheses and Error Terms for the
One-Way ANOVA

The Null and Alternative Hypotheses

The ANOVA provides a direct test of the null hypothesis, which is always

H0 μ1 = μ2 = μ3 = μk

A substantial difference between any two means will produce a large F ratio.
The alternative hypothesis is always

H1 at least two of the means are different
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Note that H1 is not μ1 ≠ μ2 ≠ μ3 ≠ μk. This erroneous statement of the
alternative hypothesis would indicate that all the means must be substantially
different from one another. The null hypothesis can be rejected when just
two of the population means are different.

Mean Square Within: One Estimate of σ2

Recall the two statistical assumptions underlying the ANOVA: The populations
from which the samples are drawn are normal and the populations have the
same variances. Since we have already learned the logic of hypothesis testing
in previous chapters, we know that when testing a null hypothesis we set up
the test as if the null hypothesis is true. Although the mathematics take place
at the level of samples, the critical question concerns whether or not the samples
come from the same population. (An equivalent manner of expression asks
whether the samples come from identical populations. These are, in effect,
the same question.) If we find evidence of at least one difference among the
sample means, then we conclude that the populations from which at least
two of the samples were drawn are different. If there is no evidence of
differences between means, then we do not reject the idea that the means are
from identical populations. (Notice this does not mean we conclude that the
population means are equal; to do that would be to accept the null hypothesis.)
No matter what t test we ran in the previous chapters, we always generated an

estimate of the population variance. To decide if a difference between sample
means is evidence that they come from different populations, we need an
estimate of how variable the null distribution is from which we are sampling.
The ANOVA is no different in this regard; we need an estimate of σ2.
In a study with three groups, there are three estimates of σ2: s21, s

2
2, and s23.

Which one should be used? Well, rather than rely on any one of them, we will
use them all. The best estimate of σ2 is made by pooling the variances of the
samples. The term that is used for the pooled variance is the mean square
within (MSW). We have encountered this concept before. We may recall from
our discussion of the independent-samples t test that the denominator of the
t test is the pooled variance, which is a weighted average of the variances of
two samples. The MSW term merely expands the pooled variance concept to
incorporate more than two groups.

Pooled variance formula for MSW

MSW =
s21 n1−1 + s22 n2−1 + + s2k nk −1

n1−1 + n2−1 + + nk −1
(Formula 12.1)

SinceMSW is a combination of sample variances, the degrees of freedom asso-
ciated with MSW is also the addition of each of their respective degrees of
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freedom. More simply, this can be represented as the sample size for the study
(N) minus the number of groups in the study (k):

dfW = (n1 − 1) + (n2 − 1) + + (nk − 1) = N − k.

TheMSW is a good estimate of σ2 (the error variance). Most importantly, it is a
good estimate of σ2 whether or not the H0 is correct. The MSW is based on the
pooled average of the within-group variances. In the absence of a treatment
effect, the sample variances are all taken from the same population. In the
presence of a treatment effect, we are sampling from different populations.
In either case, MSW is a good estimate of σ2 because the ANOVA assumes
σ21 = σ22 = σ23 =…= σ2k (see Section 12.3).

Mean Square Between: Another Estimate of σ2

The numerator of the F ratio is the average variation among the group means,
themean square between (or mean square between groups),MSBG. When the
H0 is true, the only sources of variation among the group means are random
factors (error variance). This means that a measure of variance between the
group means is another way to measure error variance (σ2).
We have previously learned of a statistic that serves as a measure of the

amount of variation among means. A sampling distribution of means has a
standard deviation, the standard error of the mean (σM). In fact, the relationship
between the population standard deviation and the standard error of the mean
is σM = σ n. Since variances, not standard deviations, are used in an ANOVA,
both sides of the equation are squared to obtain

σ2M =
σ2

n

Multiplying each side of the equation by n gives

nσ2M = σ2

When using sample means to estimate σ2, simply treat the sample means as
raw scores, apply our preferred formula for calculating the variance (not the
standard deviation), andmultiply the result by n (n = the number of participants
in any group, assuming equal numbers of participants). Formula 12.2 gives the
between-groups estimate of σ2.

Between-group variance (MSBG) as an estimate of σ2

ns2M = σ2 (Formula 12.2)

This is the measure of between-group variance. Table 12.1 presents an exam-
ple of how to calculate the between-group variance using this method. The
means are borrowed from Table 12.2. Note that the three means are treated
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not only as raw scores but also as a sample of scores that estimate σ2. This means
that the sample formula for s2 can be used (using means, M’s, in place of raw
scores, X’s). As we examine the computational flow of the problem, keep in
mind that the n in the s2M formula refers to the number of groups, which we
are treating as if they are individual scores. (Since we are computing the variance
ofmeans, the symbol s2M is used instead of s2.) The n in the formula for between-
group variance (Formula 12.2) refers to the number of participants in each of the
samples (n1 = n2 = n3 = 4), not the total number of participants across all groups.

Putting It All Together

Recall that MSW is a good estimate of σ2 whether H0 is correct or incorrect.
Since the ANOVA assumes σ21 = σ22 = σ23 =…= σ2k , whether there is one or several
populations is not important; the same value is being estimated by the various
sample variances.
The situation is different with respect to the variance of the group means

(between-group variance, MSBG). This variance, which conceptually parallels the

Table 12.1 Between-group variation.

M1 = 4.75
M2 = 8.75
M3 = 2.25
n = 3 (number of groups)
ΣM2 = 104.19
ΣM = 15.75

s2M =
ΣM2− ΣM 2 n

n−1

s2M =
104 19− 15 75 2 3

3−1

s2M =
104 19− 248 06 3

2

s2M =
104 19−82 69

2

s2M =
21 50
2

s2M = 10 75

Between-group variance = ns2M
ns2M = 4 10 75
ns2M = 43

The variance of the sample means multiplied by sample size.
The n in the formula for s2M is the number of groupmeans (3); the n in the formula ns2M is the number
of participants in one group (4), assuming equal numbers of participants per group.
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standard error of themean, is a good estimate of σ2 only when it is based on a sam-
pling distribution established by taking repeated samples from one population, that
is, when H0 is correct. Here is the beauty of the ANOVA.When the H0 is correct,
ns2M (between-group variance, MSBG) is also a good estimate of σ2. If ns2M is a
good estimate of σ2, then it should be very close to the value of MSW. If these
two estimates of σ2 are similar, the resulting F ratio will be close to 1. However, if
the sample means come from different populations, ns2M will be a poor estimate
of σ2, althoughMSW will remain a good estimate. When ns2M is a poor estimate
of σ2, it will only and always overestimate σ2. The greater the difference among
the sample means due to treatment, the larger the overestimate of σ2; treatment
variance can only increase the value of ns2M . Since ns2M is the measure of
between-group variance, it is placed in the numerator of the F ratio. The result
of treatment variance is an F ratio that becomes larger as the value of ns2M
increases.
A point that has been stressed throughout this text, which cannot be empha-

sized enough, is that hypothesis testing uses samples to draw conclusions about
populations.We fly blind, in a sense, becauseweneverknow the truenatureof the
populations. Inferential tests involve logic and mathematics as aids to allow the
researcher to infer the characteristics of populations; yet all inferences involve a
degree of uncertainty. Figures 12.3 and 12.4 illustrate the inferential situation in
which a researcher is involved when using samples to make statements about
populations. In Figure 12.3, a study with four groups is illustrated under the con-
dition that the null hypothesis is true. When the null hypothesis is true, the four
populations that are sampled are identical; that is, they have the samemeans and
variances. Sampling from four identical populations is like sampling from one
population. The four arrows at the bottom of Figure 12.3 reflect the sample
means. Note that they are close together; they show little variability. This is just
what we would expect when taking random samples from four identical popula-
tions (or four samples from the same population). In Figure 12.4, the sample
means depicted by the arrows at the bottom of the diagram are more variable.
Why? Because the population from which the fourth sample was drawn has a
mean that is different from that of the other three populations.

12.5 Computing the F Ratio in a One-Way ANOVA

To recap, both MSBG and MSW are measures of variation. They are appropri-
ately termedmean square between andmean square within because they reflect
the average (mean) amount of variation. MSBG is the average variation of the
group means around the grand mean (the grand mean being the mean of all
the scores in the experiment, irrespective of individual groups).MSW is the aver-
age amount of variation of the individual scores with respect to the group from
which the scores are taken.
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Population from which
Group A came

Population from which

Group B came

Population from which

Group C came

Population from which

Group D came

Dependent-variable score

MA

MB

MC

MD

Figure 12.3 When the H0 is true, the sample means are drawn from identical populations,
which, in effect, is the same as saying “drawn from one population.” Here we would expect
the sample means to show little variation.
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MSBG and the Sum of Squares Between Groups (SSBG)

The definitional and computational formulas used to computeMSBG andMSW
are presented in this section. Immediately following the presentation of
formulas, a hypothetical data set will be used to illustrate the steps for comput-
ing MSBG, MSW, and the F ratio.
TheMSBG is a ratio of the sum of squares between the groups (SSBG) divided

by the degrees of freedom for SSBG. (Degrees of freedom will be discussed later.)
Formula 12.3 is the definitional formula for SSBG.

Population from which
Group A came

Population from which

Group B came

Population from which

Group C came

Population from which

Group D came

Dependent-variable score

MA

MB

MC

MD

Figure 12.4 When the H0 is false, at least one sample is drawn from a population that is
different from the rest.
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Definitional formula for SSBG

SSBG = Σnk(Mk −MG)
2 (Formula 12.3)

where

nk = the number of participants in group k
Mk = the mean of group k
MG = grand mean

This formula shows that SSBG is the variation of group means about the grand
mean. To use this formula in computing SSBG, we would subtract the grand
mean from the mean of group 1, square the value, and multiply by the number
of participants in that group. Perform the same set of operations for each of the
group means in the experiment. Finally, sum all the values.
Formula 12.4 is the computational formula for calculating SSBG. Use this for-

mula when calculating SSBG by hand.

Computational formula for SSBG

SSBG =
ΣX1

2

n1
+

ΣX2
2

n2
+ +

ΣXk
2

nk
−

ΣX 2

N
(Formula 12.4)

where

ΣX1 = the sum of scores in group 1
ΣX2 = the sum of scores in the second group and so on
ΣXk = the sum of scores in the last group; if the experiment has four groups, then

ΣXk is the sum of scores in group 4
ΣX = sum of all the scores in the study
n1 = the number of participants in group 1
nk = the number of participants in the last group
N = total number of participants in the study

MSW and the Sum of Squares Within Groups (SSW)

The MSW is a ratio of the sum of squares within groups (SSW) divided by the
degrees of freedom associated with SSW. The definitional formula for SSW
(Formula 12.5) reminds us that within-group error variance is the amount of
deviation among individual scores around the mean of the group from which
the scores are taken.

Definitional formula for SSW

SSW = Σ(X1 −M1)
2 + Σ(X2 −M2)

2 + + Σ(Xk −Mk)
2 (Formula 12.5)
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where

M1 = the mean of group 1, M2 is the mean of group 2, and so on
Mk = the mean of the last group
X1 = each score in group 1, X2 = each score in group 2, and so on
Xk = each score in the last group

If using the definitional formula for computing SSW, subtract the mean of
group 1 from the first score in that group and square the value. Repeat the oper-
ation for each raw score in group 1. Next, sum all these squared deviation scores.
Do the same for each group in the study, remembering to use the relevant group
mean. The sums of the squared deviations for each group are then summed.
The computational formula is given in Formula 12.6. Use this formula when

calculating SSW by hand.

Computational formula for SSW

SSW =ΣX2−
ΣX1

2

n1
+

ΣX2
2

n2
+ +

ΣXk
2

nk
(Formula 12.6)

where

ΣX2 = sum of all squared scores
(ΣX1)

2 = the sum of the scores in group 1, quantity squared
(ΣX2)

2 = the sum of the scores in group 2, quantity squared
(ΣXk)

2 = the sum of the scores in the last group, quantity squared
n1 = number of participants in group 1
nk = number of participants in the last group

The Total Sum of Squares (SST)

The total sum of squares (SST) is not used when computing the F ratio. None-
theless, we need to calculate it for use in secondary analyses. The total sum of
squares equals the sum of squares between groups plus the sum of the squares
within groups:

SST = SSBG + SSW

Independently computing SST also allows us to make sure that our SSBG and
SSW calculations are accurate. The definitional formula for SST reveals the fact
that the total variation in scores is the difference between each score in the study
and the grand mean, squared and summed.

Definitional formula for SST

SST = Σ(X −MG)
2 (Formula 12.7)
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where

X = each score in the study
MG = grand mean

When using the definitional formula, simply subtract the grand mean from
each score, squaring each difference as we go. Finally, sum all the squared
values.
Formula 12.8 is the computational formula for SST. Use this formula when

computing SST by hand.

Computational formula for SST

SST =ΣX2−
ΣX 2

N
(Formula 12.8)

where

ΣX2 = the sum of all squared scores
(ΣX)2 = the sum of all scores, quantity squared
N = the total number of participants

Degrees of Freedom

To arrive at the F ratio, SSBG and SSW must be divided by their appropriate
degrees of freedom. This step generates MSBG and MSW. Dividing by df turns
a sum of squares into an average sum of squares, which is what “mean squares”
means. The degrees of freedom for the between-groups term (dfBG) is

dfBG = k−1

where

k = the number of groups.

The degrees of freedom used for the within-groups term, dfW, is

dfW = n1−1 + n2−1 + + nk −1 =N −k

The degrees of freedom for SST is N − 1. Although SST is not divided by its
degrees of freedom (dfT), calculating dfT can serve as a computational
check since

dfT = dfBG + dfW

Computing MSBG and MSW is accomplished in the following manner.
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Calculating MSBG and MSW

MSBG =
SSBG
df BG

MWW =
SSW
df W

and, of course,

F =
MSBG
MSW

Illustrating the Computational Steps with Raw Data

Table 12.2 presents the raw scores and summary statistics for a hypothetical
study with three groups. These data will be used to illustrate the computational
steps required to arrive at the F ratio. The by-hand calculations can be tedious,
but we have had extensive practice in performing the arithmetic operations
needed to compute F.

Step 1. Compute SSBG using Formula 12.4.
Computational formula for SSBG

SSBG =
ΣX1

2

n1
+

ΣX2
2

n2
+ +

ΣXk
2

nk
−

ΣX 2

N

SSBG =
19 2

4
+

35 2

4
+

9 2

4
−

19 + 35+ 9 2

12

SSBG = 416 75−330 75

SSBG = 86

Table 12.2 Hypothetical raw data and summary statistics for a study with three groups.

Group 1 Group 2 Group 3

S1 4 S5 8 S9 3

S2 5 S6 8 S10 2

S3 4 S7 9 S11 1

S4 6 S8 10 S12 3

M1 = 4.75 M2 = 8.75 M3 = 2.25

ΣX1 = 19 ΣX2 = 35 ΣX3 = 9

ΣX2
1 = 93 ΣX2

2 = 309 ΣX2
3 = 23

n1 = 4 n2 = 4 n3 = 4
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Step 2. Compute dfBG: dfBG = k − 1 = 3 − 1 = 2.
Step 3. Calculate MSBG.

1

MSBG =
SSBG
df BG

MSBG =
86
2

MSBG = 43

Step 4. Compute SSW using Formula 12.6.
Computational formula for SSW

SSW =ΣX2−
ΣX1

2

n1
+

ΣX2
2

n2
+ +

ΣXk
2

nk

SSW = 4 2 + 5 2 + 4 2+ + 2 2 + 1 2 + 3 2−
192

4
+
352

4
+
92

4

SSW = 425−416 75

SSW = 8 25

Step 5. Compute dfW: dfW = N − k = 12 − 3 = 9.
Step 6. Compute MSW.

MSW =
SSW
df W

=
8 25
9

MSW = 0 92

Step 7. (Optional) Compute SST using Formula 12.8.
Computational formula for SST

SST =ΣX2−
ΣX 2

N

SST = 42 + 52 + 42+ + 22 + 12 + 32−
632

12

SST = 425−330 75

SST = 94 25

If the calculations are correct, then SST should equal SSBG + SSW:

SST = SSBG + SSW

94 25 = 86 + 8 25

1 Refer to Table 12.1. Note that the value computed forMSBG is the same as the value arrived at by
using ns2M .
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Even though SST is not used to calculate F, we are strongly urged to use SST as
a computational check. The vast number of calculations required almost
guarantees that we will make at least one undetected math error. Additionally,
we may need this value for secondary analysis purposes.
Step 8. Compute the F ratio.

F =
MSBG
MSW

F =
43
0 92

F = 46 74

12.6 Testing Null Hypotheses

The F Distributions

The shape of each distribution in a family of sampling distributions is affected by
the sample size used in the repeated sampling process to construct all sampling
distributions. Recall that when using tobt to test a null hypothesis, we found the
critical values by using the appropriate degrees of freedom. In the samemanner,
when using an F statistic to test a null hypothesis, we will need to use the
appropriate degrees of freedom to find the critical value for the relevant sam-
pling distribution – the F distribution. Here, two numbers are needed: one for
the numerator of the F ratio and another for the denominator.
As is the case with all sampling distributions, an F distribution is theoretical;

we do not need to go through the arduous task of creating it. Since the F statistic
is a ratio of variances, it should make sense to us that the sampling distributions
of F are based on ratios of variances.
Recall that the F ratio is

F =
MSBG
MSW

=
treatment variance+ error variance

error variance

When the null hypothesis is true, there is no treatment effect; that is, there is
no treatment variance in the numerator of the F ratio. Therefore, when H0

is true,

F =
MSBG
MSW

=
error variance
error variance

The sampling distributions of F ratios are established under the assumption
that the null hypothesis is true, μ1 = μ2 = μ3 = μk. Here is how we would go about
constructing a sampling distribution of F ratios. Imagine that we conduct an
experiment with four groups, six participants in each group (dfBG = 3, dfW =
20), and the null hypothesis is true.MSBG is obtained by computing the variance
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of the four group means. MSW is obtained by computing the pooled within-
group variance. The F ratio is then calculated. Since the null hypothesis is true
(i.e. no treatment variance is present), MSBG andMSW both reflect nothing but
error variance. Since both values are estimates of the same thing, they should be
rather similar, and the F ratio will be close to 1. Constructing a sampling
distribution proceeds by storing that value and then repeating the process.
We would conduct the same experiment again by sampling the same number
of participants, placing them into the same number of groups, and computing
another F ratio. This process repeats itself a near-infinite number of times. The
stored F values would then generate an F distribution (sampling distribution) of
all the possible F ratios, given dfBG = 3 and dfW = 20, under conditions when the
null hypothesis is true.
Given the foregoing method for generating a sampling distribution of F ratios,

what must be true about an F distribution?

1) Since variability can never be represented by a negative number, all F values
must be positive.

2) The smallest value that F can obtain is 0.
3) Since the H0 is true,MSBG andMSW independently estimate the same value;

therefore, most F ratios cluster around 1.
4) Even when the H0 is true, sampling error is still present. Ratios are bound by

0 when the numerator estimate of error is smaller than the denominator
estimate of error, but not bound by a number when the numerator estimate
of error is larger than the denominator estimate of error.

5) As a result, F sampling distributions are positively skewed.

When using an F ratio to test a null hypothesis, a sampling distribution is
available that matches the degrees of freedom appropriate to the number of
groups (numerator) and the number of participants (denominator) in the study.
The exact shape of an F distribution will depend on the number of groups and
sample sizes used to calculate the F ratio. Figure 12.5 shows two F distributions
that are based on different degrees of freedom. Note that as the degrees of
freedom change, and thus the shape of the F distribution changes, the critical
values beyond which lie 5 and 1% of the F ratios shift accordingly.
As we examine Figure 12.5, bear in mind that the F distributions are distribu-

tions obtained when the H0 is true. Note that the frequency of F ratios decreases
as the size of the F ratio increases past 1. When deciding whether to reject the
H0, we have only one F ratio available. If the F ratio obtained from our study falls
in the right tail of the distribution, say, beyond the point that marks the upper
5% of the distribution, we have a decision to make. Either the null hypothesis is
true and sampling error has given rise to an unlikely large F ratio (a Type I error;
less than 5% chance this is the case), or the null hypothesis is false and MSBG
is being influenced by a treatment effect. Here is where our decision rule
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associated with inferential testing gives us direction. In this situation, we are to
reject the null hypothesis. We have found statistical evidence that the H0 is false.

Using the F Table

The F table (Table A.5) is used to determine if an F ratio falls in the far right tail
of the sampling distribution. The following is a portion of the table. The F table
provides critical values for alphas of .05 and .01. The boldface values in the body
of the table are used when α = 1%. The lightface values are used when α = 5%.

.05 (roman) and .01 (boldface) α levels for the F distribution

Degrees of freedom (numerator)

Degrees of freedom (denominator) 3 4 5

19 3.13 2.90 2.74

5.01 4.50 4.17

20 3.10 2.87 2.71

4.94 4.43 4.10

21 3.07 2.84 2.68

4.87 4.37 4.04

5%

1%

3.10 4.94

dfBG= 3
dfW = 20

dfBG= 7
dfW = 7

5%

1%

3.79 7.00

Figure 12.5 Two F distribution for dfBG = 3 and dfW = 20, and dfBG = 7 and dfW = 7.
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Locating the relevant critical value is accomplished by entering the table with
the degrees of freedom from the numerator of the F ratio, dfBG, and the degrees
of freedom from the denominator of the F ratio, dfW. The degrees of freedom for
MSBG is found in the row at the top of the table, and the degrees of freedom for
MSW is found in the left column of the table. When testing the null hypothesis
with an F ratio where dfBG = 4 and dfW = 20, the critical values for an alpha of
5 and 1% are 2.87 and 4.43, respectively.
Let us test a null hypothesis with the F ratio found in the worked example

using an alpha of .05. The obtained Fwas 46.74. The dfBG = 2 (k – 1) and dfW = 9
(N − k). Referring to the F table (Table A.5), the critical value is stated as 4.26.
Since the obtained F value is larger than the critical value of 4.26, we reject the
null hypothesis that μ1 = μ2 = μ3.

12.7 The One-Way ANOVA Summary Table

Table 12.3 is one customary way to summarize the results of an ANOVA. The
values in the table are taken from the worked example. Some source tables
substitute the word “Treatment” for “Between groups,” “Error” for “Within
groups,” and “Sig.” for “p.” The ANOVA summary table supplies the most
relevant information used in calculating the F ratio. It will also be a resource
for values needed for secondary analyses.

12.8 An Example of an ANOVA with Unequal Numbers
of Participants

When conducting an experiment, it is always desirable to use the same number
of participants in each experimental condition. One reason is that it makes any
violation of the population assumptions underlying the test less serious.
A second reason is that the researcher maximizes power (relative to the number
of participants being used) by equally distributing them across conditions.
However, sometimes participants drop out of the study, and replacing them

Table 12.3 An ANOVA summary table.

Source of variation SS df MS F p

Between groups 86 2 43 46.74 <.05

Within groups (error) 8.25 9 .92

Total 94.25 11

See text for computations.
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is difficult or impossible. The same formulas that were used in the worked
example, in which the number of participants in each group were equal, can
be used when there are an unequal number of participants in the groups. This
is possible since the formulas used sample sizes as weights when multiplying
variances.
Consider the following hypothetical study. A child psychologist is interested

in evaluating the effectiveness of two treatments for children who are afraid of
the dark. One treatment, “emotive imagery,” teaches the children to imagine
that they are brave superheroes, like Wonder Woman or Superman, on a
mission to save a friend. A second treatment, “relaxation,” involves training
the children to breathe slowly and deeply when in the dark. A third condition
serves as a control condition, and these children are simply asked to remain in
the dark as long as they can. The dependent variable is the number of seconds
elapsed before the child turns on the light. Table 12.4 presents raw data,
summary statistics, the calculation of the F ratio, and the ANOVA
summary table.

12.9 Measuring Effect Size for a One-Way ANOVA

The F test provides information about evidence of a difference between at least
two means of a study. A sufficiently large F ratio indicates that the observed
differences between means are unlikely to occur by chance. Stated differently,
all of the sample means are unlikely to have come from the same population.
However, the F ratio value concerns the certainty of an effect, not necessarily
the size or strength of the effect. Studies with large amounts of power, for
instance, may generate very large F’s even when the treatment effect may be
quite modest.
As with t tests in previous chapters, we need to use a different statistic to

measure the size of the effect. Over the years, statisticians have developed
several measures of the strength of relationship between the independent
variable and the variation of scores on the dependent variable. We will look
at two of them. The first statistic offered here is a measure of the estimated mag-
nitude of the treatment effect in the population, omega-squared (ω2). Omega-
squared is easy to calculate, requiring only values from the ANOVA
summary table.

Formula for omega-squared, ω2

ϖ2 =
SSBG −df BG MSW

SST +MSW
(Formula 12.9)
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Table 12.4 An ANOVA with unequal numbers of participants.

Emotive imagery Relaxation training Control

40 33 23

45 39 32

45 51 33

53 40 29

49 42 40

40 25

28

M1 = 46.40 M2 = 40.83 M3 = 30.00

ΣX1 = 232
ΣX2 = 245
ΣX3 = 210
ΣXG = 687
ΣX2 = 27 527

n1 = 5
n2 = 6
n3 = 7
N = 18

dfBG = k − 1 = 2
dfW = N − k = 15
dfT = N − 1 = 17

SSBG =
2322

5
+
2452

6
+
2102

7
−

6872

18
= 848 47

MSBG =
SSBG
df BG

=
848 47

2
= 424 24

SSW = 27527−
2322

5
+
2452

6
+
2102

7
= 458 03

MSW =
SSW
df W

=
458 03
15

= 30 54

SST = 27527−
6782

18
= 1306 50

F =
MSBG
MSW

=
424 24
30 54

= 13 89

Fdf = 2, 15
α = .05

Fcrit = 3.68
H0: μ1 = μ2 = μ3

Since 13.89 > 3.68, reject the null hypothesis.

Source of variation SS df MS F p

Between groups 848.47 2 424.24 13.89 <.05

Within groups (error) 458.03 15 30.54

Total 1306.50 17

The dependent variable is the number of seconds until the child turns on the light. The variation
among means is sufficiently large to reject the null hypothesis. Therefore, we conclude statistical
evidence exists suggesting the treatment approaches differentially affect the altering of children’s
fear of the dark.
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Using the values from Table 12.2, what is ω2?

ϖ2 =
86−2 0 92
94 25 + 0 92

ϖ2 =
84 16
95 17

ϖ2 = 88

The interpretation of ω2 = .88 is that 88% of the variation among the scores is
accounted for by the levels of the independent variable.Wecan thinkof it as the ratio
of primary variance (or treatment variance) to the total amount of variation in the
study (primary variance + secondary variance). The difference between ω2 and
100% is the amount of variation due to random factors. Therefore, ifω2 = 88%, then
12%of thevariation in scores isdue to randomfactors.Logically,ω2 canrange from0
to 100 percent. Is 88% a large treatment effect? Yes, very large! In fact, it would be
rather unlikely that such an effect size would be found in the real world of social
and behavioral science research. Some researchers (e.g. Cohen, 1977) have created
guidelines for interpreting the size of ω2; however, these are rather arbitrary desig-
nations. We simply need to understand that as ω2 increases, so does the effect size.
The most frequently used measure of effect size is eta-squared (η2). Even

though ω2 generates a more accurate measure, η2 is currently preferred,
presumably due to its relative ease of calculation. The formula is presented
below. As the worked example demonstrates, η2 tends to overestimate the
amount of primary variance.

Formula for eta-squared, η2

η2 =
SSBG
SST

(Formula 12.10)

Using the values from Table 12.2, what is η2?

η2 =
SSBG
SST

η2 =
86

94 25

η2 = 91

Historically, published studies did not necessarily report effect sizes. For
instance, a published study by Hupka and Eshett in 1988 claimed an effect
was found with an F value of 1.23. Looking at the F table (Table A.5), we can
see that an F of 1.23 should not lead to a rejection of the null hypothesis. How-
ever, the degrees of freedom for this test were 192 and 13 440! Upon calculating
ω2, it was found that the effect size was .003%!2 This clearly shows us that the

2 The authors would like to thank Professor Hupka for making the summary statistics available that
allowed for the computation of ω2.
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independent variable had only the slightest of effects on the dependent variable.
Thankfully, it is becoming common practice to report effect sizes when publish-
ing in behavioral and social science journals.

12.10 Locating the Source(s) of Significance

After rejecting the overall null hypothesis, the researcher has statistical evidence
suggesting that at least two of the means have come from different populations.
That, however, is all that is known. It is hard to imagine a situation in which a
researcher would not want to discover which groups appear to be different from
one another. This topic, however, is very complicated. For example, an
investigator may wish to make all possible comparisons between the group
means; this is the most typical course of action. In a study with three groups,
three comparisons would be required; with four groups, six comparisons would
be made; and so on. The number of all possible comparisons is k(k − 1)/2.
However, while some comparisons between group means may have important
theoretical implications, other comparisons may be of no interest to the inves-
tigator. Tests comparing group means that the researcher decides to run after
observing the sample data are called post hoc or posteriori tests. When a
researcher decides to test a set of specific null hypotheses before collecting
the data, the subsequent analyses are called a priori tests or planned compar-
isons. A priori tests often involve only a subset of all possible comparisons
among sample means. Whether a priori or post hoc tests are performed is
determined by the nature of the hypotheses in the study. In addition, controlling
the probability of a Type I error is still an issue, even when making comparisons
after obtaining a significant F value. The topic of multiple comparisons is
complex, and the investigator has many statistical issues and options to con-
sider. For example, some post hoc tests are so conservative that they can be
used without even performing an F test, the first post hoc test we will look
at, Tukey’s HSD test, being one example. (Spotlight 12.2 will tell us more
about John Tukey, the creator of this statistical tool.) Most post hoc tests,
however, are only allowed if the obtained F allows the researcher to reject
the H0. The second post hoc test we will look at, Fisher’s LSD test (also called
the protected t test), is a case in point. When reading professional journal
articles, be alert to the names of some of the common procedures for multiple
comparisons – Scheffé, Newman–Keuls, Duncan, and Bonferroni corrected t
tests being a few of the common ones. Unfortunately, even a cursory coverage
of this area is beyond the scope of this book; the interested reader is referred to
any number of advanced statistics books or websites, Cohen (2013) being one
example.
One of the most commonly used post hoc statistics is Tukey’s HSD. This test

allows us to compute a single value, called the honestly significant difference, or
HSD, to use as the minimal difference between any two group means, provided

12.10 Locating the Source(s) of Significance 403



each group in the design has an equal n. If any difference between two group
means exceeds Tukey’s HSD, we can conclude that statistical evidence exists
for a difference. Here is the formula.

Formula for Tukey’s HSD

HSD= q
MSW
n

(Formula 12.11)

Spotlight 12.2 John Wilder Tukey

John Tukey (1915–2000) was born in New Bedford, Massachusetts. He was home-
schooled by his educator parents who responded to his numerous questions not
with direct answers but with clues and follow-up questions designed to help him
solve his own problems (McCullagh, 2003). This philosophy produced a remark-
able student, culminating in two degrees from Brown University in chemistry and
a PhD inmathematics from Princeton in 1939, where he was asked to stay on as a
professor upon graduation. He stayed at Princeton for his entire career.

During World War II he decided to serve the war effort in the Fire Control
Research Office (think “artillery fire”) where he tackled many mathematical
issues related to ballistics, gun and artillery control, and range firing (e.g. Sande,
2001). After the war, he continued to stay involved in several government pro-
jects including the enrichment of uranium and the development of the U-2 spy
plane, even representing the US government at a conference in Geneva addres-
sing the discontinuance of nuclear weapons testing.

Concurrent with his academic career, he also worked for AT&T Bell Labora-
tories where, among other contributions, he created several neologisms includ-
ing “bit” for binary digit and perhaps most notably “software” as a contrast to
hardware (e.g. Leonhardt, 2000). Over the course of his career, Tukey was
awarded, among other recognitions, entrance into the prestigious National
Academy of Sciences, the National Medal of Science from President Nixon,
and the Medal of Honor from the Institute of Electrical and Electronic Engineers.

As an academic, Tukey’s contributions were numerous and significant (pun
intended!), publishing and producing both individually and collaboratively in
the fields of chemistry, mathematics, environmental research, probability and sta-
tistics (forming and chairing Princeton’s Department of Statistics in 1966), and
philosophy (McCullagh, 2003). He also served as a scientific advisor to several pre-
sidents andwas tapped to be a critical reviewer of influential notable publications
such as the Kinsey Report (1953) and Silent Spring (Carson, 1962). His contributions
to the field of statistics are numerous. Some of his most notable statistical crea-
tions include the box-and-whisker plot, the stem-and-leaf diagram, and the Tukey
range test (we know it as Tukey’s HSD test). These tools will likely be long-lasting
contributions to the field of behavioral and social statistics.
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where

q = the studentized range statistic (Table A.6)
n = the number of scores in each group (must be the same)

To determine the proper q value, we must know the number of groups in the
study (k), the degrees of freedom for MSW (dfW), and select an alpha level
(generally the same α selected for the ANOVA).
Since the data in Table 12.4 comes from groups with unequal n’s, we will use

the data from Table 12.2 to determine the HSD:

HSD= q
MSW
n

Given that k = 3, dfW = 9, and α = .05, q = 3.95 (see Table A.6),

HSD= 3 95
0 92
4

HSD= 1 89

The group means from Table 12.2 are M1 = 4.75, M2 = 8.75, and M3 = 2.25.
Applying Tukey’s HSD as our post hoc analysis tool directs us to conclude that
statistical evidence for population differences exist between all three groups:
groups 1 and 2 (4.75 − 8.75 = −4), groups 1 and 3 (4.74 − 2.25 = 2.5), and groups
2 and 3 (8.75 – 2.25 = 6.5). (Mean differences should be understood in absolute
value terms since negative values merely indicate that the larger mean was
subtracted from the smaller.)
The second posttest we will explore, Fisher’s LSD (least significant difference)

test, has been shown, when compared with other tests of multiple comparisons,
to perform well under many circumstances (Cramer & Swanson, 1973).
However, Hochberg and Tamhane (1987) advise against using this test when
making all possible comparisons with more than three sample means. Under
these conditions alpha begins to inflate beyond the 5% level.
To use the protected t test, it is essential that the overall null hypothesis has

first been rejected. With this requirement, the probability of a Type I error is
much less than if the ANOVA were bypassed. Formula 12.12 is the formula
for the protected t test.

Formula for Fisher’s LSD test

t =
Mi−Mj

MSW
1
ni

+
1
nj

(Formula 12.12)

where

Mi, Mj = the means for the two groups being compared
ni, nj = the number of scores in each of the two groups being compared
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The formula for the protected t test is different from what we have encoun-
tered when conducting independent- or dependent-samples t tests. Even
though only two means are contrasted in Formula 12.12, the pooled variance
used isMSW is based on the variance estimates from all the groups in the study.
The result is a more stable estimate of the population variance. The protected
t test, consequently, has more power than an independent-samples t test when
multiple comparisons are performed.
If our study has three groups and we wish to make all possible comparisons,

we will have to perform three protected t tests (group 1 versus group 2, group 1
versus group 3, group 2 versus group 3). The means in the numerator will
change with each test, ni and nj may also change, but MSW is taken from the
ANOVA summary table and remains the same for each analysis. The tcrit value
is based on N − k degrees of freedom and is found in the t table, not the F table.
Using the data from Table 12.4, Table 12.5 provides an example of how
protected t tests are conducted. Each comparison uses an alpha level of .05.
The results of the protected t tests show that statistical evidence has been

found suggesting both emotive imagery and relaxation are more effective than
the control condition in reducing children’s fear of the dark, t(15) = 5.09, p < .05;
t(15) = 3.46, p < .05, respectively. No evidence of a difference between the two
treatment conditions was found, t(15) = 1.66, n.s. The three t test comparisons
have allowed us to locate the source(s) of significance detected by the F test.

Table 12.5 Protected t tests following a significant ANOVA.

Emotive imagery Relaxation training Control

M1 = 46.40 M2 = 40.83 M3 = 30.00

n1 = 5 n2 = 6 n3 = 7

MSw = 30.54 (taken from the ANOVA)

M1 versus M2 =
46 40−40 83

30 54 1 5 + 1 6 =
5 57
3 36

= 1 66 n s

M1 versus M3 =
46 40−30 00

30 54 1 5 + 1 7
=
16 40
3 22

= 5 09 p < 05

M2 versus M3 =
46 83−30 00

30 54 1 6 + 1 7
=
10 83
3 13

= 3 46 p < 05

df for t’s = dfW = N − k = 18 − 3 = 15
α = .05
tcrit = ±2.13

The t tests are based on the ANOVA in Table 12.4.
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Box 12.1 presents a study on the topic of people’s loyalty to a group. The
experiment has three groups, yet the researchers did not use an ANOVA. This
raises an important statistical issue.

Box 12.1 Initiation Rites and Club Loyalty

Many clubs require an initiation. The rites of passage may range from simply
learning a password and a secret handshake to initiations that are life threaten-
ing. The more dramatic displays of fraternity hazing have been banned by uni-
versities amid reports of fatalities. The Marine Corps is infamous for its
treatment of recruits during basic training. Yet it is a common observation that
clubs that require severe initiations have a great deal of group cohesion and
many members who remain loyal for a lifetime. One explanation for this obser-
vation is that clubs that require severe initiations attract a certain type of person
who is prone to develop strong loyalties. However, might there be something
about the kind of initiation experienced by club members and their subsequent
feelings about the group? This is the question asked by researchers Aronson
and Mills in their classic 1959 study, a study that challenged behaviorism,
the then ruling paradigm of psychology. Due to a self-selection factor that invar-
iably operates in club membership, only a randomized controlled experiment
could discover if there is a causal relationship between severity of initiation
and attitudes of the initiate toward the club.

One theory the researchers felt that could better account for the initiation-
induced loyalty was cognitive dissonance (Festinger, 1957). According to this
theory, we are strongly inclined to maintain consistency between our attitudes
and behavior. When an attitude that we hold is inconsistent with our behavior,
a state of dissonance arises, creating an unpleasant psychological state.
A reduction in dissonance can be accomplished by altering our behavior or,
more commonly, by changing our attitude so that consonance is achieved.
How does this relate to initiations and club loyalty? No matter how attractive
a group is to someone, there are always some negative aspects of the group.
After going through an unpleasant initiation, a state of dissonance arises. It is
as if people ask themselves, “How could I have gone through all this when
there are things about this group I do not like?” To resolve the dissonance,
people can either view the initiation as not that bad or disregard the negative
aspects of the group and magnify the positive characteristics of the group. The
more unpleasant the initiation, the more difficult it is to view the initiation as
not that bad. The only avenue left to achieve consonance is to see the group
as more positive. The more severe the initiation, the more positive people will
tend to see the group. In other words, the greater the dissonance, the larger
the shift in how one perceives the group. Aronson and Mills tested this theory
in the following manner.
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Sixty-three female undergraduates volunteered to join a discussion group,
ostensibly so that the researchers could study the dynamics of group interac-
tion. The participants were told that they would have to be screened before
being allowed to join the group, and since the discussion topic was to be sexual
behavior, it was important that they be able to discuss the topic freely. The
“screening” constituted the experimental manipulation. In the “Severe” condi-
tion, participants were required to read aloud a number of obscene words
related to sex and body parts. The participants were told that the experimenter
was rating them on how embarrassed they appeared while reading the words.
Furthermore, they were told that the ratings would be used to determine if they
would be admitted to group membership. Participants in the “Mild” condition
read words that were related to sex but were not obscene. Those participants
assigned to the “Control” condition were not required to read any words; their
admission to the group was based only on their willingness to discuss the topic
of sex. Of course, irrespective of performance, all participants were admitted to
the “club.”

The participants were told that their participation would begin at the next
meeting. However, in order for the participants to “become familiar with the
group discussion,” they were allowed to listen, via intercom, to a discussion
among other initiates. Participants actually heard a tape recording of three
women discussing the sexual practices of lower animals. The discussion was
dull, trite, and filled with contradictions. Depending on the condition to which
the participant was assigned, dissonance had been created. After going
through the initiation, they would become a member of a club that would
include rather unimpressive people who discussed a potentially interesting
topic in a boring manner.

After listening to thediscussion, participants completedaquestionnaire,which
asked them to rate the discussion and the participants along a number of dimen-
sions (e.g. dull–interesting, intelligent–unintelligent). The sum of the ratings
served as the dependent variable. One dependent variable was the ratings of
the discussion; a second dependent variable was the ratings of the participants.
Theauthorspredicted that themore severe the initiation, themorepositivewould
be participants’ ratings of the discussion and the three groupmembers heard on
the tape. To test their hypothesis, they performedmultiple t tests, making all pos-
sible comparisons among group means, for each dependent variable.

With respect to the ratings of the discussion, participants in the “Severe” con-
dition offered more positive ratings of the discussion than those in the “Mild”
and “Control” conditions. No evidence of differences was found between the
“Mild” and “Control” groups. Therefore, it would appear that people who expe-
rience a severe initiation reduce dissonance by increasing their positive evalua-
tions of the discussion among the members of the group.

The second dependent variable was especially important because it reflected
the participants’ favorable regard toward the other members of the group. Did
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12.11 How to Present Formally the Conclusions
for a One-Way ANOVA

Every journal has a standard format for reporting the results of a statistical test in
the text of an article.Most social and behavioral science journals rely on the format
offered by theAmerican Psychological Association (2009).When formally report-
ing the rejectionofanullhypothesis,wemust include thedfBG,dfW, theF value, and
the alpha level used to make our decision. For instance, “Statistical evidence
suggests the time-of-day the drug is administered influenced its effectiveness,
F(3, 69) = 9.59, p < .05. Further analysis found evidence suggesting the effects of
the drug were most pronounced if administered in the morning compared to
the afternoon, t(24) = 3.55, p < .05; and morning compared to the evening,
t(22) = 4.59, p < .05. No difference was found between afternoon and evening,
t(23) = 1.22, n.s.” A failure to reject might read, “There was no statistical eviden-
ce to suggest the drug was more pronounced at one time of day compared to
others, F(3, 69) = 1.59, n.s.” Measures of effect size can be added at the end of
the sentence when a null hypothesis has been rejected.

the experimental manipulation influence the participants’ liking for the other
participants in the group discussion? According to the t tests, the answer
was a qualified “yes.” The difference between the “Severe” and “Control” con-
ditions was statistically significant. However, there were no differences between
the “Severe” and “Mild” conditions, nor the “Mild” and “Control” conditions.
Based on all of these analyses, the authors concluded, “The results clearly sub-
stantiate the hypothesis: persons who undergo a severe initiation to attain
membership in a group increase their liking for the group” (p. 181).

We have learned that multiple t tests should not be conducted unless the
overall null hypothesis has been rejected. Aronson and Mills neglected to per-
form the requisite F tests on the dependent variables. Instead, they proceeded
straight to the multiple comparisons. What would have happened if the F tests
were conducted? Since the authors reported means and standard deviations,
one of the textbook authors (Grimm) used Formulas 12.1 and 12.2 to compute
an F ratio for each dependent variable. The F test for the discussion ratings was
significant, F(2, 60) = 6.54, p < .05. For this variable, the authors were warranted
in conducting the t tests. However, the F test performed on the ratings of the
participants was not significant, F(2, 60) = 2.81, n.s. Consequently, for this
dependent variable, the authors should not have performed t tests when mak-
ing all possible comparisons among the means of the groups.

In conclusion, the findings of this study are not as “clean” as they originally
appeared. The reanalysis suggests a more limited conclusion than the one
made by the authors. A proper interpretation of the findings would conclude
that a severe initiation process increases liking for the opinions of the group
but not necessarily the members of the group.
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Many other principles common to the proper reporting of all types of statis-
tical findings were first laid out in Section 8.8. For instance, notice once again
that the critical value for the test is usually not presented.

Summary

A one-way ANOVA can be used when a study has two or more levels of one
independent variable and participants are placed into independent groups
(not repeatedly measured). When conducting an ANOVA it is assumed that
the samples are representative of the populations from which they come, these
populations are normally distributed and have roughly equivalent variances.
Minor violations of the statistical assumptions (normality and homogeneity
of variance) are not serious since the F test is considered robust to these
assumptions. However, it is essential that the sample data be representative
of the population, that each participant’s score on the dependent variable be
independent of every other participant’s score, and that the data be measured
on an interval or ratio scale.
The variation among scores within each group is due to random factors: indi-

vidual differences and experimental error. The influence of random factors cre-
ates error variance (also called secondary variance). Mathematically it is referred
to as within-group variance. Between-group variance is caused by error variance
as well as the effect of the treatment variable (if there is any). Variance due to a
treatment effect can also be called primary variance. To determine if the null
hypothesis can be rejected, the between-group variance (MSBG, primary and
secondary variance) is compared in ratio form with the within-group variance
(MSW, secondary variance only). This ratio is called an F statistic.
If there is no primary variance, the resulting ratio is close to 1. However, as pri-

mary variance exists, it only inflates the numerator (MSBG), making the resulting
ratio increasingly larger than 1. If the resulting ratio falls into the outermost 5% of
the null F sampling distribution, evidence of a treatment effect has been found.
The F sampling distribution that is used to test the significance of the F ratio is

determined by the dfBG (k − 1) and dfW (N − k). Although the shape of the F dis-
tribution will vary depending on sample sizes and the number of conditions, the
F distribution is always positively skewed.
The size of the F ratio is not an indication of the magnitude of the treatment

effect. To assess the strength of association between the independent variable
and the variation of scores on the dependent variable, ω2 or η2 can be used.
To locate the source(s) of a statistically significant F test, Tukey’s HSD, Fisher’s
LSD, or any number of other tests can be used to make pairwise comparisons
between group means. The selection of the proper test best suited for compar-
isons depends on an understanding of many factors – a topic that is beyond the
scope of this text.
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Using Microsoft® Excel and SPSS® to Run
a One-Way ANOVA

Excel

General instructions for data entry into Excel can be found in Appendix C.

Data Entry
Enter all of the scores from the samples into adjacent columns (the number of col-
umns equaling the number of conditions in the research design), one sample in
each column. Label the columns appropriately. (See Figure 12.6 for an example.)

Data Analysis
1) Excel has built-in programs for many inferential tests, including the one-way

ANOVA test. To access it, click on the Data tab on the top menu and then
click Data Analysis. (Some versions of Excel have a “Tools” tab. The Data
Analysis function may be under this tab.) If this option is not found, the Data
Analysis ToolPak needs to be installed. See Excel instruction materials for
how to install this feature.

2) With the Data Analysis box open, select Anova: Single Factor.
3) Input the data range by dragging over the entire data set and placing those

coordinates into the Input Range box. (If we included the labels in the data
range, make sure to click the Labels box to exclude those cells.)

4) Decide on an Output option. The default is to place it on a separate
worksheet.

Cond1 Cond2 Control

4 7 2

4 8 2

5 7 3

5 6 2

4 7 2

5 9 3

Anova: Single factor

Summary

Groups Count Sum Average Variance
Cond1 6 27 4.5 0.3

Cond2 6 44 7.333 333 1.066 667

Control 6 14 2.333 333 0.266 667

ANOVA

Source of variation SS df MS F P-value F crit
Between groups 75.444 444 2 37.72 222 69.28 571 2.7E-08 3.68 232

Within groups 8.1 666 667 15 0.544 444

Total 83.611111 17

Figure 12.6 A worked example using Microsoft Excel to calculate a one-way ANOVA.
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5) Click OK.
6) The firstoutputbox labeled “Summary”willpresent thecount, sumofall values,

means (average), and variance for all conditions. The second output boxwill be
an ANOVA summary table (labeled “ANOVA”) that will be very similar to the
ANOVAsummary table described earlier in the chapterwith an additional col-
umn identifying the Fcrit value. (See Figure 12.6 for a worked example.)

SPSS

General instructions for inputting data into SPSS can be found in Appendix C.

Data Entry
In SPSS, each row of the data file represents a participant. Since all samples in a
one-way ANOVA test have different participants, all of the dependent variable
data from all samples will need to be placed in one column. Within Variable
View, label this variable appropriately. However, also create a second variable
that will allow the user to identify which data goes with which group. A typical
label for this variable might be “condition.” Then, go to Data View. Input the
sample data to the appropriate column, and use a nominal variable in the “con-
dition” column to distinguish between the samples (for example, “1,” “2,” “3,”
etc.). See Figure 12.7 for an example.

hoursslept Condition

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

4 1

4 1

5 1

5 1

4 1

5 1

7 2

8 2

7 2

6 2

7 2

9 2

2 3

2 3

3 3

2 3

2 3

3 3

Figure 12.7 An example of entered data for a
one-way ANOVA in SPSS.
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Data Analysis
1) Click Analyze on the tool bar, select Compare Means, and then click One-

Way ANOVA.
2) Highlight the dependent variable column label in the left box and click the

arrow to move it into the Dependent List box. Move the “condition” vari-
able to the Factor box.

3) If we want to make specific group comparisons at the time of the ANOVA,
click on Post Hoc and make the appropriate selections. If not, simply skip
this step.

4) If we want to get basic descriptive statistics, click on Options and then
Descriptive. If not, simply skip this step.

5) Click OK.
6) The output will generate an ANOVA summary table very similar to the one

described earlier in the text. However, “Sum of Squares” is spelled out in this
table, and instead of a column labeled p for probability, SPSS generates a col-
umn labeled Sig. for significance. Themeaning, however, is the same.We are
looking to see if the F obtained falls in the most extreme 5% of the null
F distribution. If the value found under Sig. is .05 or less, we have evidence
to reject the null hypothesis. See Figure 12.8 for a worked example.

Key Formulas

Pooled variance formula for MSW

MSW =
s21 n1−1 + s22 n2−1 +…+ s2k nk −1

n1−1 + n2−1 +…+ nk −1
(Formula 12.1)

Between-group variance (MSBG) as an estimate of σ2

ns2M = σ2 (Formula 12.2)

Definitional formula for SSBG

SSBG = Σnk(Mk −MG)
2 (Formula 12.3)

One way
ANOVA

hoursslept

Sum of 

squares df
Mean 

square F Sig.

Between groups

Within groups

Total

75.444 2 37.722 69.286 .000

8.167 15 .544

83.611 17

hoursslept

Figure 12.8 An output table from worked example using SPSS to calculate a
one-way ANOVA.
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Computational formula for SSBG

SSBG =
ΣX1

2

n1
+

ΣX2
2

n2
+ +

ΣXk
2

nk
−

ΣX 2

N
(Formula 12.4)

Definitional formula for SSW

SSW = Σ(X1 −M1)
2 + Σ(X2 −M2)

2 + + Σ(Xk −Mk)
2 (Formula 12.5)

Computational formula for SSW

SSW =ΣX2−
ΣX1

2

n1
+

ΣX2
2

n2
+…+

ΣXk
2

nk
(Formula 12.6)

Definitional formula for SST

SST = Σ(X −MG)
2 (Formula 12.7)

Computational formula for SST

SST =ΣX2−
ΣX 2

N
(Formula 12.8)

Formula for omega-squared, ω2

ϖ2 =
SSBG−df BG MSW

SST +MSW
(Formula 12.9)

Formula for eta-squared, η2

η2 =
SSBG
SST

(Formula 12.10)

Formula for Tukey’s HSD

HSD= q
MSW
n

(Formula 12.11)

Formula for Fisher’s LSD test

t =
Mi−Mj

MSW
1
ni

+
1
nj

(Formula 12.12)

Key Terms

Analysis of variance (ANOVA)
One-way ANOVA

Between-group variation
Treatment (or primary) variance
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Individual differences
Experimental error
Random factors
Within-group variation
Error (or secondary) variance
Mean square within, (MSW)
Mean square between, (MSBG)
Grand mean
F distribution

Omega-squared, (ω2)
Eta-squared, (η2)
Post hoc (or posteriori) tests
A priori tests (or planned
comparisons)

Multiple comparisons
Tukey’s HSD
Fisher’s LSD (or protected t) test

Questions and Exercises

1 What is the acronym for “analysis of variance?”

2 A one-way ANOVA is used to analyze data from research designs having
________ or more groups that are ________ each other.

3 For designs with more than two conditions, why is an ANOVA preferred
over several t tests?

4 What terms can be used to describe variance associated with participants
being in different conditions?

5 What terms can be used to describe variance found within groups or
conditions?

6 The symbol used to represent the variation between group means
is ________.

7 The symbol used to represent the variation between scores with groups
is ________.

8 The symbol used to represent the number of groups in a research design
is ________.

9 How is the MSBG/MSW ratio used to detect the presence of primary
variance?

10 Describe, in brief terms, the shape of F distribution.

11 The assumptions for the one-way ANOVA are the same as they are for
the ________.

Questions and Exercises 415



12 Which of the five assumptions can we consider the one-way ANOVA to be
robust against slight violations?

13 The table used to organize the ANOVA analysis is called the ________
________ ________.

14 Complete the following ANOVA summary table. Test to see if the null
hypothesis can be rejected.

Source SS df MS F p

Between
groups

280.3 3 _________ _________ _________

Within
groups

_________ _________ 7.28

Total 527.98 _________

15 Complete the following ANOVA summary table. Test to see if the null
hypothesis can be rejected.

Source SS df MS F p

Between
groups

_________ 4 1.47 _________ _________

Within
groups

6.30 _________ _________

Total _________ 15

16 A sports psychologist would like to compare the effects of different exer-
cise programs on cardiovascular fitness. The measure of fitness is the rest-
ing heart rate of participants after they complete the program, with lower
heart rates indicating greater physical fitness. Twelve college students are
randomly assigned to three groups (four participants per group). Partici-
pants in the aerobic condition walk a treadmill for 30 minutes, three times
a week. Participants in the circuit condition perform exercises on weight
machines for 30minutes, with a 10-second rest between exercises. In the
control condition, participants are asked simply to maintain their usual
amount of exercise. The resting heart rates of all participants are taken
after 10 weeks. Data from this hypothetical study are presented in the fol-
lowing table.
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Aerobic Circuit Control

65 74 74

62 65 78

56 62 86

60 72 75

a State the null and alternative hypotheses.
Calculate the following values.

b SSBG
c SSW
d dfBG
e dfW
f MSBG
g MSW
h SST
i dfT
j F ratio
k What is Fcrit when α = .05?
l Should we reject or fail to reject the H0?
m Make an ANOVA summary table.
n Calculate omega-squared.
o Conduct Fisher’s LSD t tests if appropriate and properly report the

findings.
p Does this F test allow for a causal interpretation?

17 A political scientist hypothesizes that persons from the US Midwest are
more conservative in their political views than individuals from either
coast. Five participants between the ages of 21 and 60 are randomly
selected from the Western, Midwestern, and Eastern parts of the nation
(N = 15). A questionnaire measuring conservatism is administered, with
higher scores reflecting greater conservatism. The data are presented in
the following table.

West Midwest East

3 9 4

6 15 9

2 9 1

4 4 2

3 6 3
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a State the null and alternative hypotheses.
Calculate the following values.

b SSBG
c SSW
d dfBG
e dfW
f MSBG
g MSW
h SST
i dfT
j F ratio
k What is Fcrit when α = .05?
l Should we reject or fail to reject the H0?
m Make an ANOVA summary table.
n Calculate eta-squared.
o Conduct Tukey’s HSD and interpret.
p Does this F test allow for a causal interpretation?

18 A clinical psychologist is interested in evaluating treatments for panic
attacks. The number of reported panic attacks during the 6-month pro-
gram of treatment is used as the dependent variable. Fifteen clients suffer-
ing from panic disorder are randomly assigned to three conditions (five
participants per group). In the breathing condition, clients are taught
how to breathe slowly and deeply at the first sign of an attack. Clients
in the medication condition are administered a sedative, three times a
day. Clients in the control condition are not provided with any treatment.
The data are presented in the following table.

Breathing Medication Control

16 12 9

22 15 12

15 13 16

9 18 18

13 12 10

a State the null and alternative hypotheses.
Calculate the following values.

b SSBG
c SSW
d dfBG
e dfW
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f MSBG
g MSW
h SST
i dfT
j F ratio
k What is Fcrit when α = .05?
l Should we reject or fail to reject the H0?
m Make an ANOVA summary table.
n Provide an interpretation of the results.
o Calculate omega-squared and interpret.
p Conduct protected t tests if appropriate and interpret.
q Does this F test allow for a causal interpretation?

19 A researcher is interested in the effect of emotion on concentration. A two-
sample study is designed inwhich anger is induced in one sample by having a
confederate provoke an argument in the lab waiting room. The control
group does not undergo this mood induction. Both samples are then tested
on a computer stunt driving game and the number of times the participant
runs the vehicle into an object (crashes) is counted. The data follows.

Angry group Control group

6 6

9 5

13 8

11 6

5 9

10 7

Conduct a one-way ANOVA on these data (even though there are only
two levels of the independent variable). Compare the conclusions to Part 4,
Problem 10, in which this same study should have been analyzed using an
independent-samples t test.
a State the null and alternative hypotheses.

Calculate the following values.
b SSBG
c SSW
d dfBG
e dfW
f MSBG
g MSW
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h SST
i dfT
j F ratio
k What is Fcrit when α = .05?
l Should we reject or fail to reject the H0?
m Make an ANOVA summary table.
n Provide a proper reporting of the findings.
o Calculate omega-squared.
p Does this F test allow for a causal interpretation?

20 We observe that people seem to be happier when they are wearing a
new article of clothing. We would also like to test whether level of hap-
piness depends on the particular type of new clothing worn. To test
this, we provide a random sample of five of our classmates with new
T-shirts and five with new shoes, and instruct them to wear the articles
of clothing all day. At the end of the day, we ask these participants to
rate, on a 10-point scale, how happy they are. A control group of five
classmates is also asked for this self-rating, but without the experimen-
tal manipulation. Ratings for each participant are reported below.
Higher scores indicate greater happiness. Conduct a one-way ANOVA
on these data.

New T-shirt New shoes Control

6 8 4

6 7 6

7 9 5

5 7 3

8 10 5

a State the null and alternative hypotheses.
Calculate the following values.

b SSBG
c SSW
d dfBG
e dfW
f MSBG
g MSW
h SST
i dfT
j F ratio
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k What is Fcrit when α = .05?
l Should we reject or fail to reject the H0?
m Make an ANOVA summary table.
n Calculate eta-squared.
o Conduct Tukey’s HSD and interpret.
p Provide a proper reporting of the findings.
q Does this F test allow for a causal interpretation?

21 State the sources of variance of the numerator of the F ratio when H0 is
correct and when H0 is incorrect.

22 Why is an F distribution always positively skewed?

23 True or False. In a study that has two levels of one independent variable, it
is better to conduct an F test rather than a t test because the F test is more
powerful.

24 What are the three sources of variation that can account for mean
differences?

25 What are the two sources of variation that can account for within-group
variability?

26 When can a multiple comparison tool like Fisher’s LSD be used?

27 LSD stands for ________ ________ ________.

28 HSD stands for ________ ________ ________.

29 Select the right answer: In Tukey’s test, if the difference between two group
means meets or exceeds the HSD value, there is/is not evidence of a
significant difference between those two groups.

Computer Work

30 A clinical psychologist hypothesizes that tension produced by frustration
can be relieved if the person is allowed to respond aggressively. However, it
is unknown what form the aggressionmust take in order for tension reduc-
tion to occur. All participants in the experiment are asked to complete an
intellectually demanding task. While working on the task, the experi-
menter keeps interrupting the participant, correcting mistakes, offering
advice, and slowing the progress of the participant. After this phase of
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the experiment, the independent variable is defined by the opportunity
afforded the participant to express aggression. In the overt aggression con-
dition, participants become a “teacher” and are required to administer a
loud, noxious noise when a confederate learner makes a mistake on a
memory task. In the written aggression condition, participants are asked
to write an evaluation of the experimenter, which will be made available
to the experimenter’s supervisor. In the fantasy aggression condition, par-
ticipants are administered the thematic apperception test. This test is com-
posed of several pictures depicting, for the most part, interpersonal scenes.
The participant is asked to make up a story for each card, consequently
allowing for the expression of aggressive fantasies. The dependent variable
is the change in systolic blood pressure from just after the frustration
induction experience to just after the opportunity for participants to
express aggression. Use α = .05 to test the null hypothesis. Conduct all pos-
sible post hoc comparisons if the null hypothesis is rejected. Either use
Fisher’s LSD or anothermethod of pairwise comparisons offered in our sta-
tistical package.

Overt Written Fantasy

−10 −2 0

−5 +2 −4

−8 0 0

−3 −1 +5

−11 −5 0

+3 +1 −2

−15 −9 0

+3 −1 −2

+4 0 −6

−12 −3 −2

−3 −5 −4

+6 −1 0

31 Researchers have noted that chronic severe muscle contraction headaches
respond quite well to antidepressant medication, as well as biofeedback for
relaxing the muscles of the forehead (Bourianoff & Stubis, 1988). A health
psychologist is interested in making a direct comparison between these
two modes of treatment. Forty-five headache sufferers are randomly
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assigned to three conditions: medication, biofeedback, and no treatment
control. Treatment lasts for five months, during which time the number
of weekly headaches is recorded. Conduct an F test (α = .05) and post
hoc comparisons of our preference to determine the relative effects of
these three treatment conditions. The raw scores are the average number
of headaches per week, over the five-month period of treatment.

Medication Biofeedback Control

2 4 5

1 2 7

2 3 8

6 5 10

7 4 8

8 2 2

6 7 8

3 4 8

2 0 2

0 3 5

1 0 1

2 5 6

0 1 2

4 2 1

5 3 8

32 Sarah believes there is a relationship between a person’s wardrobe and the
type of major they pursue at the university. The theory states that majors
described as a “science” attract people who are not particularly interested
in self-presentation. Those students who are interested in the arts, how-
ever, have a greater interest in self-presentation. Humanities majors fall
in between. Sarah hypothesizes that the number of shoes brought to school
might be a way to start to investigate the theory. Below are data from four
different majors: a “hard” science, “social” science, humanity, and art. To
try to control for any gender effects, Sarah has only recruited biological
males for the study. Use α = .05 to test the null hypothesis. Conduct all
possible post hoc comparisons if the null hypothesis is rejected. Either
use Tukey’s HSD or another method of pairwise comparisons offered in
a statistical package.
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Chemistry Psychology History Theater

2 5 5 7

3 2 7 4

2 5 8 9

6 5 10 8

4 4 8 9

5 8 4 5

6 7 8 11

3 4 9 4

2 9 2 6

4 5 5 11

2 3 6 7

4 5 6 9

3 1 3 5

4 2 9 10

7 6 8 9

3 5 5 8

4 4 7 5
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13

Two-Way Analysis of Variance

13.1 The Research Context

Factorial Designs

In previous chapters, research designs were presented with only one factor, or in
experimental terms, one independent variable.1 However, we do not live in a
“one-variable world.” Our behavior is constantly affected by the combined
influence of two or more sets of conditions. For this reason, many research
designs in the social and behavioral sciences allow the researcher to evaluate
the interaction between two independent variables and measure their
combined influence on behavior. Factorial (or complex) designs are a blend
of two or more single-variable designs and serve at least two purposes. For
one thing, an investigator can ascertain, in one study, information about the
effect of more than one independent variable, thereby saving the time, expense,
and effort required to conduct separate, single-variable experiments. Most
importantly, by combining independent variables, information can be gained
about the combined effect of the independent variables on the dependent
variable. When factorial designs are used, there is typically a prediction made
regarding the combined effect. The researcher believes that the effect of one
independent variable will be altered, depending on the value of the second
independent variable. An example serves to illustrate this point.
If we saw a person in trouble, would we come to their aid? As we think about

this question, we may answer, “it depends.” It may depend on how many people
are present, how dangerous the situation is, or even what the person in trouble
looks like (Latane & Darley, 1970). “It depends” qualifies our answer, which, in
effect, says our action is determined by the joint presence of certain conditions.

1 As in previous chapters, concepts introduced here will be presented from an experimental
perspective, even though two-way ANOVAs can be used to analyze data gathered in
nonexperimental designs as well.
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For instance, we may only help if it is not too dangerous, and we are the only per-
son around to offer assistance. In the language of factorial designs, this is an inter-
action effect since our behavior depends on the joint occurrence of two or more
variables. It might also be true that we would help if there are no other people
around or if the person was dressed like us, but we would not help if both of these
conditions were true, thinking it might be a trap. It is one thing to learn how one
variable (e.g. the presence of other people) influences our behavior, and it is quite
another thing to look at the effect of this variable among other variables. The
ability to look at combined effects is the great attraction of factorial designs.

Examples of Factorial Designs and Cell Notations

A system of terminology and notation is employed to identify the features of a
factorial design. Each design is broken up into cells, each cell corresponding to a
unique combination of treatment conditions and housing its own group of
participants. Each independent variable in a factorial design is referred to as
a factor (thus the term “factorial design”); this term is more generally appropri-
ate since many designs involve nonexperimental variables. When there are two
independent variables, one variable is designated Factor A and the other Factor
B. A cell designation of A1B3 refers to the group of participants who are in the
first level of FactorA and the third level of Factor B. In Example 13.1,A1B3 refers
to the participants who have an anxiety disorder with panic attacks (first level of
Factor A) and receive Imipramine (third level of Factor B). By convention, when
the design is depicted with two rows and three columns, it is referred to as a 2 ×
3 (pronounced “2 by 3”) factorial design (rows × columns). If one of the inde-
pendent variables has more levels than the other independent variable, the var-
iable with more levels is usually placed at the top of the figure, thereby creating
more columns than rows. There is no special logic for designating the letters
A and B to the two factors.

► Example 13.1 A psychiatrist is interested in comparing the effectiveness of
three different psychopharmacological treatments for anxiety with two types of
patients, those with and without panic attacks. Factor A is patient type, Factor
B is treatment, and the dependent variable is the participants’ self-reports of
anxiety. This is a 2 × 3 factorial design.

Factor B

Valium Alprazolam Imipramine

Factor A
Anxiety with Panic A1B1 A1B2 A1B3

Anxiety without Panic A2B1 A2B2 A2B3

◄
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► Example 13.2 A social psychologist hypothesizes that two advertising
techniques will be differentially effective, depending on the product. Factor A
is the advertising technique, Factor B is the product, and the dependent variable
is the participants’ attitudes toward the product. This design is a 2 × 2 factorial
design.

Factor B

Autos Cell Phones

Factor A
Image Appeal A1B1

A2B1

A1B2
A2B2Technical Information

◄

► Example 13.3 A psychologist hypothesizes that aggression is more likely
when a person is physiologically aroused and is exposed to aggressive cues.
Factor A is arousal, Factor B is the presence or absence of aggressive cues,
and the dependent variable is aggression.

Factor B

Present Absent

Factor A
Aroused A1B1

A2B1

A1B2
A2B2Not Aroused

◄

Main Effects and Interactions

To illustrate how two single-independent variable experiments can be
combined into one factorial design, consider two hypothetical studies on
memory.
In Experiment 1, a psychologist hypothesizes that memory will be better if a

person is in a good mood when attempting to recall a list of words. On the first
day of the study, all participants are given a list of words to memorize. A test for
recall is conducted on the second day, with half of the participants tested imme-
diately after reading amood-elevating passage. The other half of the participants
is tested after reading a depressing passage. If the psychologists’ hypothesis is
correct, those participants who just finished the mood-elevating passage should
remember more words than the participants who just finished the depressing
passage (see Experiment 1, Table 13.1).

13.1 The Research Context 427



In Experiment 2, a researcher hypothesizes thatmemory will be best if an indi-
vidual is in a goodmood whilememorizing a list of words. This means the mood
manipulation (reading a happy or depressing passage) is accomplished on the
first day, just prior to having the participants memorize the word list. On the
second day, all participants are asked to recall as much of the list as they can.
This experiment is also depicted in Table 13.1.
Now suppose a psychologist develops a state-dependent theory of memory

in which it is predicted that memory will be facilitated when a person recalls a
list of words while in the same emotional state that existed when the list was
memorized. Neither one of the experiments in Table 13.1 can test this hypoth-
esis since the prediction requires experimentally manipulating mood state
during memorization and inducing a mood state during recall. However, by
combining the two studies, we can obtain all the information gathered from
each single-variable experiment, as well as the interactive effects of the two
independent variables. An effect found among the conditions of one
independent variable, independent of the influence of another independent
variable, is called a main effect. As described earlier in the chapter, an effect
produced by the combination of independent variables is an interaction. The
two-way ANOVA is an analytical procedure that allows us to investigate both
main effects and interactions.
The two independent variables are Mood During Recall and Mood During

Memorization. Each independent variable, or factor, has two levels: Happy
and Sad. The formal name of this design is a Completely Randomized 2 × 2 Fac-
torial Design. It is completely randomized in that participants are randomly
assigned to the four treatment conditions. It is a factorial design because there
is more than one factor. It is a 2 × 2 design because there are two levels of each

Table 13.1 Two separate between-group designs, each with one independent variable.

Day 1 Day 2

Experiment 1: Mood State During Recall

Both groups memorize list Group 1: Recall While Happy

Group 2: Recall While Sad

Experiment 2: Mood State During Memorization

Group 1: Memorize While Happy Both groups recall list

Group 2: Memorize While Sad

In Experiment 1, the independent variable is “mood during recall.” In Experiment 2, the independent
variable is “mood during memorization.” In both experiments, the dependent variable is the number
of words recalled correctly.

428 13 Two-Way Analysis of Variance



factor (Happy/Sad During Memorization and Happy/Sad During Recall).2

Table 13.2 illustrates this 2 × 2 factorial design.

Using Diagrams and Graphs to Examine Main Effects and Interactions

Viewing diagrams and graphs of data from factorial designs allow us to speculate
about the presence of main effects and interactions. Of course, we must conduct
statistical analyses to discover if there really is statistical evidence for main effects
and interactions. However, it can be helpful to graph group means before per-
forming a statistical analysis, and researchers often display graphs in their pub-
lications as a visual complement to the verbal summary of study results.
Throughout this section, we will stay with the 2 × 2 memory experiment.

Group means will be altered in each successive example so that we can learn
what the diagrams and graphs look like as the experimental results change.
A word of caution: If we read the text without referring to the relevant diagrams
and graphs, we can easily get lost. We need to bounce back and forth between
the illustrations and the text to understand the discussion.
In Table 13.2, the numbers within each cell are group means representing the

average number of words recalled for the participants in that group. The means
in the margins (called marginal means) represent the average number of words
recalled for participants across that condition (identified by row or column, as
the case may be). Let us first consider each independent variable separately.
When addressing only Factor B, the design can be simplified by collapsing
the conditions of Factor A leaving us with just two cells (Factor BHappy; Factor

Table 13.2 A 2 × 2 factorial design with a significant interaction and no significant main
effects.

Factor B: Mood During Recall

Happy Sad

Factor A: Mood During
Memorization

Happy
(1)

20
(2)

10
MA1 = 15

Sad
(3)

10
(4)

20
MA2 = 15

MB1 = 15 MB2 = 15

The numbers in parentheses are group designations, also called cell numbers.

2 Some descriptions may use the term “full factorial.” This term means that every possible
combination of the levels of the factors is realized. Since this is almost always the case, the simpler
term “factorial” is typically used.
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B Sad) in the design, and the question is, “What is the effect of mood state during
recall on the number of words remembered?” The average of collapsed cells 1
and 3 versus the average of collapsed cells 2 and 4 are found in the marginal
means and reveal no difference (MB1 = 15 andMB2 = 15). Comparing the levels
within one independent variable allows us to determine if there is a main effect
for that factor. Since, in this example, there is clearly no evidence of a main effect
for Factor B, we might be tempted to conclude that the mood state present
during recall has no effect on the number of words remembered.
The same logic can be applied when considering Factor A. Now the design is

simplified by collapsing the conditions of Factor B leaving us with just two cells
(Factor A Happy; Factor A Sad) in the design, and the question is, “What is the
effect of mood state during memorization on later recall?” The average of col-
lapsed cells 1 and 2 versus 3 and 4 are found in the marginal means and reveal
no difference (MA1 = 15 andMA2 = 15). There is no evidence for a main effect for
Factor A. Once again, we might be tempted to conclude that the mood state
present during memorization has no effect on the number of words remem-
bered. Bear in mind that these data are hypothetical. The marginal means in
Table 13.2 have purposely been presented as identical to simplify the example.
With real data, the marginal means are rarely identical, even when there is no
main effect. Nevertheless, if each independent variable were examined in sep-
arate, single-variable studies, each study would be a washout. However, by using
a factorial design, a third question is possible: “Does the mood state during
memorization interact with the mood state during recall?” Although there
are no main effects in this study, it would appear that there is an interaction.
By examining the pattern of means within the cells, we may conclude that recall
is facilitated when there is congruence between mood duringmemorization and
mood during recall.3 It does not seem to matter what the moods are as long as
they are similar. These results lend support to the proposed state-dependent
theory of memory.
When speculating about an interaction, a graph of cell means can be helpful.

Figure 13.1 is a graph of the means presented in Table 13.2.
When graphing means from a factorial design, the levels of one independent

variable are indicated on the horizontal axis. (Which variable to select is largely
arbitrary. Sometimes visual analysis is a bit clearer depending on which variable
is chosen.) In Figure 13.1, Mood During Recall has been placed on the horizon-
tal axis. The dependent variable is represented asmeans on the vertical axis. The
second independent variable is placed within the graph. In the example, the

3 Since this example uses a 2 × 2 design, the interaction can be examined by taking the average of the
diagonals. The average of cells 1 and 4 is 20 and the average of cells 2 and 3 is 10. The
difference between the marginal means of 10 and 20 (not depicted) likely indicates an interaction
effect. This method only applies to a 2 × 2 factorial design since any other factorial design (e.g. a
2 × 3) will not have diagonals.
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second independent variable is Mood During Memorization. Since there are
two levels of this variable, there will be two lines on the graph: one line for each
level of the factor that is embedded into the graph. Do not make the mistake of
thinking that each line depicts each independent variable.4

In Figure 13.1, the line drawn from the upper left to the lower right of the
graph represents the Happy Mood During Memorization level of Factor A.
The line connects the means of two groups: Happy During Memorization/
Happy During Recall (Group 1) and Happy During Memorization/Sad During
Recall (Group 2). Carefully examine the means in Table 13.2 and the graph in
Figure 13.1. Match up the cell means from the table with the points in the graph,
and see how the lines on the graph follow the cells from the perspective of the
Mood During Memorization perspective.
Table 13.2 illustrates data in which there are no main effects but there is an

interaction. On a graph, an interaction is revealed when the lines are not par-
allel. Figure 13.1 reveals the interaction; the lines are not only nonparallel, they
also cross. The lines, however, do not have to cross when there is an interaction;
they just have to be nonparallel. How nonparallel the lines need to be for there to
be an interaction depends on the statistical power in each particular study. In
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Figure 13.1 A graph of the group means in Table 13.2. There is an interaction but no main
effects.

4 Another commonmistake among students is thinking that the number of cells equals the number
of independent variables. Keep in mind that independent variables (factors) always have levels.

13.1 The Research Context 431



general, however, the more they depart from being parallel, the more likely it is
that evidence for an interaction will be found when the statistical analysis is
performed.
Up to this point, data has been used in which there is an interaction but no

main effects. We will now use the same experiment, adjust the cell means, and
illustrate various combinations of main effects and interactions.
The data in Table 13.3 show a main effect for Factor B but no main effect for

Factor A and no interaction. Although the marginal means for Factor A are not
identical, they are rather close; most likely, there is not a main effect. Factor B is
another matter. The marginal means of 29 and 11 are strikingly different, indi-
cating that a main effect would likely be found when the data is analyzed.
The interpretation of the presumed experimental results depicted in

Table 13.3 is as follows. The number of words remembered is greatest when
participants are happy during the recall task (main effect for Factor B). It makes
no difference what mood participants are in when they memorize the word list
(no main effect for Factor A). Further, whether the mood states during mem-
orization and recall are congruent or incongruent is of no consequence (no
interaction effect).
Figure 13.2 graphically displays the means in Table 13.3. Notice that the lines

are parallel, reflecting the absence of an interaction. When examining a graph
for a main effect, look to see if one of the lines is higher than the other. If so, then
there may be a main effect. In identifying a main effect, to what extent does one
line have to be higher than the other? It depends on the statistical power in that
study, so only a statistical analysis can identify evidence of a main effect. In gen-
eral, however, the greater distance between the lines, the more likely it is that
evidence for a main effect will be found when the statistical analysis is
performed.
In Figure 13.2, Mood During Memorization is placed on the horizontal axis;

therefore, two lines are drawn, which indicate the two levels of Mood During
Recall. Why the switch from Figure 13.1 to 13.2? By changing the variable on
the horizontal axis, the main effect is shown more clearly. Figure 13.3 also

Table 13.3 A 2 × 2 factorial design with one main effect (Factor B) and no interaction.

Factor B: Mood During Recall

Happy Sad

Factor A: Mood During
Memorization

Happy
(1)

30
(2)

12
(3)

28
(4)

10

MA1 = 21

Sad MA2 = 19

MB1 = 29 MB2 = 11
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Figure 13.2 A graph of the means in Table 13.3. There is one main effect but no interaction.
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Figure 13.3 Group means from Table 13.3 are graphed. There is a main effect for Mood
During Recall. However, by placing Mood During Recall on the X axis, the main effect is more
difficult to identify. Figure 13.2 is a more useful display of the main effect presented in
Table 13.3.
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illustrates a graph using the means in Table 13.3. This time, however, the X axis
is Mood During Recall. The lines are still parallel, indicating the absence of an
interaction. The Happy During Memorization line is only slightly higher than
the line drawn for Sad DuringMemorization. Displaying the means in this man-
ner might obscure the main effect for Factor B (Mood During Recall); this
version of the graph would not be as helpful.
After the data are analyzed, we will know which factors (if any) show a main

effect, and the graph can be drawn accordingly. When computing a two-way
ANOVA by hand, it is a good idea to draw the graph both ways beforehand –
with Factor A on the X axis and then with Factor B on the X axis. This will enable
us to know ahead of time what the results of the ANOVA are likely to reveal.
The guiding principle in graphing is to draw our figure so that it can be easily
interpreted at a glance.
At this point, we should be able to place means in the cells of a diagram that

illustrate a main effect for Factor A. Table 13.4 is one way to illustrate a main
effect for Mood During Memorization.
The pattern of means in Table 13.4 shows that recall is facilitated when

participants are happy while memorizing the list of words (main effect for
Factor A). Irrespective of the level of Factor A, recall is not affected by
the mood state present during recall (no main effect for Factor B). Finally,
the manner in which mood states combine during memorization and during
recall does not have an influence on the number of words recalled
(no interaction).
In Figure 13.4, the lines are nearly parallel: no interaction. The main

effect for Mood During Memorization is revealed by the different
heights of the lines. The Happy During Memorization line is highest, which
reflects the greater recall of information between the two Happy During
Memorization groups in comparison to the two Sad During Memorization
groups.

Table 13.4 A 2 × 2 factorial design with one main effect (Factor A) and no interaction.

Factor I: Mood During Recall

Happy Sad

Factor A: Mood During
Memorization

Happy
(1)

30
(2)

28
(3)

20
(4)

20

MA1 = 29

Sad MA2 = 20

MB1 = 25 MB2 = 24
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Up to this point, we have looked at several different analytical scenarios.
Table 13.5 presents yet another. In this scenario, we find a main effect for Factor
A, as well as an interaction, but no main effect for Factor B.
Table 13.5 shows that mood state during recall does not influence the number

of words recalled (no main effect for Factor B). However, the main effect
revealed for Factor A indicates that recall is enhanced when words are memor-
ized while in a happy mood. Now examine Figure 13.5. One line is higher than
the other, revealing the main effect for Mood During Memorization. Because
the lines are not parallel, an interaction is also indicated. When more than
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Figure 13.4 The graph of the means in Table 13.4. There is a main effect for Factor A but no
interaction.

Table 13.5 A 2 × 2 factorial design with one main effect (Factor A) as well as an interaction.

Factor B: Mood During Recall

Happy Sad

Factor A: Mood During
Memorization

Happy
(1)

40
(2)

28
(3)

20
(4)

26

MA1 = 34

Sad MA2 = 23

MB1 = 30 MB2 = 27
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one type of effect is found, keep this rule in mind, always interpret the higher-
order effect first, and then interpret lower effects cautiously in light of the initial
analysis. The term higher-order effect means the effect involving the most
number of factors. In this situation, it means we need to first interpret the
interaction before we interpret the main effect. The interaction would be
interpreted as follows: Recall is, on average, greatest when the mood states
between memorization and recall are the same.
Refer to Table 13.5. Notice the marginal means for Mood During Memoriza-

tion (34 vs. 23). That is the main effect. However, the mean in cell 1 (40) is pull-
ing up themarginal mean of 34. The interactionmay be carrying the main effect.
The Happy/Happy condition shows the greatest influence on recall. The
congruence between the two Sad conditions (cell 4) does not show a similar
influence on recall (M4 = 26). Therefore, not only does the Happy/Happy
condition contribute to the interaction, it also seems to account for the main
effect for Factor A. In situations like this, we must be very cautious about
drawing conclusions regarding the main effect for Factor A. This main effect
might be an artifact of the higher-order interaction and may not be real. Main
effects that can be explained by an interaction are referred to as illusory main
effects.
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Figure 13.5 The graph of the means from Table 13.5. There is a main effect for Factor A and
an interaction.
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Some methodologists take the extreme position that main effects should not
be interpreted when an interaction is found. A more moderate position is to
interpret the interaction first and then cautiously interpret any lower-order
effects (main effects) within the context of the interaction analysis and the
theory used to justify the study.
Our illustrations of some of the outcomes of a 2 × 2 factorial design have not

exhausted all possible outcomes. The entire set of possible outcomes is:

1) Factor A main effect, no Factor B main effect, and no interaction.
2) Factor B main effect, no Factor A main effect, and no interaction.
3) Main effects for Factors A and B, no interaction.
4) Main effect for Factor A, no main effect for Factor B, but an interaction.
5) Main effect for Factor B, no main effect for Factor A, but an interaction.
6) Main effects for both factors and an interaction.
7) No main effects for either factor but an interaction.
8) No main effects and no interaction.

To recap, a main effect addresses the differences among levels of an independ-
ent variable. The number of independent variables is the same as the number of
potential main effects. An interaction is the combined influence of two or more
independent variables. A significant interaction means that the influence of an
independent variable changes based on the level of a second independent var-
iable. Interactions may generate illusory main effects; interpret cautiously.

Factorial Designs with More Than Two Independent Variables

When three independent variables are combined in a factorial design, the num-
ber of possible outcomes is increased. Not only are there potential main effects
for each independent variable, but more than one interaction can occur. When
there are three independent variables, the investigator will test for four interac-
tions: A × B, A ×C, B ×C, and A × B ×C. The latter interaction is called a three-
way interaction; it is a higher-order effect than the two-way interactions. It is
possible to design experiments with four-and five-way interactions. However,
a significant four- or five-way interaction is often very difficult to interpret;
for this reason, researchers tend to avoid overly complex factorial designs. This
text will only examine designs with no more than two factors.

13.2 The Logic of the Two-Way ANOVA

The Null and Alternative Hypotheses

There are three separate null hypotheses when conducting a two-way ANOVA,
each requiring a separate F ratio to test them.
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Main Effect for Factor A
The independent variable designated as Factor A has two or more levels. The
null hypothesis states no differences between the population means of the levels
of Factor A. Symbolically this can be represented as

H0 μA1
= μA2

= μAk

The subscript k refers to the last level of Factor A. The alternative hypothesis
is that at least one of the levels of the Factor A population means is different
from one of the other levels of Factor A. This can be expressed as

H1 At least twoFactorAμ’sarenot equal

Main Effect for Factor B
The independent variable designated as Factor B has two or more levels. The
null hypothesis states no differences between the population means of the levels
of Factor B. Symbolically this can be represented as

H0 μB1
= μB2

= μBk

Now the subscript k refers to the last level of Factor B. The alternative hypoth-
esis is that at least one of the levels of the Factor B population means is different
from one of the other levels of Factor B. This can be expressed as

H1 At least twoFactorBμ’sarenot equal

The A × B Interaction
The null hypothesis for the interaction is that there is no interaction. That is, the
effect of Factor A is independent of the effect of Factor B. This can be repre-
sented as

H0 There isno interaction

The alternative hypothesis is that at least one unique effect, not reducible to a
main effect, will be found. This can be expressed as

H1 There is an interaction

Partitioning Variability

The structure of the two-way ANOVA depicted in Figure 13.6 is an extension of
the one-way ANOVA. In fact, the first stage of the structure for a two-way
ANOVA is identical to the one-way ANOVA: Total variance is due to
between-group variance plus within-group variance. The second stage of the
model is a further partitioning of the between-group variance into the variance
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due to Factor A, the variance due to Factor B, and the variance due to the inter-
action. The second stage of themodel yields the F ratios that are used to test null
hypotheses. An explanation of each source of variability is provided in the fol-
lowing sections.

Between-Group Variability
Between-group variability refers to the variability among all the means in the
study.5 In the one-way ANOVA, all of the treatment variance goes into the
numerator of the F ratio. In the two-way ANOVA, the treatment variance is
associated with either Factor A, Factor B, or the combination of Factor A
and Factor B.

Factor A Variability
Factor A variability refers to the difference among the means of the levels of
Factor A. These mean differences are due to Factor A treatment variance plus
error variance.

Factor B Variability
Factor B variability refers to the difference among the means of the levels of
Factor B. These mean differences are due to Factor B treatment variance plus
error variance.

5 Refer to Chapter 12 to review the concepts of between-group and within-group variability,
treatment variance, error variance, individual differences, experimental error, and random factors.

Total variation

Between-group
variation

Within-group 
variation (error)

Variation due to
Factor A

Variation due to
Factor B

Variation due to
interaction

Factor A
treatment

Factor B
treatment

Error Error Interaction Error

Figure 13.6 Partitioning the total variation in the two-way ANOVA.
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Interaction Variability
The variability of the interaction is due to the combined influence of Factors A
and B, plus error variance.

Within-Group Variability
Within-group variance is the average of the variances within each group.
Within-group variance is also called error variance or simply error. The
variability within each group is due to two sets of factors: individual differ-
ences and experimental error. Recall that individual differences refer to
the influence of participant variables on the dependent variable. Experi-
mental error is the variability among scores due to such things as the unre-
liability of measuring instrumentation, inconsistent interactions between
the experimenter and the participants, and random forms of environmental
disturbances. Individual differences and experimental error are unsystem-
atic random factors that do not introduce confounding variance into
the study.

The Conceptual Form of the Three F Ratios

The two-way ANOVA yields three different F ratios: one for Factor A, Factor B,
and an interaction. The conceptual basis of these F ratios should have a famil-
iar look.

FA =
Treatment A effect + error variance

error variance

FB =
Treatment B effect + error variance

error variance

FA×B =
Treatment A×B effect + error variance

error variance

As with the one-way ANOVA, the effect due to treatment is placed in the
numerator. If there is no treatment effect, or, in other words, if H0 is true,
the F ratio is reduced to a measure of error variance divided by another measure
of error variance. Therefore, when the null hypothesis is correct, the F ratio
should be close to 1. As the effect due to treatment increases, the numerator
grows and the F ratio will become increasingly greater than 1. At some point,
the F ratio will exceed the critical F value associated with the test, and our
decision rule will direct us to reject the null hypothesis.
We now turn to the computational steps and formulas used to calculate the

three F ratios of the two-way ANOVA.
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13.3 Definitional and Computational Formulas
for the Two-Way ANOVA

Summary of the Computational Steps

The two-way ANOVA involves the computation of the following values.

1. SST 8. MSA

2. SSBG 9. MSB

3. SSW 10. MSA× B

4. SSA 11. FA

5. SSB 12. FB

6. SSA × B 13. FA × B

7. df for each SS

Formulas for the Sums of Squares

The formulas, both definitional and computational, will be presented in this sec-
tion. Analyzing two-way ANOVA’s by hand calculation is a long and arduous
task. The formulas are presented here to provide a mathematical understanding
of the procedure. Use of statistical processing software is strongly suggested for
computation.

The Total Sum of Squares, SST
The definitional formula for SST is the sum of the squared deviations of all the
scores from the grand mean,MG. The grand mean is the mean of all the scores
in the study.

Definitional formula for SST

SST = Σ(X −MG)
2 (Formula 13.1)

The definitional and computational formulas for SST are identical to those
used in conducting a one-way ANOVA. The SST computes the sum of squares
for the entire set of scores, N.

Computational formula for SST

SST =ΣX2−
ΣX 2

N
(Formula 13.2)

The Sum of Squares Between Groups, SSBG
The definitional formula for SSBG reminds us that the overall between-group
variability is the amount of variation obtained by the sum of the squared
differences between each group’s mean and the grand mean.
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Definitional formula for SSBG

SSBG = Σnk(Mk −MG)
2 (Formula 13.3)

This definitional formula is identical to the formula for SSBG used in the one-
way ANOVA. However, with the two-way ANOVA, remember that the SSBG is
not used in an F ratio. The SSBG is only used as a computational check. The com-
putational formula for SSBG for the two-way ANOVA is conceptually identical
to the one-way ANOVA. The increased complexity is entirely due to the addi-
tional cells in a factorial design.

Computational formula for SSBG

SSBG =
ΣXA1B1

2

nA1B1

+
ΣXA1B2

2

nA1B2

+ +
ΣXk

2

nk
−

ΣX 2

N
(Formula 13.4)

where

ΣXA1B1

2, ΣXA1B2

2 = the sum of the scores in Group 1, quantity squared; the
sum of the scores in Group 2, quantity squared, etc.

(ΣXk)
2 = the sum of the scores in the last Group, quantity squared

(ΣX)2 = the sum of all the scores in the study, quantity squared
nA1B1 , nA1B2 , nk = the number of participants in Groups 1, 2, and the last group,
respectively

N = the total number of participants

The Sum of Squares Within Groups, SSW
The SSW is found by calculating the sum of squares within each cell (group) and
adding them together. The definitional formula reflects the fact that within-
group variability is derived from the deviation of single scores about the mean
of the group from which the scores are taken. These formulas have the same
form as the SSW formulas used in the one-way ANOVA. The subscripts of X
identify specific cells.

Definitional formula for SSW

SSW =Σ XA1B1 −MA1B1

2 +Σ XA1B2 −MA1B2

2

+Σ XA2B1 −MA2B1

2+ +Σ Xk −Mk
2 (Formula 13.5)

Computational formula for SSW

SSW =ΣX2−
ΣXA1B1

2

nA1B1

+
ΣXA1B2

2

nA1B2

+ +
ΣXk

2

nk
(Formula 13.6)
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Computational Check
Formulas have been presented for SSBG, SSW, and SST. In the first stage of the
two-way ANOVA, total variability is partitioned into between-group and
within-group variability (see Figure 13.6). Therefore,

SST = SSBG + SSW

The second stage of the two-way ANOVA partitions the sum of squares
between groups into the sum of squares for Factor A, SSA, the sum of squares
for Factor B, SSB, and the sum of squares for the interaction, SSA×B.

The Sum of Squares for Factor A, SSA
We are used to working with deviations of raw scores around group means
(SSW) and the deviations of group means around the grand mean (SSBG). When
calculating the sum of squares for a factor, the means of the levels of the factor
are used (the marginal means), not the individual cell means. The definitional
formula for SSA reveals that SSA is a measure of the deviations of the means of
each level of Factor A around the grand mean.

Definitional formula for SSA

SSA = nA1 MA1 −MG
2 + nA2 MA2 −MG

2

+ + nk Mk −MG
2 (Formula 13.7)

where

nA1 , nA2 , nk = the number of participants in Factor A levels 1, 2, to the last level,
respectively

MA1 , MA2 , Mk = the Factor Ameans for levels 1, 2, to the last level, respectively;
also called marginal means of each level

Computational formula for SSA

SSA =
ΣXA1

2

nA1

+
ΣXA2

2

nA2

+ +
ΣXk

2

nk
−

ΣX 2

N
(Formula 13.8)

The computational formula requires us to sum scores across the cells of each
level of Factor A. Therefore, ΣXA1 is the sum of the scores in cell A1B1 plus the
sum of the scores in cell A1B2, plus the sum of scores in A1Bk. The ΣXA2 is the
sum of scores in cell A2B1 plus A2B2, plus A2Bk.

The Sum of Squares for Factor B, SSB
Everything said about Factor A applies to Factor B. Just keep in mind that the
action now occurs with the levels of Factor B. Remember to attend to the
subscripts.
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Definitional formula for SSB

SSB = nB1 MB1 −MG
2 + nB2 MB2 −MG

2

+ + nk Mk −MG
2 (Formula 13.9)

Computational formula for SSB

SSB =
ΣXB1

2

nB1

+
ΣXB2

2

nB2

+ +
ΣXk

2

nk
−

ΣX 2

N
(Formula 13.10)

The Interaction Sum of Squares, SSA × B

The sum of squares for the interaction, SSA×B, involves subtracting various mar-
ginal means from cell means, adding the grand mean, and multiplying
everything by the number of participants in one group. Giving a detailed
verbal description of the formula runs the risk of creating more confusion than
clarity. So without further comment, Formula 13.11 is used to compute SSA × B

for a 2 × 2 design.

Computational formula for SSA ×B

SSA×B = nk MA1B1 −MA1 −MB1 +MG
2

+ MA2B1 −MA2 −MB1 +MG
2

+ MA1B2 −MA1 −MB2 +MG
2

+ MA2B2 −MA2 −MB2 +MG
2 (Formula 13.11)

This formula can only be used when each group has the same number of par-
ticipants. The value nk is the number of participants in one group, not the total
number of participants in the study. It is assumed that n1 = n2 = n3 = nk.

Computational Checks
In the second stage of the two-way ANOVA, the SSBG is partitioned into SSA,
SSB, and SSA × B (see Figure 13.6). Therefore,

SSBG = SSA + SSB + SSA×B

Even though SSBG is not used in an F ratio, its calculation is justified because it
serves as a computational check for SSA, SSB, and SSA×B.
The SSA×B term can be computed by

SSA×B = SSBG−SSA−SSB

However, it is recommended that SSA × B be computed separately, using
Formula 13.11, and then a computational check performed.
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Unequal Numbers of Participants
Researchers strive to include the same number of participants in each experi-
mental condition. Statisticians have noted that the F test is more robust under
minor violations of the population assumptions (i.e. normality and equivalent
variances) when there are the same numbers of participants in each group.Most
importantly, unequal sample sizes present serious difficulties when they occur
in the context of a factorial design. For a discussion of the conceptual issues and
computational adjustments related to factorial designs with unequal sample
sizes, refer to Keppel and Wickens (2004).

Partitioning Degrees of Freedom

Each SS in the analysis of variance has corresponding degrees of freedom.
Partitioning the degrees of freedom follows the same logic as partitioning the
variability. Figure 13.7 shows how the degrees of freedom are partitioned.
Table 13.6 lists the various degrees of freedom and their computation. Note that

df BG = df A + df B + df A×B and df T = df BG + df W

Therefore,

df T = df A + df B + df A×B + df W

Calculating Mean Squares and F Ratios

The last step in the analysis of variance is to calculate the mean squares and the
F ratios for FactorA, Factor B, and the interaction. As in the one-way ANOVA, a
mean square is a sample variance and has the general form

MS =
SS
df

Total

dfT = N–1

Between-group

dfBG= k–1
Within-group
dfW= N–K 

 Factor A
dfA= levels of

Factor A minus 1

A x B
dfA x B= dfAx dfB

Factor B
dfB= levels of

Factor B minus 1

Figure 13.7 Partitioning the degrees of freedom in the two-way ANOVA.
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The MS for the factors, interaction, and error term are

MSA =
SSA
df A

MSB =
SSB
df B

MSA×B =
SSA×B

df A×B

MSW =
SSW
df W

When calculating the F ratios, the denominator of each F isMSW. Therefore,

FA =
MSA
MSW

FB =
MSB
MSW

FA×B =
MSA×B

MSW

Worked Problem
To provide an experimental context for the calculations of the two-way
ANOVA, the following hypothetical experiment will be used. Table 13.7 pre-
sents the design. A clinical psychologist is interested in the relative effectiveness
of two popular forms of therapy: behavioral therapy and psychoanalysis. How-
ever, let us assume that there is some reason to believe that behavioral therapy
may be more effective with anxiety problems and psychoanalysis may be a more
effective treatment for depression. In other words, an interaction is predicted.

Table 13.6 The degrees of freedom and their computation.

Source Degrees of freedom Symbol

Total N − 1 dfT

Within groups N − k dfW

Between groups k − 1 dfBG

Factor A Levels of Factor A minus 1 dfA

Factor B Levels of Factor B minus 1 dfB

Interaction dfA × dfB dfA × B
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Factor A is the type of clinical problem and has two levels: anxiety and depres-
sion. Note that Factor A is not experimentally manipulated. This factor is based
on a participant variable. If it turns out that there is a significant main effect for
this factor, no cause–effect interpretation can be advanced. This is not the case
for Factor B. Factor B also has two levels: behavioral therapy and psychoanalysis.
Since this factor is created and manipulated by the experimenter, it is an inde-
pendent variable, and a mean difference between the levels of this factor can be
interpreted using causal language. Since both Factor A and Factor B have two
levels, this is an example of a 2 × 2 factorial design. The dependent variable is
improvement ratings offered by an independent observer, with higher numbers
indicating greater improvement. Table 13.8 contains the raw data for each
group in the study. Table 13.9 shows the summary statistics of the raw data.
Figure 13.8 is a graph of the means. By examining the graph, we should be able
to predict how the analysis will turn out.

Table 13.7 The 2 × 2 factorial design of the worked problem, including cell notations.

Factor B

Behavioral Therapy Psychoanalysis

Factor A
Anxiety A1B1

A2B1

A1B2
A2B2

A1

Depression A2

B1 B2

Table 13.8 The raw data for the worked problem.

Factor B

Behavioral Therapy Psychoanalysis

Factor A

Anxiety

8
6
6
9
8

3
4
1
6
2

4
7
4
5
5

8
9
7
7
8

Depression
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Calculating the Sums of Squares
Step 1. Find the total sum of squares, SST.

SST =ΣX2−
ΣX 2

N
Formula13 2

Table 13.9 Summary statistics for the raw data of Table 13.8.

Factor B

Behavioral Therapy Psychoanalysis

Factor A

Anxiety

MA1B1 = 7 40

ΣX2
A1B1

= 281

ΣXA1B1 = 37

nA1B1 = 5

MA1B2 = 3 20

ΣX2
A1B2

= 66

ΣXA1B2 = 16

nA1B2 = 5

MA1 = 5 30

Depression

MA2B1 = 5 00

ΣX2
A2B1

= 131

ΣXA2B1 = 25

nA2B1 = 5

MA2B2 = 7 80

ΣX2
A2B2

= 307

ΣXA2B2 = 39

nA2B2 = 5

MA2 = 6 40

MB1 = 6 20 MB2 = 5 50 MG = 5.85

1

2

3

4

5

6

Anxiety Depression

Disorder

M
e
a
n
 i
m

p
ro

v
e
m

e
n
t 
ra

ti
n
g
s

Behavioral

Therapy

Psychoanalysis

7

8

9

10

Figure 13.8 A graph of the cell means from Table 13.9.
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SST = 785−
117 2

20
SST = 100 55

Step 2. Find the sum of squares between groups, SSBG.

SSBG =
ΣXA1B1

2

nA1B1

+
ΣXA1B2

2

nA1B2

+ +
ΣXk

2

nk
−

ΣX 2

N
Formula13 4

SSBG =
37 2

5
+

16 2

5
+

25 2

5
+

39 2

5
−

117 2

20

SSBG = 754 20−684 45

SSBG = 69 45

Step 3. Find sum of squares within groups, SSW.

SSW =ΣX2−
ΣXA1B1

2

nA1B1

+
ΣXA1B2

2

nA1B2

+ +
ΣXk

2

nk
Formula13 6

SSW = 785−
37 2

5
+

16 2

5
+

25 2

5
+

39 2

5

SSW = 785−754 20

SSW = 30 80

Step 4. Perform a computational check for SST.
In the first stage of the ANOVA, total variability is partitioned into

between-group and within-group variability. Therefore,

SST = SSBG + SSW

Using the obtained sums of squares values,

100 55 = 69 75 + 30 80

The second stage of the two-way ANOVA partitions the sum of squares
between groups into the sum of squares for Factor A, SSA, the sum of squares
for Factor B, SSB, and the sum of squares for the interaction, SSA×B.

Step 5. Find the sum of squares for Factor A, SSA.

SSA =
ΣXA1

2

nA1

+
ΣXA2

2

nA2

+ +
ΣXk

2

nk
−

ΣX 2

N
Formula13 8

SSA =
53 2

10
+

64 2

10
−

117 2

20
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SSA = 690 50−684 45

SSA = 6 05

Refer to Table 13.9 and note that ΣXA1 =ΣXA1B1 +ΣXA1B2 = 37 + 16= 53.
Likewise, ΣXA2 =ΣXA2B1 +ΣXA2B2 = 25 + 39 = 64.

Step 6. Find the sum of squares for Factor B, SSB.

SSB =
ΣXB1

2

nB1

+
ΣXB2

2

nB2

+ +
ΣXk

2

nk
−

ΣX 2

N
Formula13 10

SSB =
62 2

10
+

55 2

10
−

117 2

20

SSB = 686 90 + 684 45

SSB = 2 45

Step 7. Find the interaction sum of squares, SSA × B.

SSA×B = nk MA1B1 −MA1 −MB1 +MG
2

+ MA2B1 −MA2 −MB1 +MG
2

+ MA1B2 −MA1 −MB2 +MG
2

+ MA2B2 −MA2 −MB2 +MG
2 Formula13 11

SSA×B = 5 7 40−5 30−6 20 + 5 85 2

+ 5 00−6 40−6 20 + 5 85 2

+ 3 20−5 30−5 50 + 5 85 2

+ 7 80−6 40−5 50 + 5 85 2

= 61 25

Step 8. Perform a computational check for SSBG.
In the second stage of the two-way ANOVA, the SSBG is partitioned into

SSA, SSB, and SSA × B (see Figure 13.6). Therefore,

SSBG = SSA + SSB + SSA×B

A check of the calculations shows

69 75 = 6 05+ 2 45 + 61 25

Step 9. Compute MSW using SSW and dfW. The dfW = the total number of
participants minus the number of groups (dfW = N – k = 20 – 4 = 16).

MSW =
SSW
df W

=
30 80
16

= 1 93
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Step 10. Compute MSA using SSA and dfA. The dfA = the number of levels of
Factor A minus 1 (2 – 1 = 1).

MSA =
SSA
df A

=
6 05
1

= 6 05

Step 11. Compute FA.

FA =
MSA
MSW

=
6 05
1 93

= 3 13

Step 12. Compute MSB using SSB and dfB. The dfB = the number of levels of
Factor B minus 1 (2 – 1 = 1).

MSB =
SSB
df B

=
2 45
1

= 2 45

Step 13. Compute FB.

FB =
MSB
MSW

=
2 45
1 93

= 1 27

Step 14. Compute MSA × B using SSA × B and dfA × B. The dfA × B = dfA × dfB
(1 × 1 = 1).

MSA×B =
SSA×B

df A×B
=
61 25
1

= 61 25

Step 15. Compute FA × B.

FA×B =
MSA×B

MSW
=
61 25
1 93

= 31 74

The remaining steps involve using the F values to test the null hypotheses.

13.4 Using the F Ratios to Test Null Hypotheses

To determine if the F ratios are sufficiently large to reject null hypotheses, the
obtained F’s must be compared with the appropriate Fcrit values found in
Table A.5. This is the same table used to test the F ratio of the one-way ANOVA.
Each of the three F ratios has degrees of freedom for the numerator and the
denominator (refer to Table 13.6).

The degrees of freedom for FA is dfA, dfW (1 and 16 in the worked example).
The degrees of freedom for FB is dfB, dfW (1 and 16 in the worked example).
The degrees of freedom for FA×B is dfA × B, dfW (1 and 16 in the worked example).
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For this design, the pair of df for each F ratio is the same. Different research
designs will generate pairs of df’s, which are not all the same.
Since in our example the df is the same for each F ratio, there is only

one Fcrit value needed for comparison. According to the F table, Fcrit is
4.49 when α = .05 and 8.53 when α = .01. We will use the critical value
for α = .05.
Since FA (3.13) is smaller than Fcrit when alpha is .05 (4.49), we will fail to

reject the null hypothesis for Factor A. The same conclusion is reached for Fac-
tor B since FB = 1.27 and 1.27 < 4.49. However, FA × B = 31.74; this value is larger
than Fcrit (4.49). As a result, we will reject the null hypothesis that there is no
interaction.

Interpreting the Findings

What do these findings mean about the therapy study? Our only rejected null
hypothesis concerns the interaction. Interpreting this interaction is straightfor-
ward. Examining the group means indicates that psychoanalysis seems to be a
superior treatment for people suffering from depression, whereas the treatment
of choice for people troubled by anxiety seems to be behavioral therapy. Disco-
vering a significant interaction always leads to a qualified interpretation regard-
ing the role of an independent variable. Neither main effect null hypotheses
were rejected. If one or both would have been rejected, we would need to inter-
pret these lower-order findings carefully. They may be legitimate, or they may
be illusory. A close inspection of the cell means (perhaps in graphical form) can
be helpful.

The ANOVA Summary Table

The results of the foregoing analysis are summarized in Table 13.10. The struc-
ture of the two-way ANOVA summary table is similar to the one-way ANOVA.

Table 13.10 The ANOVA summary table based on the analysis of the data in Table 13.8.

Source SS df MS F p

Factor A (Disorder) 6.05 1 6.05 3.13 n.s.

Factor B (Treatment) 2.45 1 2.45 1.27 n.s.

A × B 61.25 1 61.25 31.74 < .05

Within groups 30.80 16 1.93

Total 100.55 19
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However, the “between-groups” row is replaced by rows for Factor A, Factor B,
and the A × B interaction. As we examine the values in the table, verify that SST
equals the sum of all the sum of squares and that dfT equals the sum of all
the df’s.
Box 13.1 presents a study on aggression. The researchers used a factorial

design to examine the independent and combined effects of arousal and the
presence of aggressive cues on aggression.

Box 13.1 Do Firearms Create Aggression?

All of us have displayed aggressive behavior at times to our benefit, and at
times, perhaps, to our embarrassment. Psychologists disagree on the roots of
aggression. Freud (e.g. 1922) believed that everyone is born with an aggressive
instinct. More recently, theorists believe that aggression is largely a learned
response (e.g. Anderson & Bushman, 2002; Bandura 1973, 1983). Because
aggression can have such a profound effect on the course of our lives, ranging
from verbal abuse between spouses to wars among nations, the factors that
influence aggression have received a great deal of attention from psychologists.
Leonard Berkowitz conducted research on aggression for over 30 years. Com-
mon sense tells us that we are more likely to act aggressively when we are
angry. Berkowitz took this observation one step further by hypothesizing that,
once angry, people would behave even more aggressively if there were aggres-
sive cues present. An aggressive cue is anything that we associate in our minds
with aggression. A gun is one of the best examples of an aggressive cue. To test
the hypothesis that aggressive cues augment aggression, Berkowitz conducted
the following, now classic, psychological study (Berkowitz & LePage, 1967).

Overview of the Design

The design was a 2 × 3 factorial. One independent variable manipulated parti-
cipants’ anger; the two levels of this variable were low anger and high anger
(Factor A). The second independent variable manipulated the presence of
aggressive cues; this factor (Factor B) had three levels: presence of aggressive
cues associated with someone in the study, presence of aggressive cues not
associated with someone in the study, and the absence of aggressive cues.
The design is illustrated in Table 13.11.

Experimental Procedure

Only biological male undergraduates served as participants in this study. They
believed the purpose of the research was to examine physiological reactions to
stress. Each participant would have to solve a problem, with the foreknowledge
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that the partner would evaluate the adequacy of the given solution. The partner
was actually a confederate; someone the student thought was another partic-
ipant but who was actually working for the experimenter. The student was
asked to list ideas that a publicity agent could use to increase the popularity
of a professional singer. The confederate evaluated the participants’ ideas by
delivering electric shocks. The number of electric shocks administered to the
participant served as the Anger manipulation. In the Low-Anger condition,
the student received only one shock, which meant that the confederate
deemed the ideas to be good. In the High-Anger condition, the participant
received seven shocks, which meant that the ideas were poor. Then the situa-
tion was reversed so that the participant had an opportunity to evaluate the
confederate’s ideas by administering anywhere from one to ten shocks to
the confederate. If we consider only this aspect of the experiment, we have
a nonfactorial design. We could address the question of whether angered par-
ticipants are more aggressive than those not angered. The means of the two
groups could be analyzed with a t test. Now we will consider the second inde-
pendent variable.

When it came time for the participant to evaluate the confederate’s answers,
the experimental instructions and the table upon which rested the shock appa-
ratus were rearranged. In the Associated Weapons condition, a 12-gauge shot-
gun and a .38-caliber handgun were placed in full view of the participant, next
to the shock apparatus. These participants were told that the guns were to be
used by the “confederate” in another experiment.6 In the Unassociated Weap-
ons condition, the participants were told that the guns “belonged to someone
else who must have been doing an experiment in here.” The Associated/Unas-
sociated manipulation was included in the design to test the hypothesis “that
aggressive stimuli, which also were associated with the anger instigator, would
evoke the strongest aggressive reaction from the participants.” The third level of
this independent variable, No Aggressive Cues, had the participants use the
shock apparatus in the absence of the guns. Again, the dependent variable
was the number of shocks the participants delivered to the confederate. Factor
A allowed Berkowitz and LePage to examine the effect of anger on aggression.
Factor B allowed them to see if there are differences in aggression due to
aggressive cues. Furthermore, because the design is factorial, the researchers
could look for an interaction. The interaction of interest was, “Will the most
aggression be observed among participants who are angered and exposed
to aggressive cues?” Table 13.11 shows the mean number of shocks delivered
by the participants to the confederate. Table 13.12 presents the ANOVA sum-
mary table.

6 Understandably, the data from 20% of the participants in this condition had to be discarded
because they did not believe the experimenter.
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Examine Tables 13.11 and 13.12 and interpret the findings (we may want to
compute all the marginal means to help us see the main effect). By examining
the rows of Table 13.11 and noting the significant main effect for anger (shocks
received), it is clear that the number of shocks delivered by the participants in
these two conditions is affected by how many shocks they received from the
confederate. More aggression was displayed by those participants who had just
received the high number of shocks. What about the main effect for Factor B?
The nonsignificant F ratio in Table 13.12means that themanipulation of aggres-
sive cues alone has no effect on aggression. In other words, simply viewing guns
does not induce aggression.

The significant interaction tells us that aggression is also affected by
the combined influence of anger and aggressive cues. Exactly how these
variables combine to influence aggression cannot be determined by the
two-way ANOVA. Follow-up tests are required to identify which groups
differ among each other. After conducting these tests, the authors conclu-
ded that while anger increases aggression, the presence of aggressive
cues during an episode of anger further increases a person’s level of
aggression.

Table 13.11 Mean number of shocks delivered to the confederate.

Factor A: Anger

Factor B: Aggressive Cues (Weapons)

Associated Unassociated None

One shock (low) 2.60 2.20 3.07

6.07 5.67 4.67Seven shocks
(high)

Table 13.12 The ANOVA summary table.

Source SS df MS F p

Anger (A) 182.04 1 182.04 104.62 <.01

Weapons Associated (B) 3.80 2 1.90 1.09 n.s.

A × B 17.46 2 8.73 5.02 <.01

Within groups 146.16 84 1.74

Total 349.46 89

13.4 Using the F Ratios to Test Null Hypotheses 455



13.5 Assumptions of the Two-Way ANOVA

The assumptions for the two-way ANOVA are the same as those for the one-
way ANOVA. Stated succinctly,

1) The samples are representative of the populations from which they come.
2) Observations are independent of one another.
3) Gathered data comes from an interval or ratio scale.
4) The populations from which the data come are normally distributed.
5) The variances of each population distribution are the same.

Once again, the F test is robust and therefore can be performed when the last
two assumptions are not strictly met. However, gross violations of these
assumptions require the use of statistical tests (nonparametric tests), which
do not require the populations to be normally distributed with equal variances.

13.6 Measuring Effect Sizes for a Two-Way ANOVA

The F tests in the two-way ANOVA allow us to test the null hypothesis for each
independent variable as well as the interaction. However, the F values do not
provide information about the size of each effect. Chapter 12 used omega-
squared (ω2) and eta-squared (η2) to determine the amount of variability in
the scores due to the independent variable. With a two-way ANOVA, we can
use either of these same two measures to compute a size for the effect of Factor
A, Factor B, and the interaction. Of course, the issue of effect size only arises
when a null hypothesis has been rejected and, if being a lower-order effect, it
has been interpreted to be more than just an artifact of a higher-order effect.
The formulas for calculating ω2 are slightly different for each potential effect.

Formulas for omega-squared, ϖ2
A, ϖ

2
B, ϖ

2
A×B

ϖ2
A =

SSA− df A MSW
SST +MSW

(Formula 13.12)

ϖ2
B =

SSB− df B MSW
SST +MSW

(Formula 13.13)

ϖ2
A×B =

SSA×B− df A×B MSW
SST +MSW

(Formula 13.14)

Since, in the worked problem, only the interaction was significant, we would
only calculate ω2

A×B Using values from Table 13.10 we find

ϖ2
A×B =

61 25− 1 1 93
100 55 + 1 93

= 0 58
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This value reflects the ratio between the amount of primary variance
associated with the interaction effect and the total variance in the study. Larger
values reflect larger effect sizes. An effect size of 58% is unusually large.
Recall from Chapter 12 that although ω2 is a more refined measure of effect

size, the most common current practice in the behavioral and social sciences
is to report a simpler statistic, eta-squared (η2). The formulas are
presented below.

Formulas for eta-squared, η2A, η
2
B, η

2
A×B

η2A =
SSA

SSA + SSW
(Formula 13.15)

η2B =
SSB

SSB + SSW
(Formula 13.16)

η2A×B =
SSA×B

SSA×B + SSW
(Formula 13.17)

Since, in the worked problem, only the interaction was significant, we would
only calculate η2A×B. Using the values from Table 13.10 we find

η2A×B =
61 25

61 25 + 30 80
= 0 67

When we compare the two measures, we see that η2 generates a larger esti-
mate of the effect size compared to ω2.

13.7 Multiple Comparisons

Multiple comparisons are conducted to help interpret why a null hypothesis is
being rejected. If we were to conduct a study with only two groups, perform a
t test, and find evidence to reject the null hypothesis, would we need to follow
with other comparisons? No, with only two groups, a significant t test is all that
is needed to locate the difference. Likewise, in a 2 × 2 factorial design, a signif-
icant main effect tells us that the null hypothesis of no difference between the
two levels of the factor can be rejected. However, a significant interaction means
that we have evidence that at least two cell means are sufficiently different from
each other. Follow-up tests allow us to make pairwise comparisons between
pairs of groupmeans that share one factor. The pattern of pairwise comparisons
either rejecting a null hypothesis or not is interpreted by the researcher to gain a
clearer understanding of the interaction.
To illustrate the use of multiple comparisons for interpreting rejected null

hypotheses, another hypothetical study is provided. The multiple comparison
procedures used are the same ones presented in Chapter 12: Tukey’s HSD
and Fisher’s LSD (or protected t test). First, we will use Tukey’sHSD procedure.
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If the null hypothesis for the interaction effect is rejected, then anHSD for the
interaction effect can be used to see which pair(s) of cell means is driving the
interaction. If the null hypothesis for either Factor A or Factor B is rejected,
and if there are more than two conditions for that factor, then an HSD can
be used to determine which pairs of means are driving the main effect. Here
are the formulas for the various Tukey’s HSD tests associated with a
two-way ANOVA.

Formulas for Tukey’s HSD values, HSDA, HSDB, HSDA × B

HSDA = qA
MSW
nA

(Formula 13.18)

HSDB = qB
MSW
nB

(Formula 13.19)

HSDA×B = qA×B
MSW
nA×B

(Formula 13.20)

where

qA, qB, qA × B = the studentized range statistic (Table A.6); for qA × B use
adjusted k as indicated below.

nA = the number of scores in each level of Factor A (must be the same)
nB = the number of scores in each level of Factor B (must be the same)
nA × B = the number of scores in each cell, i.e. combined level of Factor A and

Factor B (must be the same)

Design of study Number of cell means Adjusted value of k

2 × 2 4 3

2 × 3 6 5

2 × 4 8 6

3 × 3 9 7

3 × 4 12 8

4 × 4 16 10

Our hypothetical study for demonstrating the use of multiple comparisons is
an extension of the previous study, which involves the effectiveness of two ther-
apy techniques for the treatment of anxiety and depression. By adding a control
group, the design becomes a 2 × 3 factorial design. Table 13.13 illustrates the
design.
We will forego the computational steps of this study and proceed directly to

the results of the analysis of variance. Table 13.14 presents the cell and marginal
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means, as well as the sample sizes. Table 13.15 presents the ANOVA sum-
mary table.
The results of the ANOVA show a significant main effect for Factor B, mode

of therapy. The Factor A main effect, clinical disorder, and the interaction are
not statistically significant. Therefore, the issue of locating the source(s) of sig-
nificance only arises for Factor B.

Tukey’s HSD for Factor B

HSDB = qB
MSW
nB

HSDB = 3 41
3 37
20

= 1 40

The q value was found using a table on the Internet (Table A.6 in Appendix
A is incomplete). Once an HSD value is determined, the difference between
each pair of means in Factor B can be compared (Behavioral Therapy versus
Psychoanalysis, –2.1; Behavioral Therapy versus Control, 1.95; and Psychoanal-
ysis versus Control, 4.05). The findings suggest evidence exists for all three

Table 13.13 A 2 × 3 factorial design.

Factor B

Behavioral Therapy Psychoanalysis Control

Factor A
Anxiety A1B1 A1B2 A1B3

Depression A2B1 A2B2 A2B3

Table 13.14 The sample sizes, cell, and marginal means for a hypothetical therapy study.

Factor B

Behavioral
Therapy

Psychoanalysis Control

Factor A

Anxiety
MA1B1 = 5 80

nA1B1 = 10

MA1B2 = 7 70

nA1B2 = 10

MA1B3 = 4 60

nA1B3 = 10
MA1 = 6 03

Depression
MA2B1 = 5 50

nA2B1 = 10

MA2B2 = 7 80

nA2B2 = 10

MA2B3 = 5 80

nA2B3 = 10
MA2 = 5 37

MB1 = 5 65 MB2 = 7 75 MB3 = 3 70
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tested differences. Looking at themeans, we can say statistical evidence suggests
psychoanalysis worked better than both behavioral therapy and the control,
while behavioral therapy worked better than the control.
Now we will performmultiple comparisons using another procedure, Fisher’s

LSD test. The formula for Fisher’s LSD is:

Formula for Fisher’s LSD test, two-way ANOVA

t =
Mi−Mj

MSW
1
ni

+
1
nj

(Formula 13.21)

where

Mi, Mj = the means for the two levels or cells being compared
ni, nj = the number of participants for each level or cell being compared

If we are testing the difference between two levels of a factor,Mi andMj refer
to the means of the two levels. Similarly, ni and nj refer to the number of parti-
cipants in each level. If we are making a comparison between two cells, Mi and
Mj refer to the two cell means and ni and nj are the number of participants in
each cell.
Fisher’s LSD test relies on the t distribution. The null hypothesis for each

comparison is thatMi andMj come from the same population. The critical value
is the same for each pairwise comparison and is found in the t table (Table A.2).
The critical value is found by entering the column for a two-tailed test at the
desired alpha level and entering the row corresponding to the degrees of free-
dom. We will set alpha at .05. The degrees of freedom is dfW or N – k. From the
ANOVA summary table, dfW is 54. The critical value is approximately ±2.01
(Table A.2 in Appendix A is incomplete). Each protected t value is compared
to this critical value of ±2.01.

Table 13.15 The ANOVA summary table based on the data in Table 13.14.

Source SS df MS F p

Factor A (Disorder) 6.67 1 6.67 1.98 n.s.

Factor B (Treatment) 164.10 2 82.05 24.35 p < .01

A × B 10.03 2 5.01 1.49 n.s.

Within groups 181.80 54 3.37

Total 362.60 59
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Behavioral therapy versus psychoanalysis

t =
5 65−7 75

3 37
1
20

+
1
20

=
−2 10
0 58

= −3 62

Behavioral therapy versus control

t =
5 65−3 70

3 37
1
20

+
1
20

=
1 95
0 58

= 3 36

Psychoanalysis versus control

t =
7 75−3 70

3 37
1
20

+
1
20

=
4 05
0 58

= 6 98

Since all of the obtained t values fall outside of ±2.01, we have statistical
evidence for all three differences. This is the same result found when
using Tukey’s HSD. As was mentioned in Chapter 12, there are numerous
multiple comparison tools; each is designed to be used under different
research situations. Which one to use in a given situation is a very complex
topic and beyond the scope of this text. However, two different and
frequently used follow-up tests have been presented here for our use.
Please consult advanced behavioral statistics books or websites for further
information.

Box 13.2 Next Steps with ANOVA

This text allocates three chapters to ANOVAs, Chapters 12–14. (Chapter 14 will
introduce us to the repeated-measures ANOVA, similar to the one-way ANOVA
but one in which the participants are repeatedly measured across all condi-
tions.) However, there is much more that could be said about this extremely
important family of analyses. This box is going to introduce us briefly to other
procedures in the ANOVA family that researchers can use to analyze more com-
plicated research designs.

A mixed-design ANOVA is similar to a two-way ANOVA. It can be used to ana-
lyze data from a research design where one factor is between groups (just like
the two-way ANOVA presented in Chapter 13) but the other factor is repeated
measures (see Chapter 14). Imagine a situation in which depressed and nonde-
pressed individuals are measured for their ability to use two different mne-
monic techniques. The factor “depression state” would be a between-groups
factor with participants in one or the other group, but “mnemonic device” could
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13.8 Interpreting the Factors in a Two-Way ANOVA

Factorial designs frequently use a participant variable as one of the factors. Per-
sonality type, biological sex, age, and psychodiagnosis are examples of partici-
pant variables that might be used as one factor in a two-way ANOVA design. It
is important to remember that when a participant variable is used as a factor, no
cause–effect statement can be made regarding the relationship between this
variable and the dependent variable. This aspect of the design is correlational
because participants are selected based on their standing on that variable. In
other words, the experimenter does not manipulate the participant variable.
The fact that participants are representative of the population does not alter this
situation.
In the foregoing study, one factor used “disorder type” as a factor: anxiety ver-

sus depression. The experimenter did not randomly assign participants and
then create the anxiety or depression. Participants were selected into the study
because they were already either anxious or depressed. If the experimenter had
used an experimental operation to induce anxiety or depression, then the factor

be used as a repeated-measures factor; where each participant is measured
once using each of the two techniques.

Amultivariate analysis of variance (MANOVA) is a form of ANOVA that analyzes
more than one dependent variable. Imagine, in the previous study, if we meas-
ured not only “memory success” but also “time needed for recall.” A MANOVA
allows us to analyze both dependent variables in the same analysis.

Analysis of covariance (ANCOVA) is a form of ANOVA that allows the
researcher to look for effects after a covariate (a variable that is suspected to
covary with a factor) has been removed. Think of this technique as a way to
remove the possible effects of a confounding variable. For instance, what if
we wanted to remove variance associated with the participant’s energy level
(perhaps we feared that nondepressed people might perform better simply
because they were more energetic during the procedure)? If “energy level”
can be measured, an ANCOVA provides us with a mechanism to remove this
variance.

We can also combine the features of the MANOVA with the features of an
ANCOVA, a multivariate analysis of covariance (MANCOVA). This ANOVA ana-
lyzes multiple dependent variables and also factors out a concerning covariate.
MANOVAs, ANCOVAs, and MANCOVAs can be used with between-groups,
repeated-measures, and mixed designs. As this box shows, there are many
ANOVA possibilities available to the researcher.
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“disorder type” would not be a participant variable; it would have been an
independent variable.
Suppose one factor is a participant variable and the second factor is manipu-

lated by the experimenter. Only a main effect for the second factor can be inter-
preted in the language of cause–effect. Now suppose that there is an interaction
between a participant variable and an experimental variable. Can we make a
cause–effect statement, or is the interaction correlational in nature? We must
be very careful. For example, suppose we find that Type A people are more
conforming than Type B people, but only when there is a clear payoff for con-
forming.When there is no identifiable payoff, Type A’s are less conforming than
Type B people. (Imagine a graph with crossing lines forming an “×.”) The payoff
versus no payoff is experimentally manipulated; but Type A and B participants
are not randomly assigned to conditions. In this situation, we could suggest the
payoff situation causes differential behavior effects among Type A and Type
B participants. The dependent variable change is being explained by the action
of the independent variable for two different populations (Type A and Type
B personalities). However, we should not conclude that personality type causes
differential behavior as the payoff situation changes. There are any number of
other participant variables correlated with personality type (e.g. competitive-
ness, hostility, time urgency, dominance) that could explain the relationship.
There is simply no way to nail down a causal connection between a participant
variable and the dependent variable.
A researcher must always determine the methodological status of each factor

in a factorial design. There are also two-way factorial designs in which both
factors are participant variables. In this instance, the entire study is correla-
tional. Remember the causal interpretation of research results resides in the
design of the study, not the type of statistical analysis used to analyze the data.

13.9 How to Present Formally the Conclusions
for a Two-Way ANOVA

The proper reporting of two-way ANOVA findings is similar to what is
presented in Section 12.11 regarding the reporting of one-way ANOVA find-
ings. Remember to give priority to significant interactions prior to presenting
information about main effects. The reader needs to be aware of both the pres-
ence of a rejected FA × B and any follow-up tests that help to interpret this finding
prior to being informed of main effect findings.
Many other principles common to the proper reporting of all types of statis-

tical findings were first laid out in Section 8.8. Please consult this portion of the
text for more general information about the proper reporting of statistical
findings.
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Summary

A factorial design combines at least two factors. (These factors can be referred to
as “independent variables” if the study is experimental in design.) This arrange-
ment allows an investigator to examine the effect of each factor separately (called
main effects) and the joint effect of the factors (called an interaction). Each factor
in a factorial design has at least two levels. A two-way factorial design with two
levels of each factor is a 2 × 2design. If one of the variables has three levels and the
other has two levels, it is a 2 × 3 factorial design and soon.Acellmean is themean
of the scores for a single group or combination of levels of factors. A marginal
mean is the mean of the scores from one level of a factor.
When conducting a two-way ANOVA, there are three separate null

hypotheses. This means three F ratios will be calculated to test them. The null
hypotheses for Factors A and B state there are no differences in the population
means for the levels of Factors A and B, respectively. The null hypothesis for the
interaction is that there is no interaction.
The structure and logic of the two-way ANOVA is an extension of the one-

way ANOVA. Total variance is due to between-group variance plus within-
group variance. However, a second stage is introduced. The between-group
variance is further partitioned into the variances due to Factor A, Factor B,
and the interaction. The second stage of the model yields the F ratios that
are used to test null hypotheses: FA, FB, and FA×B.
The assumptions of the two-way ANOVA are the same as the assumptions of

the one-way ANOVA. Samples should be representative of populations, obser-
vations must be independent of each other, interval or ratio data must be used,
the data must be normally distributed, and the variances of the populations
sampled must be homogeneous. The F test is robust with respect to the last
two assumptions.
The F tests in the two-way ANOVA allow us to test the null hypothesis for

each factor and the interaction. However, the F values do not provide informa-
tion about the size of each effect. Omega-squared and eta-squared are statistics
that quantify the relationship between the variance due to Factor A, Factor B,
and the interaction with the overall variance in the study.
If the factorial design has a factor with more than two levels, a significant main

effect for that factor does not tell us which levels are driving the effect. In addi-
tion, the two-way ANOVA does not interpret a found interaction. Various fol-
low-up comparisons can be used to locate the sources of significance between
conditions and between cells. This chapter presents two such tests, Tukey’s
HSD and Fisher’s LSD.
Finally, when interpreting the results of a two-way ANOVA, consider whether

a participant variable is used as a factor. Participant variables maintain the status
of correlated variables and cannot be used for a causal interpretation.
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Using Microsoft® Excel and SPSS® to Run
a Two-Way ANOVA

Excel

General instructions for data entry into Excel can be found in Appendix C.

Data Entry
Choose one of the two factors and enter all of the scores from the samples into
adjacent columns (the number of columns equaling the number of conditions
for that factor), one sample in each column. Label the columns appropriately.
Within the columns, organize the other factor so that all of the data for the first
level of this second factor comes first, then all of the data for the second level,
and so on. Leave the first column blank so it can be used to label the levels of the
second factor (see Figure 13.9 for a visual example).

Data Analysis
1) Excel has built-in programs for many inferential tests, including the two-way

ANOVA test. To access it, click on the Data tab on the top menu and then
click Data Analysis.

2) With the Data Analysis box open, select Anova: Two Factor with Replica-
tion. (Yes, the title is confusing; this is not a repeated-measures ANOVA.)

3) Input the data range by dragging over the entire data set, including the labels,
and placing those coordinates into the Input Range box.

4) Determine how many rows there are per condition of the second factor.
Excel requires an equal number of rows for each condition of both factors.
It also does not allow for empty cells (except the upper left one). Input this
value into the Rows per sample box. (Our example has four rows per
sample.)

5) Decide on an alpha value. The default is .05.
6) Decide on an Output option. The default is to place it on a separate

worksheet.
7) Click OK.
8) Several output tables are produced. The first tables contain summary data

involving the counts, sums, averages, and variances for all levels of the col-
umn factor – one table for each level of the row factor. Additionally, there is a
table with these descriptive totals across the entirety of the row factor levels.
The last table is the ANOVA summary table (labeled “ANOVA”); it looks
very similar to the ANOVA summary table described earlier in the chapter
(see, for example, Table 13.10). However, it uses the term “sample” for the
row factor and “column” for the column factor. There is also an additional
column identifying the Fcrit value for each F in the design. (See Figure 13.9 for
a worked example showing evidence of a main effect for the column factor.)
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SPSS
General instructions for inputting data into SPSS can be found in Appendix C.

Data Entry
In SPSS, each row of the data file represents a participant. Since all samples in a
two-way ANOVA test have different participants, all of the dependent variable
data from all samples will need to be placed in one column. Within Variable
View, label this variable appropriately. However, also create a second and third

Behavioral Group Control

4 8 2

5 6 3

6 4 4

Anxiety 7 7 1

3 6 3

4 7 4

3 8 2

Depression 2 5 2

Anova: Two-factor with replication

Summary Behavioral Group Control Total

Count 4 4 4 12

Sum 22 25 10 57

Average 5.5 6.25 2.5 4.75

Variance 1.6 666 667 2.9 166 667 1.6 666 667 4.568 182

Count 4 4 4 12

Sum 12 26 11 49

Average 3 6.5 2.75 4.083 333

Variance 0.6 666 667 1.6 666 667 0.9 166 667 4.083 333

Total

Count 8 8 8

Sum 34 51 21

Average 4.25 6.375 2.625

Variance 2.7 857 143 1.9 821 429 1.125

ANOVA

Source of variation SS df MS F P-value F crit
Sample 2.6 666 667 1 2.6 666 667 1.684 211 0.210 751 124 4.413 873

Columns 56.583 333 2 28.291 667 17.86 842 5.30888E-05 3.554 557

Interaction 10.083 333 2 5.0 416 667 3.184 211 0.06 5 464 527 3.554 557

Within 28.5 18 1.5 833 333

Total 97.833 333 23

Figure 13.9 A worked example using Microsoft Excel to calculate a two-way ANOVA.
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variable that will allow the user to identify which data goes with which condition
of each of the two factors. Label these factor columns appropriately. Then, go to
Data View. Input the sample data to the appropriate column, and use nominal
variables in the factor columns to distinguish between the cells of the factorial
design. For example, data in the first level of both factors would get a [1, 1] in the
two factor columns; data in the second level of the first factor and the first level
of the second factor would get a [2, 1] in the two factor columns. See
Figure 13.10 for an example.

Incidents disordertype treatmenttype

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

4 1 1

5 1 1

6 1 1

7 1 1

3 2 1

4 2 1

3 2 1

2 2 1

8 1 2

6 1 2

4 1 2

7 1 2

6 2 2

7 2 2

8 2 2

5 2 2

2 1 3

3 1 3

4 1 3

1 1 3

3 2 3

4 2 3

2 2 3

2 2 3

Figure 13.10 An example of entered data for a two-way ANOVA in SPSS.
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Data Analysis
1) Click Analyze on the tool bar, select General Linear Model, and then click

Univariate (univariate here reflects the number of dependent variables, not
the number of factors).

2) Highlight the dependent variable column label in the left box, and click the
arrow to move it into theDependent Variable box. Move both of the factor
variables into the Fixed Factor(s) box.

3) If we want to make specific group comparisons at the time of the ANOVA,
click on the Post Hoc tab to the left, move the factor variables into the Post
Hoc Tests for box, and make the appropriate selections. If not, simply skip
this step.

4) If we want to get basic descriptive statistics, click on Options and then
Descriptive. If not, simply skip this step.

Univariate analysis of variance

Between-subjects factors

N

disordertype

2

1

1treatmenttype

2

3

12

12

8

8

8

Tests of between-subjects effects

Dependent variable: incidents

Source

Type III 

sum of 

squares df
Mean 

square F Sig.

Corrected model

Intercept

disordertype

treatmenttype

disordertype * 

treatmenttype

Error

Total

Corrected total

69.333a 5 13.867 8.758 .000

468.167 1 468.167 295.684 .000

2.667 1 2.667 1.684 .211

56.583 2 28.292 17.868 .000

10.083 2 5.042 3.184 .065

28.500 18 1.583

566.000 24

97.833 23

aR squared = .709 (Adjusted R squared = .628)

Figure 13.11 An output table from a worked example using SPSS to calculate a
two-way ANOVA.
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5) Click OK.
6) Theoutputwill generate anexpandedANOVAsummary table comparedwith

the one described in the text. It is labeledTests of Between-Subjects Effects.
The first row (CorrectedModel) displays thebetween-groups row in aone-way
ANOVA. Since this variance is split up between the three explored effects, it is
dropped from our ANOVA summary table. The second line (intercept) can
also be dropped. The following three rows reflect the three effects of interest,
the two main effects, and the interaction. Once again, we are looking to see if
thecalculatedF’s falls in theoutermost5%of thenullFdistribution. If thevalue
found under Sig. is .05 or less, we have evidence to reject the null hypothesis.
Please note: Use the “Corrected Total” as the total, not what is labeled as the
total. See Figure 13.11 for aworked example. In this example, there is evidence
for a main effect for “treatment type.” The interaction is close to the rejection
threshold, but did not reach the necessary p of ≤.05.

Key Formulas

Definitional formula for SST

SST = Σ(X −MG)
2 (Formula 13.1)

Computational formula for SST

SST =ΣX2−
ΣX 2

N
(Formula 13.2)

Definitional formula for SSBG

SSBG = Σnk(Mk −MG)
2 (Formula 13.3)

Computational formula for SSBG

SSBG =
ΣXA1B1

2

nA1B1

+
ΣXA1B2

2

nA1B2

+ +
ΣXk

2

nk
−

ΣX 2

N
(Formula 13.4)

Definitional formula for SSW

SSW =Σ XA1B1 −MA1B1

2 +Σ XA1B2 −MA1B2

2

+Σ XA2B1 −MA2B1

2+ +Σ Xk −Mk
2 (Formula 13.5)

Computational formula for SSW

SSW =ΣX2−
ΣXA1B1

2

nA1B1

+
ΣXA1B2

2

nA1B2

+ +
ΣXk

2

nk
(Formula 13.6)

Definitional formula for SSA

SSA = nA1 MA1 −MG
2 + nA2 MA2 −MG

2

+ + nk Mk −MG
2 (Formula 13.7)
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Computational formula for SSA

SSA =
ΣXA1

2

nA1

+
ΣXA2

2

nA2

+ +
ΣXk

2

nk
−

ΣX 2

N
(Formula 13.8)

Definitional formula for SSB

SSB = nB1 MB1 −MG
2 + nB2 MB2 −MG

2

+ + nk Mk −MG
2 (Formula 13.9)

Computational formula for SSB

SSB =
ΣXB1

2

nB1

+
ΣXB2

2

nB2

+ +
ΣXk

2

nk
−

ΣX 2

N
(Formula 13.10)

Computational formula for SSA × B

SSA×B = nk MA1B1 −MA1 −MB1 +MG
2

+ MA2B1 −MA2 −MB1 +MG
2

+ MA1B2 −MA1 −MB2 +MG
2

+ MA2B2 −MA2 −MB2 +MG
2 (Formula 13.11)

Formulas for omega-squared, ϖ2
A, ϖ

2
B, ϖ

2
A×B

ϖ2
A =

SSA− df A MSW
SST +MSW

(Formula 13.12)

ϖ2
B =

SSB− df B MSW
SST +MSW

(Formula 13.13)

ϖ2
A×B =

SSA×B− df A×B MSW
SST +MSW

(Formula 13.14)

Formulas for eta-squared, η2A, η
2
B, η

2
A×B

η2A =
SSA

SSA + SSW
(Formula 13.15)

η2B =
SSB

SSB + SSW
(Formula 13.16)

η2A×B =
SSA×B

SSA×B + SSW
(Formula 13.17)

Formulas for Tukey’s HSD values, HSDA, HSDB, HSDA × B

HSDA = qA
MSW
nA

(Formula 13.18)
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HSDB = qB
MSW
nB

(Formula 13.19)

HSDA×B = qA×B
MSW
nA×B

(Formula 13.20)

Formula for Fisher’s LSD test, two-way ANOVA

t =
Mi−Mj

MSW
1
ni

+
1
nj

(Formula 13.21)

Key Terms

Interaction Main effect
Factorial (or complex) designs Two-way ANOVA
Cell Higher-order Effect
Factor

Questions and Exercises

1 Describe the necessary design conditions needed to run a two-way ANOVA.

2 Specify the first and second partitioned stages of the two-way ANOVA.

3 Differentiate between a main effect and an interaction.

4 Use cells to draw the following research designs. Create meaningful labels
for the factors. Make some of them independent variables and identify
them as such.
a 2 × 2
b 3 × 2
c 4 × 4
d 3 × 7

5 What is the advantage, when interested in studying two different factors, to
placing them in one design versus two?

6 Howmany types of F’s does a two-way ANOVA generate, and how many of
each type?
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7 What are the null and alternative hypotheses for:
a Factor A
b Factor B
c Interaction

8 Complete these ANOVA summary tables. Test the null hypotheses
with α = .05.
a

Source SS df MS F p

Factor A 147.00 2 73.50

Factor B 27.44 2 13.72

A × B 12.22 4 3.06

Within groups 95.33 45 2.12

Total 281.99 53

b
Source SS df MS F p

Factor A 3.36 3.36

Factor B 66.67 2

A × B 56.89

Within groups

Total 238.75 35

c
Source SS df MS F p

Factor A 1 .45

Factor B 6.05

A × B 84.05 1

Within groups 16 1.28

Total

9 Draw a graph for each of the following data sets. Place Factor B on the X axis
and the means on the Y axis. The two lines on the graphs correspond to the
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levels of Factor A. For each graph, indicate if there is visual evidence of an
A × B interaction.
a

Factor B

Factor A
35 5

55 25

A1

A2

B1 B2

b
Factor B

Factor A
30 30

10 50

A1

A2

B1 B2

c
Factor B

Factor A
25 10

10 30

A1

A2

B1 B2

10 A researcher conducts a two-factor study with three levels of factor A
and three levels of factor B using a sample size of 10 participants
per cell.
a What are the df for the resulting FA value?
b What are the df for the resulting FB value?
c What are the df for the resulting FA × B value?

11 Why does the size of the F not necessarily reflect the size of a treatment
effect?

12 How do the values of effect size measures (such as ω2 and η2) reflect?

13 Why are multiple comparisons not needed to explore main effects in a
2 × 2 design?
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14 Which of the two presented multiple comparison tools is more flexible in
terms of different sample sizes within the cells of a study? Why?

15 Which of the two presented multiple comparison (follow-up) tools is the
more commonly used test in behavioral and social science research
publications?

16 An experimental psychologist is interested in how performance is
affected by reinforcement and amount of food deprivation. Performance
is measured by the time, in seconds, it takes a rat to run down an alley
to a food box. Twenty rats are randomly assigned to four treatment
conditions: High Incentive–High Deprivation, High Incentive–Low
Deprivation, Low Incentive–High Deprivation, and Low Incentive–
Low Deprivation. Deprivation level is manipulated by maintaining one
group of rats at 85% of their normal weight and a second group at
95% of their normal weight. Incentive is manipulated by the size of
the reward at the end of the alley. In the Low-Incentive condition, a
45-mg food pellet is waiting. In the High-Incentive condition, a 260-
mg food pellet is waiting. The raw data for this hypothetical experiment
are presented in the following 2 × 2matrix. Set alpha at .05 and perform a
two-way ANOVA.
a Summarize the results in an ANOVA table.
b Provide a graph with incentive on the X axis.
c Calculate ω2 for any rejected null hypotheses.
d If necessary, run either type of multiple comparisons to aid in

interpretation.
e What do these results tell us about the effect of incentive and

deprivation on performance?

Factor B: Deprivation (Body Weight)

85% (high) 95% (low)

Factor A:
Incentive

45 mg (low)

7
8
6
7
7

10
7
6
8
6

5
4
4
5
6

9
9
6
7
7

260 mg (high)

474 13 Two-Way Analysis of Variance



17 An educational psychologist is interested in the effect of delayed feedback
on learning and if delayed feedback operates differently as a function of
educational level. All participants, composed of freshmen and seniors,
are administered a 15-question test; after answering the questions, the
participants are given the correct answers at various intervals, depending
on which experimental condition they are assigned. All participants
are given the same test four days later. The dependent variable is the
number of correctly answered questions. Set alpha at .05. For the follow-
ing data set:
a Provide an ANOVA summary table.
b Graph the results with delayed feedback on the X axis.
c Calculate η2 for any rejected null hypothesis.
d Conduct multiple comparisons if appropriate.
e Interpret the findings.

Factor B: Feedback Delay

No Delay 2-H Delay 1-D Delay

Factor A:
Education Level

Freshmen

15
12
13
10
11

7
9
5
8
8

4
6
7
7
7

13
15
13
10
10

6
5
6
9
6

8
5
5
6
7

Seniors

18 A clinical psychologist is interested in the effects of cognitive
therapy alone, medication alone, and the combined effects of therapy
and medication for depression. The following table provides the
summary statistics for each cell, the marginal means, and the grand
mean.
a Summarize the results in an ANOVA table.
b Calculate η2 for any rejected null hypothesis.
c Perform whatever secondary tests are deemed necessary to help

interpret any findings from the ANOVA.
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Factor B: Medication

Yes No

Factor A: Cognitive
Therapy

Yes

MA1B1 = 8 6

ΣXA1B1 = 43

ΣX2
A1B1

= 375

nA1B1 = 5

MA1B2 = 5 2

ΣXA1B2 = 26

ΣX2
A1B2

= 238

nA1B2 = 5

MA1 = 6 9

No

MA2B1 = 3 8

ΣXA2B1 = 19

ΣX2
A2B1

= 75

nA2B1 = 5

MA2B2 = 2 2

ΣXA2B2 = 11

ΣX2
A2B2

= 27

nA2B2 = 5

MA2 = 3 0

MB1 = 6 2 MB2 = 3 7 MG = 4.95

19 Romano and Bordiere (1989) conducted a study to determine if the phys-
ical attractiveness of a professor influences students’ perceptions of how
much they think they will learn from the professor. The design was a
2 × 2 factorial; one factor is the physical attractiveness of the professor
(Attractive/Unattractive), and the other factor is the biological sex of
the student (Male/Female). Students provided ratings on a 9-point scale,
which reflected how much they thought they would learn, with higher
numbers reflecting more learning. Slides of professors were used to obtain
the ratings. The following data set is hypothetical, but is constructed so
that we arrive at the same results as the investigators.
a Provide an ANOVA summary table.
b Calculate ω2 for any effects found.
c Interpret the findings.
d Should the researchers be particularly concerned with any assumption

violations?

Factor B: Professor

Attractive Unattractive

Factor A:
Biological Sex
of Student

Male

8
6
6
7
5

4
5
7
4
6

9
7
5
7
7

3
7
4
4
4

Female
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20 Suppose we wanted to explore the effects of wearing cologne on inter-
personal attraction. Since we are also interested in the potential inter-
action effects with physical attractiveness, we have chosen to include
that variable as well. We select 12 individuals as stimuli: 6 individuals
who have been deemed ahead of time by independent raters as “very
attractive” and 6 who are deemed “average looking.” Within each group
of six, three will be wearing cologne and three will not. Interpersonal
attraction is measured by the amount of time (in minutes) that
unknown students standing in line with our confederates will engage
in conversation with them as they wait in line to gain their university
ID cards. The average number of minutes each of the 12 participants
was conversed with is recorded below. Set α = .05 and run a two-
way ANOVA.
a Provide an ANOVA summary table.
b Calculate η2 for any effects found.
c Run any needed post hoc comparisons and interpret the findings.

Factor B: (Physical Attractiveness

Very Attractive Average-Looking

Factor A:
Cologne

Cologne

7
9

10

8
7
4

4
5
6

3
6
4

No Cologne

21 A psychologist is interested in whether African American (AA) defen-
dants draw stiffer sentences than Caucasian American (CA) defendants;
whether AA judges give stiffer sentences than CA judges; and if there is
an interaction between the ethnicity of the judge and the ethnicity of the
defendant when it comes to sentencing. A hypothetical data set was con-
structed. The first table shows the group means and the second table is
a partial ANOVA table. Set alpha at .05. (Higher means reflect stiffer
sentences.)
a Complete the ANOVA summary table.
b Interpret the findings.
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Factor B: Defendant

AA CA

Factor A: Judge

AA 27.33 20.00

29.50 23.67CA

Source SS df MS F p

Factor A (Ethnicity of Judge) 51.04 1

Factor B (Ethnicity of Defendant) 260.04 1

A × B 3.38 1

Within groups

Total 1396.63 23

22 The Type A personality is defined in part by a sense of time urgency and a
hard-driving, competitive approach in achievement situations. The Type
B individual takes a more relaxed approach to achievement-oriented tasks.
The Type X personality is a mixture of Type A and Type B characteristics.
An organizational psychologist is interested in whether there is an
interaction between personality type and an incentive program on sales
production. Factor B is personality type, and Factor A is the manner in
which the salesperson is paid: salary or commission. The first table pre-
sents the cell means and sample sizes. The second table is a partial
ANOVA table. Set alpha at .05.
a Complete the ANOVA table.
b Conduct Fisher’s LSD tests to locate the sources of significance.
c Interpret the findings.

Factor B

Type A Type B Type X

Factor A

Salary 17.33
n= 6

14.83
n= 6

12.17
n= 6

25.0
n= 6

17.17
n= 6

17.0
n= 6Commission
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Source SS df MS F p

Factor A (Incentive)

Factor B (Personality) 288.17 2

A × B 42.72 2

Within groups 731.83 30

Total 1282.75 35

23 In a t test, are we testing for a main effect or an interaction?

24 In a one-way ANOVA, are we testing for a main effect or an interaction?

25 Why should we use caution when interpreting a main effect when there is
an interaction?

26 Suppose a constant were added to each score in a 2 × 3 factorial design.
What effect would this have on the main effects and interaction? How
would MSW be affected?

Computer Work

27 A psychologist is interested in the following research questions.
a Can cognitive strategies increase the delay of gratification among

children?
b Is there a difference between the biological sexes in the ability to delay

gratification?
c Is there an interaction between biological sex and the effectiveness of

cognitive strategies?
The experimental task required the child participant to sit in front of a

bowl of marshmallows placed on a table. Each child was told, “You can
eat as many of the marshmallows as you want, but I would like you to try
and wait until I return. If you can’t wait, that’s OK, but please try. To
help you not eat any marshmallows I am going to give you something
to think about.” In the cognitive transformation condition, participants
were taught to imagine that the marshmallows were white, fluffy clouds.
In the self-talk condition, participants were told to repeat to themselves,
“Don’t eat the marshmallows.” In the control condition, participants
were not provided with any cognitive technique. The experimenter left
the room and observed the participant through a one-way mirror,
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recording the number of seconds elapsed before the child ate a marsh-
mallow. Use α = .05 to test for main effects and an interaction. Provide
an ANOVA summary table, calculate η2 for any found effects, and inter-
pret the findings.

Factor B: Cognitive Strategy

Transformation Self-Talk Control

Factor A:
Biological
Sex of
Children

Males

15 12 13
15 15 30
10 19 32
20 25 29
30 35 19
75 60 25
40 50

14 10 15
16 17 28
11 22 32
19 18 29
29 47 25
74 55 18
45 60

30 12 17
19 22 25
14 43 32
10 18 39
25 45 16
70 50 20
40 62

65 89 61
45 22 49
50 78 35
53 74 74
75 99 77
64 77 82
55 43

72 90 65
35 18 49
60 75 39
43 74 72
75 89 60
68 85 80
50 48

85 80 60
25 30 59
60 70 25
70 90 75
67 80 80
63 82 75
50 42

Females

28 An experimental psychologist hypothesizes that a High-drive state will
increase errors on a mental arithmetic task in comparison with a Low-
drive state. Drive state is experimentally manipulated by telling half the
participants that performance on the task is related to intelligence
(High-drive state). Participants in the Low-drive condition are told that
their answers to the problems are to be used as normative data for a future
study. The researcher also hypothesizes that drive state will interact with
the difficulty of the task. More specifically, participants experiencing high
drive will not perform as well when the task is difficult compared with
easy. Participants in the Difficult condition receive more complicated pro-
blems than those in the Easy condition. The researcher is predicting a
main effect for drive and an interaction between task difficulty and level
of drive state. The dependent variable is the number of errors made over a
long series of mental arithmetic problems. Perform a two-way ANOVAon
the following data, with alpha set at .05. We will find that there are main
effects for both factors, in addition to a significant interaction. Generate
an ANOVA summary table, perform any useful follow-up tests, and
interpret the findings.
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Task Difficulty: Factor B

Easy Difficult

Driver state:
Factor A

High drive

18 12 15
10 16 18
19 15 20
15 12 17
20 22 17

28 20 19
30 15 15
35 30 27
37 37 29
25 29 30

16 14 15
12 29 20
10 27 20
22 30 25
20 16 19

15 17 18
20 25 16
10 16 25
18 13 11
19 12 16

Low drive

29 Kirschner and Karpinski (2010) found evidence that college students who
are on Facebook (or have it running in the background) performed more
poorly on academic assessments than students who did not. We would like
to see if there is evidence that the use of Facebook interferes differently
when students are studying different types of material, namely, scientific
material, the classics, and the arts. Seventy-two students from a liberal arts
college are randomly sampled (36 self-professed “users” of Facebook and
36 who claimed not to use social media when studying), and each one is
assigned to one of three academic conditions – the performance in the
general education class corresponding to the academic category being
assessed by the registrar. For consistency reasons, the registrar’s office
was asked to classify student academic performance by using a 7-point
Likert scale (higher numbers reflecting better performance). Below are
some hypothetical data. Generate an ANOVA summary table, perform
any useful follow-up tests, and interpret the findings. Additionally, com-
ment on any assumptions we should be concerned about for our analysis.

Factor B: Type of Academic Material

Sciences Classics Arts

Factor A:
Facebook

User

3
5
6
4

7
3
6
4

4
5
2
1

4
3
5
2

6
2
2
3

2
5
2
3

4
4
5
6

5
2
3
5

3
3
1
4

6
4
5
3

5
7
3
6

2
5
4
6

6
2
4
5

6
6
4
5

4
5
7
6

4
5
3
4

5
4
5
2

5
5
7
6

Nonuser
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30 Now we will look at a more traditional form of distracted studying, listen-
ing to music. We would like to study the effects of listening to music while
studying on academic performance. We would also like to see if the type of
material being studied might have an effect. Students are selected from an
Introduction to Shakespeare class and a Beginning German class (both
100-level courses). The amount of study time is controlled. After six weeks,
all students are given a 50-point test in their respective class. Assume that
independent judges have found these tests to be approximately equal in
difficulty. Hypothetical data is presented below. Generate an ANOVA
summary table, perform any useful follow-up tests, and interpret the
findings.

Factor B: Music

Music No Music

Factor A:
Class

Shakespeare

19
37
14
24

46
43
38
30

25
14
14
39

33
46
35
48

German
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14

Repeated-Measures Analysis of Variance

14.1 The Research Context

Repeated-Measures Designs

In a between-groups design, each participant receives one and only one treat-
ment. This is true whether the design has one or more factors. In a repeated-
measures design (also called a within-participants design), every participant is
exposed to each of the treatment conditions.1 Since we can obtain information
about the effect of each treatment condition by using the same group of parti-
cipants, we can eliminate some of the error due to random factors. This makes
repeated-measures designs more statistically efficient than between-groups
designs, requiring fewer participants to achieve the same statistical power.
Chapter 10 used the dependent-samples t test for repeated-measures designs
with two experimental conditions. In this chapter, the number of conditions
can be greater than two. The appropriate statistical analysis is called a
repeated-measures ANOVA.
The main advantage of a repeated-measures design is that there is greater

control over participant variables. Chapter 1 explained that participant variables
are fixed attributes of a person; that is, fixed at the time the participant enters the
experiment. Intelligence, biological sex, psychiatric diagnosis, and personality
traits are examples of participant variables. When using a between-groups
design, participant variables can present a problem. Suppose a researcher is
interested in a teaching technique to enhance learning. If, by chance, the intel-
ligence differences between the participants are not evenly distributed across
the conditions, the variance due to “intelligence” will add to the random factors
variance and make it harder to find evidence of primary variance. How is this

1 As was the case in previous ANOVA chapters, the repeated-measures ANOVA will be presented
using experimental terminology even though this analysis can be used on data gathered
correlationally. Most repeated-measures designs, however, are experimental.
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problem circumvented when using a repeated-measures design? By using the
same participants in every condition, it is impossible for one condition to have
more or less of a participant variable than another condition. As a result, the
variance due to random factors is reduced.
Suppose we are interested in testing the effectiveness of three different

studying strategies on examination performance. In a between-groups design,
we would randomly assign, for instance, 60 participants to the three training
programs (20 participants per group). In a within-participants design, we
would take 20 participants and run each of them through each program (see
Table 14.1). Our measure of performance, which is the dependent variable,
would be taken after completing each program. In this way, a repeated-
measures design reduces random factors variance by eliminating individual
differences between conditions and also economically generates 60 data points
while using only 20 individuals.
The problems that arise when using a within-participants design have to do

with methodology, namely, the effects of previous measurements on future
measurements, so-called carryover effects. The question becomes, “how sure
are we that the number we gain for a participant’s second and subsequent mea-
sures is only due to the condition they are in and not the fact that they have
already been measured?” For instance, some participants might improve the
second time around on a task not because of the new treatment condition
but because they are now more familiar with the task; this is termed a practice
effect. Other experimental situations might work the other way around.
Participants might perform more poorly merely because they are being meas-
ured a second or third time; this is termed a fatigue effect. Both of these
situations introduce confounding variance into the design and interfere with
an interpretation of the findings.
These problems can sometimes be addressed by carefully managing the order

through which participants experience the various conditions. If all participants

Table 14.1 A within-participants design: 20 Participants are exposed to
each treatment condition.

Treatment I Treatment II Treatment III

Participant 1 Participant 1 Participant 1

Participant 2 Participant 2 Participant 2

Participant 3 Participant 3 Participant 3

Participant 20 Participant 20 Participant 20
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experience the same order, then there will be no way to determine if group dif-
ferences are due to the treatment differences or the order of progression
through the research design. To avoid order effects, researchers often employ
a strategy called counterbalancing. Counterbalancing involves the presenta-
tion of experimental conditions in a different order for different participants.
Treatment I would be presented first for some participants, second for
some participants, and third for other participants. The same would hold
true for Treatments II and III. Confounding variance due to order effects can
be controlled if a technique such as counterbalancing can be argued to
have equally dispersed order effects across all conditions. If the technique is
effective, the unwanted variance simply becomes error variance. There is
much to be discussed regarding the methodological problems associated
with repeated-measures designs. However, this is not a book on research
methodology. We will simply note the inherent methodological challenges
with repeated-measures designs and suggest that techniques such as counter-
balancing offer potential solutions.2 The statistical advantage of repeated-
measures designs is so great that researchers are often highly motivated to
find methodological solutions to the inherent problems of the design. Please
consult a research methodology resource for a more elaborate discussion of
this important topic.
Not all research questions lend themselves to a within-participants design.

For instance, it is very unusual to find a psychotherapy study that uses a
repeated-measures design. However, drug treatments are often investigated
with a repeated-measures design. Since drugs typically do not leave a lasting
effect on behavior and learning, different drugs can be administered to the same
participants. Investigators control for carryover effects by allowing the first drug
to clear the patient’s system before beginning the second drug trial. However,
any treatment that produces a relatively permanent change in themeasured var-
iable is best evaluated using an independent-samples design.

Examples of Repeated-Measures Designs

► Example 14.1 An experimental psychologist is interested in whether
a participant’s level of physiological arousal influences olfactory sensitivity.
Participants are asked to detect the presence of unwashed sports socks in an
open hamper. The distance between the participant and the hamper is themeas-
ure of olfactory sensitivity. The independent variable is arousal. Three levels of
arousal are used: low, medium, and high. Low arousal is induced by having
participants relax, medium arousal is induced by having participants listen to

2 Whenever a repeated-measures design is used in this chapter, assume the experimental
conditions are counterbalanced and the introduction of confounding variance has been avoided.
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an annoying sound, and high arousal is created by threatening participants with
an electric shock. The same sample of participants is exposed to each arousal
condition. Olfactory sensitivity is assessed during each level of physiological
arousal. ◄

► Example 14.2 A marketing psychologist wants to see if people can tell the
difference in the smoothness of the ride among three cars. A sample of parti-
cipants is blindfolded and given a ride in a Lexus, a Cadillac, and a Rolls Royce.
Ratings of smoothness are obtained after each ride. ◄

► Example 14.3 A cognitive psychologist is interested in the effects of caf-
feine on memory. The same sample of participants is asked to memorize and
recall nonsense syllables under three levels of caffeine intake. ◄

The type of repeated-measures design and analysis discussed in this chapter is
limited to the case in which only one independent variable is used. However,
factorial designs that have a repeated-measures factor are common in the
behavioral sciences; these are calledmixed designs (see Box 13.2 for more infor-
mation). For instance, any study that has a (between-group) treatment factor
and a pretest/posttest second factor qualifies as a mixed design (see Box 14.1
for more information). Most advanced statistics textbooks cover the analysis
of mixed designs.

14.2 The Logic of the Repeated-Measures ANOVA

The Null Hypothesis

A repeated-measures ANOVA generates one F ratio; it tests for population
mean differences among the levels of the independent variable. Therefore, there
is only one null hypothesis:

H0 μ1 = μ2 = μ3 = μk

The alternative hypothesis is that at least two of the group means come from
different populations:

H1 the null hypothesis is false

Partitioning Variability

The basic logic of the repeated-measures ANOVA is the same as in other
ANOVAs. A ratio is created where the numerator contains variance due to a
treatment effect (also called “primary variance”) as well as random factors
and the denominator contains variance due only to random factors. In the
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context of a repeated-measures design, there is only one sample of participants;
they form different groups only in the sense that they are exposed to different
treatment conditions at different times. Figure 14.1 illustrates the sources of
variability in the repeated-measures ANOVA.

Between-Group Variability

In the one-way ANOVA, between-group variability is due to three factors: var-
iance due to the treatment, variance due to individual differences, and variance
accounted for by experimental error. Individual differences and experimental
error are included in the term error or error variance. The critical difference
in the repeated-measures ANOVA is that variance due to individual differences
is absent from between-group variation. Any difference among the treatment
means cannot be due to individual differences because each condition is
composed of the same participants. Therefore,

between-group variance= treatment effect + experimental error

Within-Group Variability

In a one-way ANOVA, the variability within a treatment condition is due to
two factors: individual differences and experimental error. This is also true in
a repeated-measures ANOVA. However, the repeated-measures ANOVA
allows for the partitioning of the within-group variability into variance due
to individual differences and variation due to experimental error. This is
possible because individuals are being measured multiple times. Since
the variability due to individual differences and experimental error can be
separated, the variability due to individual differences can be removed.
This means we can create a denominator for the F ratio that only includes
experimental error:

F =
treatment effect + experimental error

experimental error

By removing the variance due to individual differences from the denomi-
nator, the size of the denominator decreases. As the denominator decreases,
the F ratio increases. As the F ratio increases, so does the likelihood that
the null hypothesis will be rejected. Consequently, the repeated-measures
ANOVA has greater power than the between-groups ANOVA. Recall
from Chapter 11 that power is influenced by several factors, one of them
being the amount of variation in the data. Repeated-measures designs
remove the variance due to individual differences and correspondingly
increase the power.
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Refer to Figure 14.1. Note that in the second stage of the model, within-
group variability has been partitioned. A new term has been introduced:
between-participants variability. Do not confuse this with between-group
variability. Between-group variability is the variation among group means
and is due to treatment effect plus error. Between-participants variability
is the variation in scores due only to individual differences. Since the
denominator of F ratios is often referred to simply as error, note that the
denominator in the repeated-measures ANOVA refers only to experimental
error.

Does Removing the Effect Due to Individual Differences Really Matter?

In a one-way ANOVA, the effect due to individual differences shows up in the
numerator and the denominator. The numerator also includes the treatment
effect and, if large enough, yields an F ratio sufficient to reject the null hypoth-
esis. However, if the variation due to individual differences is removed from
both the numerator and the denominator, what is gained? A simple illustration
answers this question. Suppose two experiments are contrasted, one using an
independent-groups design and another using a repeated-measures design.
Further, let us assign some units of variation to each component of the F ratio:

treatment effect = 200 units

individual differences= 300 units

experimental error = 50 units

Total 

variability

Between-group variability Within-group variability 

1. Treatment effect

2. Experimental error

1. Individual differences

2. Experimental error

Between-participants variability

1. Individual differences 1. Experimental error

Error variability

Figure 14.1 Partitioning the total variation in the repeated-measures ANOVA.
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F ratio for independent-groups design

F =
treatment + individual differences+ experimental error

individual differences+ experimantal error

F =
200 + 300 + 50

300 + 50
=
550
350

F = 1 57

Now what happens to the F ratio if only the variation due to individual differ-
ences is removed? (Notice, the treatment variance and experimental error
values are not altered.)

F ratio for repeated-measures design

F =
treatment + experimental error

experimental error

F =
200 + 50

50
=
250
50

F = 5 00

The result in this example is dramatic. Removing the variability due to indi-
vidual differences does not always make this big of a difference. The impact of
using a repeated-measures design is determined by the relative size of all three
forms of variance, especially the variance due to individual differences. If this
variance accounts for only a small amount of the total variation, there will only
be a small increase in the size of the F ratio.
Since larger F ratios are, obviously, more likely to direct researchers to reject

null hypotheses, a repeated-measures ANOVA has more power than an
ANOVA conducted using a between-groups design, all other things being
equal. If the methodological challenges of a repeated-measures design can be
addressed, we should always opt for it over a between-groups design.

14.3 The Formulas for the Repeated-Measures ANOVA

The formulas for the repeated-measures ANOVA are presented first, followed by
a worked problem illustrating the computational steps in the repeated-measures
ANOVA. For brevity purposes, only computational formulas will be presented.

The Sums of Squares

The Total Sum of Squares, SST
The repeated-measures ANOVA begins with the calculation of SST. This value
is stated in the ANOVA summary table. It can be used as a computational check
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andmay be needed for follow-up analyses. The SSTmeasures the total variability
among all the scores in the study. Formula 14.1 is identical to the computational
formula for the SST in the one-way and two-way ANOVA.

Computational formula for SST

SST =ΣX2−
ΣX 2

N
(Formula 14.1)

where

ΣX2 = the sum of all squared scores
(ΣX)2 = the sum of all scores, quantity squared
N = the total number of participants

The Sum of Squares Between Groups, SSBG
In the first stage of the partitioning of the total variability, the total variation
among all the scores is partitioned into between-group variability and
within-group variability (refer to Figure 14.1).

Computational formula for SSBG

SSBG =
ΣX1

2

n1
+

ΣX2
2

n2
+ +

ΣXk
2

nk
−

ΣX 2

N
(Formula 14.2)

where

(ΣX1)
2, (ΣX2)

2, (ΣXk)
2 = the sum of the scores in the first experimental

condition, the second experimental condition, and so on, quantity squared
n1, n2, nk = the number of scores in the first experimental condition,
the second experimental condition, and so on (see Table 14.1)— these should
all be equal

The Sum of Squares Within Groups, SSW
Recall that SSW refers to variability within the treatment conditions.

Computational formula for SSW

SSW =ΣX2−
ΣX1

2

n1
+

ΣX2
2

n2
+ +

ΣXk
2

nk
(Formula 14.3)

Computational Check
Since SST is partitioned into SSBG and SSW, it must be the case that

SST = SSBG + SSW
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The Sum of Squares Between Participants, SSBP
The first stage of the partitioning of the total variation has been completed.
What remains is to further partition the within-group variability SSW.
The SSW is partitioned into SSBP and SSerror. Instead of summing scores
within columns, we sum scores within rows. Note that a new symbol, P, is
introduced.

Computational formula for SSBP

SSBP =
P1

2

k
+

P2
2

k
+ +

Pn
2

k
−

ΣX 2

N
(Formula 14.4)

where

(ΣP1)2, (ΣP2)2, (ΣPn)2 = each participant’s score in every experimental condi-
tion is summed; all the first participant’s scores are summed, all the second
participant’s scores are summed, and so on, until the last participant’s scores
are summed; each quantity is squared

(ΣX)2 = the sum of all the scores in the study, quantity squared
k = the number of experimental conditions

The Sum of Squares Error, SSerror
Recall that within-group variability is partitioned into between-participants var-
iation (individual differences) and variation due to error (experimental error).
Therefore,

SSW = SSBP + SSerror

The SSerror is found by subtraction.3 Rearranging the foregoing equa-
tion gives

SSerror = SSW −SSBP

Partitioning the Degrees of Freedom

Partitioning the total degrees of freedom follows the same form as partitioning
the total variation of scores. Figure 14.2 illustrates this fact. Table 14.2 lists the
various degrees of freedom and their computation.

3 In some textbooks, SSerror is referred to as SSres (residual sum of squares).
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The Mean Squares and F Ratio

The last step in the repeated-measures ANOVA is to calculate the various mean
squares used in the F ratio. Since the type of repeated-measures ANOVA in this
chapter has only one independent variable, there is only one F ratio:

F =
MSBG
MSerror

where

MSBG =
SSBG
df BG

MSerror =
SSerror
df error

Total
dfT= N – 1

Between-groups

dfBG= k – 1

Within-group

dfW= N – k

Between-participants

dfBP= n – 1

Error

dferror = dfW – dfBP
= (N – k) – (n –1)

Figure 14.2 Partitioning the degrees of freedom in the repeated-measures ANOVA.

Table 14.2 The degrees of freedom for a repeated-measures ANOVA.

Source Computation Degrees of Freedom

Total N − 1 dfT

Between groups k − 1 dfBG

Within groups N − k dfW

Between participants n − 1 dfBP

Error (N − k) − (n − 1) dferror = dfw − dfBP
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Remember that the denominator of the F ratio in the repeated-measures
ANOVA is MSerror rather than MSW. With the effect of individual differences
removed, using MSerror preserves the basic structure of the F ratio:

F =
treatment + experimental error

experimental error

Worked Problem
Clinical psychologists have noted that anxious people sometimes have
difficulty concentrating. Suppose a researcher is interested in the effects of a
drug, administered at different dosages, on cognitive performance. Ten anxious
participants are selected and exposed to four treatment conditions. In one treat-
ment condition, the participants are administered 2.5 mg of Valium. A second
and third treatment condition involves the administration of 5 and 10 mg of
Valium. Another condition is added as a control; here the participants receive
a placebo. Participants are asked to solve a series of mental arithmetic problems,
with the dependent variable being the number of errors committed. The treat-
ment conditions are presented one week apart to assure that the drug has
cleared from the participants’ systems before the effect of a new dosage is
assessed. In addition, the order in which the treatments are delivered is counter-
balanced among the participants to remove order as a confounding variable.
Table 14.3 presents the design of this experiment. In the body of the table, each

Table 14.3 The repeated-measures design for the hypothetical
worked problem.

Participants

Treatment

Placebo 2.5 mg 5mg 10mg

(1) (2) (3) (4)

P1 X11 X12 X13 X14

P2 X21 X22 X23 X24

P3 X31 X32 X33 X34

P4 X41 X42 X43 X44

P5 X51 X52 X53 X54

P6 X61 X62 X63 X64

P7 X71 X72 X73 X74

P8 X81 X82 X83 X84

P9 X91 X92 X93 X94

P10 X101 X102 X103 X104
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X symbolizes a score. The first subscript of X identifies the participant; the sec-
ond subscript identifies the experimental condition. For example, X23 refers to
the obtained score for participant number 2 under experimental condition
number 3. Note that although the total number of participants is 10, the total
number of scores is 40. This point will become important when we analyze
degrees of freedom. The data for this study are presented in Table 14.4.

Summary of the Computational Steps
Compute:

1) SST
2) SSBG
3) SSW
4) SSBP
5) SSerror
6) Compute the df for each of the foregoing SS
7) MSBG
8) MSerror
9) F ratio

Table 14.4 Raw data for the worked problem.

Participants

Treatment

Placebo 2.5mg 5mg 10mg

P1 14 5 9 15 ΣP1 = 43a

P2 12 3 6 11 ΣP2 = 32

P3 10 2 7 9 ΣP3 = 28

P4 7 4 5 7 ΣP4 = 23

P5 9 4 6 8 ΣP5 = 27

P6 9 1 3 7 ΣP6 = 20

P7 10 3 4 9 ΣP7 = 26

P8 5 0 0 13 ΣP8 = 18

P9 6 4 4 6 ΣP9 = 20

P10 8 6 6 7 ΣP10 = 27

Σ1 = 90 ΣX2 = 32 ΣX3 = 50 ΣX4 = 92 ΣX = 264

M1 = 9.0 M2 = 3.2 M3 = 5.0 M4 = 9.2

a P is the symbol used for a participant in a repeated-measures design.

494 14 Repeated-Measures Analysis of Variance



Calculating the Sums of Squares
Step 1. Compute the total sum of squares, SST.

SST =ΣX2−
ΣX 2

N

Therefore,

SST = 2236−
264 2

40
SST = 2236−1742 40

SST = 493 60

Step 2. Compute the sum of squares between groups, SSBG.

SSBG =
ΣX1

2

n1
+

ΣX2
2

n2
+ +

ΣXk
2

nk
−

ΣX 2

N

Placing the numbers in the formula,

SSBG =
90 2

10
+

32 2

10
+

50 2

10
+

92 2

10
−

264 2

40

SSBG = 810 + 102 40 + 250 + 846 40−1742 40

SSBG = 2008 80−1742 40

SSBG = 266 40

Step 3. Compute the sum of squares within groups, SSW.
We are about to complete the first stage of the partitioning of the total varia-

bility. Recall that the SSW refers to variability within the treatment conditions.
The formula for SSW is

SSW =ΣX2−
ΣX1

2

n1
+

ΣX2
2

n2
+ +

ΣXk
2

nk

For the worked problem,

SSW = 2236−
90 2

10
+

32 2

10
+

50 2

10
+

92 2

10

SSW = 2236−810 + 102 40 + 250 + 846 40

SSW = 2236−2008 80

SSW = 227 20
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Step 4. Perform a computational check.
Since SST is partitioned into SSBG and SSW,

SST = SSBG + SSW

Therefore,

493 60 = 266 40 + 227 20

Step 5. Compute the sum of squares between participants, SSBP.

SSBP =
P1

2

k
+

P2
2

k
+ +

Pn
2

k
−

ΣX 2

N

SSBP =
43 2

4
+

32 2

4
+

28 2

4
+

23 2

4
+

27 2

4

+
20 2

4
+

26 2

4
+

18 2

4
+

20 2

4
+

27 2

4
−

264 2

40

SSBP = 1861−1742 40

SSBP = 118 60

Step 6. Compute the sum of squares error, SSerror.
Within-group variability is partitioned into between-participants variation

(individual differences) and variation due to error (experimental error).
Therefore,

SSW = SSBP + SSerror

As noted previously, the SSerror is found by subtraction.
Rearranging the terms,

SSerror = SSW −SSBP

From the data,

SSerror = 227 20−118 60 = 108 60

We have now completed stage two of the partitioning of the total variation of
scores. Here is a summary of the calculations:

SST = 493 60

SSBG = 266 40

SSW = 227 20

SSBP = 118 60

SSerror = 108 60
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To arrive at the F ratio, we need to compute MSBG and MSerror.

Step 7. Compute MSBG. The dfBG = k − 1 = 4 − 1 = 3.

MSBG =
SSBG
df BG

=
266 40

3
= 88 80

Step 8. Compute MSerror. The dferror = dfW − dfBP = 36 − 9 = 27.

MSerror =
SSerror
df error

=
108 60
27

= 4 02

Step 9. Compute the F ratio. The F ratio is

F =
MSBG
MSerror

=
88 80
4 02

= 22 09

The remaining steps of the repeated-measures ANOVA use the F ratio to test
the null hypothesis.

14.4 Using the F Ratio to Test the Null
Hypothesis

The null hypothesis for the worked problem is H0 : μ1 = μ2 = μ3 = μ4. The
alternative hypothesis is that H0 is false. If the null hypothesis were rejected,
we would conclude that at least two of the sample means come from different
populations. To reject the null hypothesis, the obtained F ratio must be larger
than the critical value of F found in the F table (Table A.5). The degrees of
freedom for F are the degrees of freedom associated with the numerator and
denominator of the F ratio, dfBG and dferror, respectively. The degrees of freedom
for this study are dfBG = 3 and dferror = 27. Entering the F table, the critical value
when α = .05 is 2.96. The critical value when α = .01 is 4.60. The obtained F value is
22.09. At either alpha value, we have statistical evidence to reject the null
hypothesis.

14.5 Interpreting the Findings

What does a rejected null hypothesis mean for the study? The independent var-
iable has four levels: placebo, 2.5, 5, and 10 mg of Valium. A value of F that
exceeds Fcrit means we have statistical evidence suggesting that at least two
of the group means differ on the dependent variable. In other words, the num-
ber of errors committed during the mental arithmetic test seems to be affected
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by dosage level. At this point we have the same dilemma as when we reject an
F ratio in a one-way ANOVA. There is no way to know which groups are the
ones that are differing from one another. To locate the differences, pairwise
comparisons among the means are required. This topic will be discussed
shortly. We turn now to the form of the summary table in the repeated-
measures ANOVA.

14.6 The ANOVA Summary Table

The general form of the summary table for a repeated-measures ANOVA is
shown in Table 14.5. The presentation of the findings is shown in
Table 14.6. This is not the only way researchers can choose to create a summary
table for repeated-measures ANOVAs, however; it is what we will be using in
this text.

Table 14.5 General form of the summary table for a repeated-measures ANOVA.

Source SS df MS F p

Between groups SSBG dfBG MSBG F

Within groups SSW dfW

Between participants SSBP dfBP

Error SSerror dferror MSerror

Total SST dfT

Table 14.6 The ANOVA summary table for the hypothetical study.

Source SS df MS F p

Between groups (dose level) 266.40 3 88.80 22.09 p < .01

Within groups 227.20 36

Between participants 118.60 9

Error 108.60 27 4.02

Total 493.60 39
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Box 14.1 Next Steps for Repeated-Measures ANOVAs: Mixed Designs and
Quasi-Experimentation

We have already learned that the term “mixed design” refers to studies with mul-
tiple factors where at least one factor is between groups and at least one is
repeated measures (within participants). Sometimes we will find the longer term
“mixed between–within-participants design” used, or when speaking of the anal-
ysis of this design, the term “split-plot ANOVA” (or SPANOVA). What has not been
talked about previously is the term “quasi-experimentation.”Aquasi-experiment is
a study design that takes on some of the features of an experiment, but not all of
them. There are many versions of quasi-experiments, and discussions of them can
be found in most research methodology resources (e.g. Cook & Campbell, 1979
and Shadish, Cook, & Campbell, 2002 are widely regarded as excellent resources).
Of particular interest here is a frequently used version of quasi-

experimentation where order effects are purposefully not counterbalanced; in
fact, the order is of particular importance. The best example of this would bemul-
tiple-group pretest/posttest designs (of course these designs are not limited to
two measurements; oftentimes participants are measured multiple times after
an initial premeasure). In these designs, participants are assigned to different
groups where a treatment is administered after a premeasure but before a post-
measure (or an ongoing treatment occurs and various postmeasures are taken).
The question to be answered is, “which treatment type creates the most change
over time?” For example, suppose a claim ismade that a certain type of treatment
works initially but fades in effectiveness as time passes, while a different treat-
ment has a less dramatic initial effect, but creates change that is more lasting.
A design could be set up to test this claim where participants are assigned to
one of two treatment conditions (between-groups factor) and measured at three
different times: premeasure, postmeasure 1, and postmeasure 2. This would be
quasi-experimental because there may be threats to internal validity that come
with the passage of time. Changes in participants’ scores between the measures
may be due to the effect of the treatment but may also be due to other factors,
some of which may be varying somewhat systematically with the treatment con-
ditions. (For example, imagine that one group of participants must travel to point
A to get to their treatment site and road construction has made the commute
much longer; participants in the other group who are traveling to point B for
treatment incur no such added frustration.) Quasi-experimentation designs are
susceptible to these types of problems. Nonetheless, they are popular and very
helpful for tracking change across time.
The 2 × 3 quasi-experimental design described abovewould be analyzed using

a hybrid of the ANOVA presented in Chapter 13 (two-way ANOVA) and the
ANOVA presented in this chapter (repeated-measures ANOVA). The denominator
reflecting the error of random factors would be calculated more than once, and
different versions would be used for different F’s depending on whether the
numerator is a between-groups factor, a within-groups factor, or the interaction.
These types of designs are well represented in the behavioral and social

science literature and statistical software programs such as SPSS can be used
to analyze them.



14.7 Assumptions of the Repeated-Measures ANOVA

The assumptions for the repeated-measures ANOVA are the same as those for
the one-way and two-way ANOVA, with the exception of the second and last
assumption:

1) The samples are representative of the populations from which they come.
2) Observations within each condition are independent of one another.
3) Gathered data comes from an interval or ratio scale.
4) The populations from which the data come are normally distributed.
5) The variances of the population of difference scores are homogeneous.

The difference in the second assumption reflects the fact that the same parti-
cipants are used for each condition. This qualification to the assumption of
independence was also made for the dependent-samples t test.
The fifth assumption requires a bit more explanation.Wemay find it described

elsewhere as the assumption of sphericity. Since each participant provides a score
within each level of the independent variable, it is possible to arrange the data as
pairs of scores for any two treatments. In a study with four treatment conditions,
there would be six pairs of scores (Treatments 1 and 2; 1 and 3; 1 and 4; 2 and 3;
2 and 4; 3 and 4). By subtracting the two scores for each of the participants in
a given pair, a variance can be calculated on the difference scores. With four
treatment conditions, we would calculate six variances. It is assumed that these
variances, at the population level, are roughly equal. It is possible to test this
assumption and make corrections in the ANOVA if this assumption is violated
(see Keppel and Wickens, 2004).
Just as with the previous ANOVAs, as np increases the F test is robust

to minor violations of the last two assumptions and can be performed
even when they are not strictly met. However, gross violations of these
assumptions require the use of statistical tests (nonparametric tests),
which do not require the populations to be normally distributed with
equal variances.

14.8 Measuring Effect Size for Repeated-Measures
ANOVA

In the chapters covering the one-way and two-way ANOVA, it was empha-
sized that the size of the F ratio does not indicate the degree to which the levels
of the independent variable influence the dependent variable. The strength of
association between the independent and dependent variables, also called the
effect size, can be determined with the omega-squared, ω2, or eta-squared, η2,
statistic.
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Repeated-measures omega-squared, ω2

ϖ2 =
SSBG−df BG MSerror

SST +MSerror
(Formula 14.5)

Using the data from the hypothetical worked problem,

ϖ2 =
266 40−3 4 02
493 60 + 4 02

ϖ2 =
254 34
497 62

ϖ2 = 0 51

This statistic estimates 51% of the dependent variable variation is due to
dosage level.
Now we will look at how eta-squared measures the effect size.

Repeated-measures eta-squared, η2

η2 =
SSBG
SST

(Formula 14.6)

Using the data from the hypothetical worked problem,

η2 =
266 40
493 60

η2 = 0 54

Here again, we see that η2 seems to overestimate the effect size relative to ω2.

14.9 Locating the Source(s) of Statistical Evidence

A rejected null hypothesis in a repeated-measures design that has more than
two levels of the independent variable requires follow-up comparisons to
locate the source(s) of the statistical evidence. To remain consistent with the
preceding two chapters, Tukey’s HSD and Fisher’s LSD or protected t test
are used. The formula for Tukey’s HSD is similar to previous versions. Be sure
to see that MSerror is now used as the error term and dferror is needed to find q.
Here is the formula.

Formula for Tukey’s HSD, repeated measures

HSD= q
MSerror

n
(Formula 14.7)
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where

q = the Studentized range statistic (Table A.6)
n = the number of scores in each group

In the worked problem, there are four levels to the independent variable, but
only one HSD value is needed to make all comparisons4:

HSD= q
MSerror

n

HSD= 3 87
4 02
10

HSD= 2 45

Applying this value to the six different comparisons, we find statistical
evidence suggesting participants performed better under the 2.5 and 5mg
conditions compared with the 10mg and placebo conditions.
Fisher’s LSD test is also very similar to versions presented in previous chapters.

However, MSerror instead of MSW serves as the error term.

Formula for Fisher’s LSD, repeated measures

t =
Mi−Mj

MSerror
1
ni

+
1
nj

(Formula 14.8)

where
Mi, Mj = the means for the two groups being compared
ni, nj = the number of scores in each of the two groups being compared

The critical value is found in the t table (Table A.2). The df used to find the
critical value is taken from the MSerror term (dferror = dfw − dfBS).
In the worked problem, there are four levels to the independent variable. To

make all possible pairwise comparisons require six t tests. Only one comparison
is made to illustrate how the formula works.5

Placebo versus 5 mg

t =
Mi−Mj

MSerror
1
ni

+
1
nj

4 To find q, an online table was used. The one found in Table A.6 is incomplete.
5 The protected t test is presented in this worked problem tomaintain consistency with Chapters 12
and 13. However, when using Fisher’s LSD formore than three pairwise comparisons, the probability
of a Type I error increases.
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t =
9−5

4 02
1
10

+
1
10

t =
4

0 804
=

4
0 90

t = 4.44

The critical value in the t table that corresponds to a df of 27 is ±2.05. Since
the obtained value of 4.44 falls outside of the critical values, reject the null
hypothesis that these two means come from the same population. We would
interpret this statistically significant difference by saying that statistical evidence
has been found suggesting the mental concentration of anxious participants is
improved when they are administered 5mg of Valium compared with a pill
that they think will help their concentration (placebo).
Box 14.2 presents a study that examines the influence of physiological arousal

on olfactory sensitivity. The investigator uses a repeated-measures design by
exposing the same group of participants to three arousal conditions.

Box 14.2 The Inverted U Relationship Between Arousal and Task Performance

Most students in an introductory psychology class learn of the “inverted U”
relationship ( ) between arousal and task performance. Optimal performance
in problem solving is observed during a moderate level of arousal, with poorer
performance found during low and high levels of arousal (e.g. Obrist, 1962).
The “inverted U” relationship is an example of a curvilinear relationship because
a graph of the relationship describes a curved line. Another example of a curvilin-
ear relationship would be if the line were not drawn as , but rather, simply as a .
Halpin (1978) wondered if perhaps increasing levels of physiological arousal

would produce a curvilinear relationship with olfactory sensitivity. In other
words, are people better able to detect a smell under amoderate level of arousal
than under a low or high level of physiological arousal? To answer this question,
Halpin used a repeated-measures design.

Experimental Procedure

Thirty-six university students were exposed to each of three experimental
conditions: low, medium, and high arousal. Arousal was manipulated in the
following manner. In the Low-arousal condition, participants listened to a relax-
ation tape. In the Medium-arousal condition, participants were exposed to
loud, continuous white noise (white noise sounds like static). In the High-arousal
condition, participants heard intermittent bursts of loud, white noise and were
led to expect periodic electric shocks.
During each experimental condition, participants were presented with

an odorant of 1-propanol in distilled water. Several presentations of the odorant
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14.10 How to Present Formally the Conclusions
for a Repeated-Measures ANOVA

The proper reporting of repeated-measures ANOVA findings is similar to what is
presented in Section 12.11, regarding the reporting of one-way ANOVA findings.
When reporting a significant F, we must include the dfBG and dferror, the F value,
and the alpha level used to make our decision. For instance, “Statistical evidence
suggests the type of therapy administered influenced recovery, F(2, 14) = 13.18,
p < .05. Further analysis found evidence suggesting Therapy C performed better
than Therapy A, t(14) = 4.71, p < .05; and Therapy B, t(14) = 3.15, p < .05.
No difference was found between Therapy A and Therapy B, t(14) = 2.21, n.s.”
A failure to reject might read, “There was no statistical evidence to suggest the

were administered in each experimental condition. With each successive presen-
tation, the strength of the solution was increased. The participants were asked to
indicate at what point they could smell the substance. In this way, for each par-
ticipant, under each experimental condition, an olfactory sensitivity thresholdwas
identified and served as the dependent variable. If a curvilinear relationship holds
for arousal and olfactory sensitivity, then the lowest thresholds should be
observed when participants are experiencing a medium level of arousal. Higher
and similar thresholds should be found during low and high levels of arousal.

The dependent variable was the percentage of concentration of 1-propanol
present when the participants signaled that they detected a smell. The following
tablepresents themeanthresholds, inpercentageof concentration, for eachof the
experimental conditions. The standard deviations are also shown.Wemaywant to
drawagraphof the relationshipbetweenarousal andolfactory sensitivity todepict
the curvilinear relationship. The author conducted a repeated-measures ANOVA,
and a significant difference among the conditions was found, F(2, 70) = 8.80,
p < .05. To locate the source(s) of the statistical evidence, multiple comparisons
were conducted among the three means. The mean for the Medium-arousal
condition was significantly different from the means of both the Low- and
High-arousal conditions. No difference between the Low- and High-arousal
conditions was found. These findings allow Halpin to extend the generality of
the arousal-performance curvilinear phenomenon to olfactory perception.

Arousal

Low Medium High

M .66 .21 .60

s .008 .01 .07
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type of therapy used influenced recovery, F(2, 14) = 1.95, n.s.”Measures of effect
size can be added at the end of the sentence when appropriate.
Many other principles common to the proper reporting of all types of statistical

findings were first presented in Section 8.8. Please consult this portion of the text
for more general information about the proper reporting of statistical findings.

Summary

In a repeated-measures design, also called a within-participants design, every
participant is exposed to each of the treatment conditions. Since we can obtain
information about the effect of each treatment condition by using the same
group of participants, this type of design requires fewer participants than a
between-groups design and, as a result, is more statistically efficient. The effi-
ciency occurs because a repeated-measures design eliminates individual differ-
ences as a potential explanation for the results of the study. By using the same
participants in all conditions, this variance is logically eliminated from the
numerator of the F ratio and can be mathematically partitioned out of
the denominator. However, not all research questions lend themselves to a
within-participants design, and many methodological problems may be intro-
duced that must be addressed.
When conducting a repeated-measures ANOVA, one F ratio is produced. It

tests the null hypothesis associated with the levels of the independent variable.

H0 μ1 = μ2 = μ3 = μk

The alternative hypothesis is that at least two of the group means come from
different populations.

H1 the null hypothesis is false

The total variation of scores can be partitioned into between-group variability
and within-group variability. Between-group variability is due to treatment
effect and experimental error. Within-group variability is partitioned into var-
iability due to individual differences and variability due to experimental error,
with the variability due to individual differences removed. The repeated-
measures F ratio has the form

F =
treatment effect + experimental error

experimental error

The assumptions of the repeated-measures ANOVA are:

1) The samples are representative of the populations from which they come.
2) Observations within each condition are independent of one another.
3) Gathered data comes from an interval or ratio scale.
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4) The populations from which the data come are normally distributed.
5) The variances of the population of difference scores are homogeneous.

An F that leads to rejecting the null hypothesis does not provide direct infor-
mation about the size of the effect between the independent and dependent
variables. Omega-squared and eta-squared are statistics that estimate the effect
size. Furthermore, a rejected null hypothesis requires follow-up tests where
pairwise comparisons can be made among the cell means to locate the
source(s) of statistical evidence. Tukey’s HSD and Fisher’s LSD are two of
the procedures that can accomplish that task.

Using Microsoft® Excel and SPSS® to Run a
Repeated-Measures ANOVA

Excel

General instructions for data entry into Excel can be found in Appendix C.

Data Entry
Enter all of the scores into adjacent columns (one column per condition), with
each row assigned to a participant. For example, participant 1 will have all of
their data entered on the same row, then participant 2’s data, and so on. Label
the columns appropriately. (See Figure 14.3 for an example.)

Data Analysis
1) Excel has built-in programs for many inferential tests, including the repeated-

measures ANOVA test. To access it, click on the Data tab on the top menu
and then clickData Analysis. (Some versions of Excel have a “Tools” tab. The
Data Analysis function may be under this tab.) If this option is not found, the
Data Analysis ToolPak needs to be installed. See Excel instruction materials
for how to install this feature.

2) With the Data Analysis box open, select Anova: Two-Factor Without
Replication. (Yes, this is a confusing title for a repeated-measures ANOVA.)

3) Input the data range by dragging over the entire data set and placing those
coordinates into the Input Range box. (If we included the labels in the data
range, make sure to click the Labels box to exclude those cells.)

Participant TherapyA TherapyB TherapyC

1 12 15 16

2 14 17 18

3 14 14 16

4 12 14 16

5 8 14 20

6 9 16 17

7 13 12 21

8 12 11 15

Figure 14.3 An example of an encoded
data set in preparation for running a
repeated-measures ANOVA in Excel.
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4) Decide on anOutput option. The default is to place it on a separate worksheet.
5) Click OK.
6) The first output box will present summary data, the count, sum of all values,

means (average), and variance for all conditions. The second output box will
be an ANOVA summary table (labeled “ANOVA”) similar but not identical
to the one found in this chapter. The F of importance (between groups) is
associated with the “Columns” row. The row labeled “Rows” is the
“Between-participants” row. (Ignore the F on this row.) The ANOVA table
presented in this chapter can be fully constructed once this is realized (sim-
ply add data from the “Rows” row and the “Error” row to determine the miss-
ing “Within-groups” line.) Note also the addition of an Fcrit value. (See
Figure 14.4 for a worked example.)

SPSS

General instructions for inputting data into SPSS can be found in Appendix C.

Anova: two-factor without replication

Summary Count Sum Average Variance
1 3 43 14.33 333 4.333 333

2 3 49 16.33 333 4.333 333

3 3 44 14.66 667 1.333 333

4 3 42 14 4

5 3 42 14 36

6 3 42 14 19

7 3 46 15.33 333 24.33 333

8 3 38 12.66 667 4.333 333

TherapyA 8 94 11.75 4.785 714

TherapyB 8 113 14.125 3.839 286

TherapyC 8 139 17.375 4.553 571

ANOVA

Source of variation SS df MS F P-value F crit

Rows 24.5 7 3.5 0.723 247 0.655 321 2.764 199

Columns 127.5833 2 63.79 167 13.18 204 0.000 604 3.738 892

Error 67.75 14 4.839 286

Total 219.8333 23

Figure 14.4 A worked example using Microsoft Excel to calculate a repeated-
measures ANOVA.
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Data Entry
In SPSS, each row of the data file represents a participant. Since all samples in a
repeated-measures ANOVA have the same participants, multiple columns will
be needed to house the data. Within Variable View, create a series of variables
corresponding to the various conditions in the study. Then, go to Data View,
and input the data, be careful to keep data from each participant within a given
row. (See Figure 14.5 for an example.)

Data Analysis
1) Click Analyze on the tool bar, select General Linear Model, and then click

Repeated Measures.
2) In theWithin-Subject Factor Name box, assign a label for the independent

variable (perhaps “TherapyType” for this example). In theNumber of Levels
box, type the number of conditions present (in this example, 3), and
click Add.

3) Once this is done, the Define box at the bottom will become active. Click it.
4) Using the arrow button, move the names of the conditions we wish to

investigate into the Within-Subjects Variable box.
5) If we want to run post hoc (follow-up) tests, select the Options box. Use

the arrow button to move the independent variable label (in our example,
TherapyType) into the Display Means for box. Then click Compare Main
Effects and select the test of choice. (Tukey’s HSD is not available here.)
Then click Continue.

6) If we want to have the descriptive statistics associated with each condition
and/or effect size, click onOptions and then Descriptive and/or Estimates
of effect size, as the case may be, and then Continue.

7) The output will generate multiple tables and more if we asked for descrip-
tives, estimates of effect size, or any post hoc tests. A repeated-measures
ANOVA summary like the one presented earlier in the text can be con-
structed from the available information. Find the Tests of Within-Subjects

TherapyA TherapyB TherapyC

1 

2 

3 

4 

5 

6 

7 

8 

12 15 16

14 17 18

14 14 16

12 14 16

8 14 20

9 16 17

13 12 21

12 11 15

Figure 14.5 An example of entered data for a repeated-measures ANOVA in SPSS.
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Effects box. Assuming sphericity, we find the Sum-of-Squares, df, Mean
Square, F, and probability of F for both the Between-groups row and the
Error row. To see that the F is correct, divide the mean square of the inde-
pendent variable (TherapyType) by the Mean Square Error, and we will find
the F value presented. (The other rows in this box reflect more sophisticated
analyses designed to adjust for the violation of some assumptions. This
material goes beyond the scope of our text.) To complete the ANOVA sum-
mary table as presented in the chapter, we need to also find the Between-
participants line. Go to the Tests of Between-Subjects Effects box (usually
the very last box unless post hoc tests are run). The row labeled “Error” is
what we need. Now that we have both the Error row (from the Tests of
Within-Subjects Effects box) and Between-participants row (from the
Tests of Between-Subjects Effects box), we are able to construct fully

General linear model

Tests of within-subjects effects

Source

Type III 
sum of 
squares df

Mean 
square F Sig.

factor1 Sphericity assumed

Greenhouse-

Geisser

Huynh-Feldt

Lower bound

Error(factor1) Sphericity assumed

Greenhouse-

Geisser

Huynh-Feldt

Lower bound

127.583 2 63.792 13.182 .001

127.583 1.935 65.924 13.182 .001

127.583 2.000 63.792 13.182 .001

127.583 1.000 127.583 13.182 .008

67.750 14 4.839

67.750 13.547 5.001

67.750 14.000 4.839

67.750 7.000 9.679

Measure: MEASURE_1

Tests of between-subjects effects

Transformed variable: Average

Source

Type III 
sum of 

squares

Intercept

Error

df
Mean 

square F Sig.

4988.167 1 4988.167 1425.190 .000

24.500 7 3.500

Measure: MEASURE_1

Figure 14.6 An output table from a worked example using SPSS to calculate a repeated-
measures ANOVA.
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the table. Recall that SSW can be found by adding SSBP and SSerror and dfW can
be found by adding dfBP and dferror. Finally, SST can be found by adding SSBG
and SSW, and dfT can be found by adding dfBG and dfW. (See Figure 14.6 for a
worked example.)

Key Formulas

Computational formula for SST

SST =ΣX2−
ΣX 2

N
(Formula 14.1)

Computational formula for SSBG

SSBG =
ΣX1

2

n1
+

ΣX2
2

n2
+ +

ΣXk
2

nk
−

ΣX 2

N
(Formula 14.2)

Computational formula for SSW

SSW =ΣX2−
ΣX1

2

n1
+

ΣX2
2

n2
+ +

ΣXk
2

nk
(Formula 14.3)

Computational formula for SSBP

SSBP =
P1

2

k
+

P2
2

k
+ +

Pn
2

k
−

ΣX 2

N
(Formula 14.4)

Repeated-measures omega-squared, ω2

ϖ2 =
SSBG−df BG MSerror

SST +MSerror
(Formula 14.5)

Repeated-measures eta-squared, η2

η2 =
SSBG
SST

(Formula 14.6)

Formula for Tukey’s HSD, repeated measures

HSD= q
MSerror

n
(Formula 14.7)

Repeated-measures Fisher’s LSD

t =
Mi−Mj

MSerror
1
ni

+
1
nj

(Formula 14.8)

510 14 Repeated-Measures Analysis of Variance



Key Terms

Repeated-measures Design
Order Effects
Counterbalancing

Questions and Exercises

1 A repeated-measures ANOVA can be seen as an extension of the depend-
ent-samples t test into what situations?

2 What is the methodological difference between a repeated-measures
design and a between-groups design?

3 What are “order effects” and why are they a concern?

4 What is “counterbalancing” and how can it be helpful?

5 When should repeated-measures designs not be used?

6 In a repeated-measures design, what accounts for between-group varia-
tion, and what accounts for within-group variation?

7 How does the error term (denominator) in the F ratio differ between an
independent-groups design and a within-groups design?

8 What values comprise the F ratio for a repeated-measures ANOVA?

9 How is it that individual differences are removed from a repeated-
measures design?

10 Statistically speaking, in which of the following experimental situations
would a repeated-measures design be most advantageous compared with
a between-groups design?
a Access to many participants and large individual differences
b Access to many participants and small individual differences
c Access to few participants and large individual differences
d Access to few participants and small individual differences

11 Suppose we have access to 15 participants and we need to measure perfor-
mance across three conditions. Compare the df values if we ran a one-way
ANOVA with the df values if we ran a repeated-measures ANOVA.
Compare Fcrit values (α = .05) as well.
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12 If we add together dfBP, dferror, and dfBG – what does this equal?

13 If we conduct a repeated-measures study with 5 treatment conditions and
20 participants, what would be the df for the F ratio?

14 Suppose repeated-measures ANOVA results are reported as F(3, 24) =
4.25, p < .05. How many participants were involved in the study?

15 Fill in the missing values in the following repeated-measures ANOVA sum-
mary table. The study has three experimental conditions; five participants
are run under each condition. Use α = .05 to test the null hypothesis.

Source SS df MS F p

Between-groups 11.51

Within-groups 20

Between-participants

Error 2.30

Total

16 Complete the following repeated-measures ANOVA summary tables.
Test the F (use α = .05) to see if the null hypothesis can be rejected.
a

Source SS df MS F p

Between-groups 80 2

Within-groups

Between-participants 4

Error 2.38

Total 110

b

Source SS df MS F p

Between-groups 4

Within-groups 63.82

Between-participants 8

Error 51.42

Total 184.37
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17 A study is conducted to examine the sales performance associated with
different incentive programs. Over a one-month period, three incentive
programs are used at a local car dealership. The number of cars sold
by each salesperson, under each incentive program, is presented in the
following table.
a Summarize the results in an ANOVA summary table.
b Calculate a measure of effect size (either one), if appropriate.
c If necessary, run Tukey’s HSD tests to help clarify the findings.
d Interpret the findings.
e Are there any methodological issues that need to be addressed?

Incentive A Incentive B Incentive C

8 7 4

6 6 4

9 5 3

7 4 3

7 5 5

18 A psychologist is interested in the effects of subliminal messages on prob-
lem solving. A repeated-measures design is used. Simple arithmetic pro-
blems are presented on a computer screen; the participants are told to
work as quickly as possible. In the positive condition, the phrase “Good
Work” is flashed just below recognition threshold, every 30 seconds. In
the negative condition, the phrase “Don’t Fail” is flashed. In the control
condition, no subliminal phrase is projected. The number of problems cor-
rectly solved is presented in the following table.
a Summarize the results in an ANOVA summary table.
b Calculate a measure of effect size (either one), if appropriate.
c If necessary, run Fisher’s LSD tests to help clarify the findings.
d Interpret the findings.
e Are there any methodological issues that need to be addressed?

Positive Negative Control

45 20 30

56 18 29

59 10 24

48 15 25

19 A wine manufacturer would like to know which of three hors d’oeuvres
goes best with their white Chardonnay. Participants are asked to take a bite
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of an hors d’oeuvre, sip the wine, and provide a taste rating from 1 – atro-
cious to 10 – fantastic. Taste ratings are provided in the following table.
Test the null hypothesis when α = .05.
a Summarize the results in an ANOVA summary table.
b Calculate a measure of effect size (either one), if appropriate.
c If necessary, run Tukey’s HSD tests to help clarify the findings.
d Interpret the findings.
e Are there any methodological issues that need to be addressed?

Feta Cheese Caviar Popcorn

1 1 3

1 2 4

2 2 6

2 3 5

1 3 6

20 We observe that people seem to be happier when they are wearing a new
article of clothing. We would also like to test whether level of happiness
depends on the particular type of new clothing worn. To test this, we pro-
vide a random sample of five of our classmates with new T-shirts and new
shoes and instruct them to wear each article of new clothing for one day
and to wear only one new article each day. Order of wearing the articles is
counterbalanced across participants. At the end of the day, we ask these
participants to rate, on a 10-point scale, how happy they are. On another
day, when they are not wearing a new article of clothing, we also ask for a
happiness rating. Ratings for each participant are reported below. Higher
scores indicate greater happiness.
a Summarize the results in an ANOVA summary table.
b Calculate a measure of effect size (either one), if appropriate.
c If necessary, run Fisher’s LSD tests to help clarify the findings.
d Interpret the findings.
e Are there any methodological issues that need to be addressed?

New T-shirt New Shoes Control

6 8 4

6 7 6

7 9 5

5 7 3

8 10 5
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21 A psychologist is interested in the effects of distraction on pain tolerance.
Three different slide shows, varying in distraction, are projected on a
screen while participants have their hands immersed in ice-cold water.
A 20 minute interval is used between experimental conditions to allow
participants to recover from the preceding hand immersion. The number
of seconds participants kept their hands in the water is presented in the
following table.
a Summarize the results in an ANOVA summary table.
b Calculate a measure of effect size (either one), if appropriate.
c If necessary, run Fisher’s LSD tests to help clarify the findings.
d Interpret the findings.
e Are there any methodological issues that need to be addressed?

Distraction

Low Medium High

56 32 120

76 65 90

60 55 69

72 70 100

50 57 111

Computer Work

22 An educational psychologist is interested in comparing three visual scan-
ning techniques on reading speed. The reading speeds of six participants
are recorded (in seconds) after training in each technique. Conduct a
repeated-measures ANOVA on the following data.
a Summarize the results in an ANOVA summary table.
b Calculate a measure of effect size (either one), if appropriate.
c If necessary, run Fisher’s LSD tests to help clarify the findings.
d Interpret the findings.
e Are there any methodological issues that need to be addressed?

Participant Technique A Technique B Technique C

P1 450 250 500

P2 426 300 456

P3 399 170 300

(Continued)
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Participant Technique A Technique B Technique C

P4 400 227 310

P5 420 225 250

P6 350 270 350

23 Where students studymay be as important as howmuch they study. Study-
ing regularly in a quiet setting may lead to a different performance than
studying regularly in a noisy setting or studying different locations on dif-
ferent days. To study this, a random sample of six introductory psychology
students was asked to study their psychology material for one hour every
day, first in a special quiet room in the university library, next in the dining
hall, and last rotating among a classroom, dorm room, the quad, dining
hall, and library quiet room. Students spent two weeks in each condition.
They were tested with a 25-point quiz at the end of each treatment con-
dition. Order of presentation of study environments was counterbalanced
across participants. Individual test scores are listed below. Conduct a
repeated-measures ANOVA on the following data.
a Summarize the results in an ANOVA summary table.
b Calculate a measure of effect size (either one), if appropriate.
c If necessary, run Tukey’s HSD tests to help clarify the findings.
d Interpret the findings.
e Are there any methodological issues that need to be addressed?

Participant Quiet Room Dining Hall Various Sites

P1 12 10 9

P2 20 16 18

P3 19 16 20

P4 25 20 22

P5 18 15 13

P6 14 10 14

24 Dion, Berscheid, and Walster (1972) examined the stereotypes we hold
about attractive people. Participants looked at three types of photographs:
one of a physically attractive person, one of a person of average attractive-
ness, and a photograph of an unattractive person. Participants supplied rat-
ings along various dimensions, including occupational success, marital and
parental competence, happiness, and their social desirability as a person.
Even though the photographs were of people unknown to the participants,

(Continued)
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attractive people were viewed as superior to unattractive people, whether
the target person was a biological male or a biological female. The follow-
ing data set is hypothetical, providing scores for the social desirability of
the person’s personality. Higher scores reflect greater social desirability.
The scores have been generated so that the results of our analysis will
be consistent with those of the authors. Set alpha at .05, and test the null
hypothesis that there is no difference in ratings among the three
conditions.

Participant

Target Person

Unattractive Average Attractive

P1 35 60 65

P2 39 59 74

P3 45 59 47

P4 50 45 65

P5 30 58 72

P6 37 56 74

P7 50 59 69

P8 44 63 55

P9 59 60 49

P10 65 49 57

P11 51 58 65

P12 49 48 62

P13 47 47 67

P14 53 48 66

P15 36 43 59

P16 39 57 70

25 A social psychologist is interested in the stereotyping of masculinity among
biological females. Fifteen biological females examine three pictures of bio-
logical males and provide ratings on how likely the target person is to
achieve success in the corporate world (1 – very unlikely to 10 – very
likely). In the traditional condition, a biological male is pictured possessing
the traditional physical characteristics of masculinity (e.g. broad jaw, some
facial hair). In the nontraditional condition, participants view a biological
male with softer facial features and even some basic makeup to cover facial
blemishes. In the control condition, the target person has both traditional
and nontraditional facial characteristics. Conduct a repeated-measures
ANOVA. Perform pairwise comparisons using Fisher’s LSD, if warranted.

Questions and Exercises 517



Participant Traditional Nontraditional Control

P1 10 7 8

P2 9 4 7

P3 7 3 4

P4 8 6 5

P5 6 3 6

P6 9 2 4

P7 10 6 7

P8 5 10 7

P9 3 5 10

P10 4 4 4

P11 8 3 6

P12 7 2 3

P13 2 8 6

P14 9 3 5

P15 7 1 3

26 A relatively recent research topic concerns the effect of electronic ped-
ometers on health (e.g. Jackson & Howton, 2008). Below are constructed
data from 10 participants who were given a pedometer and told to record
the number of steps they took in a week. The study lasted 12 weeks. Data
from weeks 1, 6, and 12 are below. Conduct a repeated-measures ANOVA.
Use Fisher’s LSD to perform follow-up comparisons if warranted.

Number of Steps (×1000)

Participant

Week

1 6 12

1 6 7 8

2 3 4 7

3 6 3 6

4 1 6 5

5 1 5 6

6 5 8 9

7 4 6 8

8 5 10 7

9 3 5 10

10 4 7 5
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27 Busseri, Choma, and Sadava (2009) compared optimists with pessimists for
Past, Present, and Future life satisfaction judgments regarding their own
life experience. Not surprisingly, pessimists were less satisfied with their
current life experiences compared with optimists; however, although both
sets of people expected brighter futures, pessimists did so even more
than optimists. What if we wanted to use a different personality character-
istic to explore life satisfaction for the Past, Present, and Future? Another
interesting personality trait that might have a bearing on perceptions of
life experiences would be the introvert/extrovert dimension. Suppose
we take 8 extreme extroverts and ask them to answer questions about
past, present, and projected future life satisfaction (higher scores
reflect greater life satisfaction). Below are constructed data. Conduct a
repeated-measures ANOVA. Use Fisher’s LSD to perform follow-up com-
parisons if warranted.

Participant

Life Satisfaction

Past Present Future

1 17 17 18

2 13 11 19

3 7 14 16

4 15 8 11

5 18 7 14

6 8 15 15

7 9 10 19

8 15 12 15
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Part 5 Review

Analyses of Variance

Review of Concepts Presented in Part 5

The purpose of this brief review section is to revisit both the similar concepts
that hold Chapters 12–14 together and the concepts that distinguish them one
from another. First let us look at the similarities. All three of the statistical tests
presented in these chapters (one-way ANOVA, two-way ANOVA, repeated-
measures ANOVA) are grounded on the same basic logic. That is, each one
is designed to test a null hypothesis of no difference between population means
by comparing a measure of variance between the samples based on primary
variance (or “treatment effect”) and random factors with another measure of
variance within the samples based merely on random factors alone. This com-
parison is done in ratio form such that if there is no primary variance present,
the measures of variance due to random factors should roughly equate, yielding
a resultant value close to 1. If, however, primary variance is present, the resulting
ratio will increase corresponding to the amount of primary variance present.
The statistic generated in all ANOVAs is an F (named for Sir Ronald Fisher).
As with the t tests presented earlier, a table of critical values based on null
distributions of various design forms can be found in Table A.5. If the observed
F equals or exceeds the critical F, statistical evidence has been found suggesting
the null hypothesis of no differences between population means is false.
(Of course, the cautiousness associated with drawing probabilistic conclusions
presented in previous chapters holds true for these decisions as well.)
Another point of similarity between the chapters concerns what can be done if

an overall null hypothesis is rejected. In all three chapters we are introduced to
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two different ways to estimate the size of an effect (using omega-squared, ω2, or
eta-squared, η2). The formulas vary slightly depending on the features of the
design, but each one creates a ratio comparing a measure of the amount of pri-
mary variance with a measure of the amount of the total variance in the system.
Additionally, in an effort to locate the source(s) of statistical evidence, all three
ANOVAs introduce tools for the comparison of means between pairs of cells,
namely, Tukey’s HSD and Fisher’s LSD. (A proper discussion exploring which
post hoc tools should be used in which situation is beyond the scope of this
resource. As a result, Tukey’s HSD and Fisher’s LSD are introduced as two
general-purpose comparison tools.) Once again, the formulas between the
three chapters vary slightly depending on the design form, but each one allows
the investigator to see if the mean difference between any two cell means is large
enough to suggest a difference at the population level. Since numerous tests
can be run in designs with 3 or more cell means, the tests selected are conserv-
ative to keep the accumulated alpha value low.
The differences between the ANOVA stem from the number of factors used

and the way participants are assigned to conditions. Both the one-way and
repeated-measures ANOVA make use of only one factor. Each one can accom-
modate numerous conditions, but these conditions must vary across a single
dimension. The two-way ANOVA is used for designs where two factors are
being used. Because of this, two different types of effects have been introduced:
main effects and interactions. A main effect is an effect due to the action of only
one factor. The main effect for a given factor can be imagined by collapsing
across the conditions of the other factor. The main effect for therapy style,
for example, does not take into account that participants are also given one
of two different medicines. This second condition is collapsed, and all that mat-
ters for the main effect for therapy style is a difference in the dependent measure
between the various therapy conditions. Of course, the main effect for medi-
cines investigates dependent measure differences based onmedicinal condition,
regardless of the therapy type individuals are receiving. Since two-way designs
have two factors, there are two potential main effects for each two-way factorial
design. The interaction is the effect caused by the combination of factors and
not reducible to either main effect. This effect is considered a higher-order
effect than main effects and must be prioritized in terms of analysis, if present.
One-way and repeated-measures ANOVAs, although both dealing with sin-

gle-factor designs, are distinguished by the way participants are assigned to the
various conditions. One-way ANOVAs are used to analyze between-group (or
independent-group) designs; each participant is assigned to one condition and
measured only once. Repeated-measures ANOVAs are used to measure within-
group (or repeated-measures) designs; each participant is exposed to each level
of the factor (usually an independent variable because these designs are usually
experimental). Because of this difference, the numerator in a repeated-measures
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F ratio does not include variance due to individual differences; they are logically
eliminated when each condition is comprised of the same participants. To
restore the logic of the F ratio, the variance due to individual differences needs
to be partitioned out of the denominator. In the end, this creates a more statis-
tically efficient mechanism for detecting the presence of primary variance; it is a
more statistically powerful test than the one-way ANOVA.
The problems with the repeated-measures design are methodological and

surround the issue of repeatedly measuring a participant. Confounding vari-
ance can easily be introduced if carryover effects from these repeated expo-
sures to the dependent measure are not controlled. Also, some treatment
types are irreversible, or if not irreversible, leave long-lasting effects on the
participants. Research situations using these types of variables make
repeated-measures designs inappropriate to use. However, if the methodolog-
ical issues can be appropriately addressed, the statistical advantage of
increased power that is gained when using a repeated-measures ANOVA
can be rather dramatic.
Since real-world research problems do not come with a label informing the

researcher of which test to use for analysis, it is important for us to work on
our diagnostic skills. Understandably, the exercises at the end of each particular
chapter require use of only the tests found and studied within that chapter for
solution. They are designed for us to gain familiarity with using the tools just
described in that chapter to solve a statistical problem. They are not designed
to challenge our diagnostic skills (i.e. knowing which test to use for a given sit-
uation). However, the following review section has been created to help us
develop these skills.
The exercises below will help us review the statistical differences between the

various ANOVAs introduced in Chapters 12–14 and the t tests introduced in
the preceding chapters. The hypothesis testing exercises will not identify which
test is appropriate for the described scenario. We will need to use the available
information presented in the exercise to make that determination. (Note: Most
of the exercises below can be solved either with or without the use of statistical
software.)

Questions and Exercises

1 Which pairs of tests theoretically fit together well (more than one can be
selected)? Why?
a Single-sample t test; one-way ANOVA.
b Single-sample t test; two-way ANOVA.
c Independent-samples t test; one-way ANOVA.
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d Independent-samples t test; repeated-measures ANOVA.
e Dependent-samples t test; two-way ANOVA.
f Dependent-samples t test; repeated-measures ANOVA.

2 For designs with only two cells (either independent groups or repeated mea-
sures), is there an advantage of one type of analysis over another (i.e. a t test
compared with an ANOVA)?

3 Which two types of ANOVAs presented in this text are needed to under-
stand the term “mixed design”?

4 A clinical psychologist who works with alcoholics is interested in the effects
of therapy and medication in preventing relapse. Sixteen patients at an out-
patient treatment center volunteer to participate in a study. Participants are
randomly assigned to either a “talk” therapy or “relaxation” therapy condi-
tion and to one of two medication conditions, receiving either imipramine
(an antidepressant) or vitamin B1. Total alcohol-free days in a one-month
period are used as the dependent measure. Individual data are presented
below. Select and run the appropriate statistical analysis and provide a gen-
eral interpretation of the findings.

Talk therapy Relaxation therapy

Imipramine Vitamin B1 Imipramine Vitamin B1

28 8 18 11

21 9 18 9

20 13 11 8

27 12 16 10

5 A friend wants to see if a background color influences unconscious percep-
tions of biological female attractiveness for biological males. Our friend has
biological male participants that look at a series of 200 pictures of indivi-
duals; many different types of backgrounds are used. Unbeknown to the par-
ticipants, the picture of one individual is repeated in the series, once with a
red background (believing this color to be unconsciously associated with
sexuality) and once with an off-white background. The dependent variable
is the amount of time (in seconds) the participants look at the target images
before moving on to the next one. The presentation order of the two images
is counterbalanced across the participants. The gathered data are presented
below. Select and run the appropriate statistical analysis and provide a gen-
eral interpretation of the findings.
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Background color

Red Off-white

P1 4.3 3.5

P2 2.0 2.0

P3 2.7 2.2

P4 3.4 3.0

P5 3.9 3.3

P6 5.1 5.1

P7 1.8 1.5

6 Another friend does not believe that the effect found in Exercise #5 is due to
the supposed sexual nature of the color red but rather to the fact that it is
bright in comparison to the boring off-white color. This friend constructs
another similar study but this time introducing a bright green background
as well. So, now one particular individual is shown three times, once each
with a red, green, and off-white background. Counterbalancing is once again
used. The data follow. Select and run the appropriate statistical analysis and
provide a general interpretation of the findings.

Background color

Red Green Off-white

P1 4.6 4.4 3.5

P2 2.5 2.2 2.0

P3 1.5 1.1 1.2

P4 4.4 4.2 3.4

P5 2.7 2.9 2.3

P6 4.1 4.0 4.1

P7 5.0 3.9 3.5

7 A preschool teacher would like to make sure students rest during quiet
time. The teacher wonders if the children will relax more quickly if a
story is read to them, soft music is played, or they drink a glass of milk.
Children are randomly assigned to one of three treatment conditions. For
one week, the teacher records the average number of minutes it takes
each child to fall asleep. The data are shown below. Select and run the
appropriate statistical analysis and provide a general interpretation of
the findings.

Part 5 Review 525



Sleep inducer

Story Music Milk

6 4 2

6 8 6

9 7 5

8 6 4

8 10 7

10 6 5

12 5 3

8 Where students study may be as important as how much they study. Study-
ing regularly in a quiet setting may lead to a different performance than
studying regularly in a noisy setting or studying different locations on dif-
ferent days. To study this, a random sample of 18 introductory psychology
students was asked to study their psychology material for one hour every
day, some in a special quiet room in the university library, some in the dining
hall, and some rotating among a classroom, dorm room, dining hall,
and library quiet room. Students spent two weeks studying in this manner.
They were tested with a 25-point quiz at the end of the two weeks. Individual
test scores are listed below. Select and run the appropriate statistical analysis
and provide a general interpretation of the findings.

Quiet room Dining hall Various sites

12 10 9

20 16 18

19 16 20

25 20 22

18 15 13

14 10 14

9 A frequently pondered topic of many university students concerns the broad
area of gender differences. Suppose, in particular, we are interested in
exploring differences in preparation time for a formal social gathering
(e.g. a campus dance). Timing devices are randomly given to 15 classmates.
They are asked to start the device when they begin to get themselves ready
for the dance and to stop the device when they are ready to leave their dorm
room. The times, in minutes, are recorded below. Select and run the appro-
priate statistical analysis and provide a general interpretation of the findings.
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Time Stated gender

14 M

35 F

17 M

28 M

20 F

7 M

22 F

38 F

21 M

33 M

19 M

27 F

24 F

30 F

22 M

10 An instructor of a creative writing course wonders if there are changes in
creativity due to the weather, specifically the outdoor temperatures. Since
the instructor teaches a yearlong course, there is an opportunity to sample
poems written by students in hot, warm, and cold weather. The works of
seven students are randomly selected and rated by other professors for
their creativity. The average of those ratings is presented in the table below.
Select and run the appropriate statistical analysis and provide a general
interpretation of the findings.

Outdoor temperature

Warm Hot Cold

P1 2 4 6

P2 5 3 6

P3 4 7 8

P4 8 7 9

P5 3 4 10

P6 8 6 5

P7 7 8 9
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11 Over the years much research has been conducted on the psychology of
negotiations (see Loschelder, Swaab, Trötschel, and Galinsky (2014) for
a recent example). A couple variables of particular interest to many
researchers are the first mover (i.e. whether the seller or buyer initially
states the conditions of transaction) and the biological sex of the seller.
In this experiment a raffle ticket for a new mountain bike is initially gifted
to each participant. An acquaintance of the researcher who is ignorant of
the hypothesis and is only told to buy back each ticket using as little money
as possible, then, engages in a negotiation with each participant to buy back
the ticket prior to the raffle. In one condition the participant (seller) is told
to make the opening bid; in another condition the buyer is asked to make
the opening bid. The biological sex of the seller is also noted. The data are
presented below. Select and run the appropriate statistical analysis and
provide a general interpretation of the findings.

Biological sex

First mover

Male Female

Seller

$8.50 $6.25

$6.00 $2.75

$4.50 $4.00

$3.75 $2.25

Buyer

$4.75 $2.75

$5.00 $5.00

$6.75 $3.00

$3.50 $1.75
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15

Linear Correlation

15.1 The Research Context

This chapter discusses correlational analysis. A correlation coefficient is a
measure of the strength of association between two variables. A correlation
coefficient can range from −1 to +1. The larger the absolute value of the corre-
lation, the stronger the association between two variables. Measuring the
strength of association between two variables has a very broad and useful func-
tion for scientific investigations. In this chapter, the focus is on the use of cor-
relations in the behavioral and social sciences, especially psychology. Keep in
mind, however, that correlations can be computed to answer questions from
many different fields including economics (is there a relationship between gross
national product and the value of the dollar?), meteorology (is there a correla-
tion between rainfall and number of trees per acre of land?), sociology (is there a
correlation between household incomes and religiosity?), and medical epidemi-
ology (is there a relationship between the size of the local deer population and
the incidence of Lyme disease?).
In psychology, correlational analyses are often applied to two attributes or an

attribute and an overt behavior. Two scores are obtained from each participant.
Together, the two scores define a pair of scores. The distribution of pairs of
scores is called a bivariate distribution (bimeaning two, variatemeaning var-
iable). IQ and academic performance, anxiety and fine motor movements,
depression, and self-reinforcement are all examples of bivariate data for which
correlations have been found. This chapter addresses the application of a cor-
relational analysis to data measured on an interval or ratio scale. Chapter 18 dis-
cusses two other correlational analyses to be used when data come from an
ordinal or even a nominal scale.
The statistical methods for calculating the correlation were invented by Sir

Francis Galton (1822–1911). However, the precise formula for the statistic
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discussed in this chapter was derived by Karl Pearson (1857–1936) and is called,
more formally, the Pearson product-moment correlation coefficient. (See
Spotlight 15.1 for more information about Karl Pearson.) The Pearson r is
the most powerful and most frequently used version of the correlation measure.
The Pearson r relies on the same statistical and methodological assumptions as
the independent-samples t test, when applied to both variables, namely, repre-
sentativeness, independent observations, interval or ratio scale of measurement,
and normality. All sample correlation coefficients are symbolized using r; all
population correlation coefficient are symbolized using ρ (rho).

Spotlight 15.1 Karl Pearson

Karl Pearson was born in London in 1857, two years before Darwin published
Origin of Species, a work that would shape Pearson’s entire academic life. It is
reasonable to consider Pearson the father of modern statistics. Pearson com-
pleted the work on correlation that Galton had started, arriving at the coeffi-
cient that bears his name (the Pearson product-moment correlation
coefficient). He subsequently devised formulas for computing correlations for
variables that are noncontinuous (see Chapter 18). Pearson is responsible for
many of the concepts and statistical terms that were introduced earlier in this
book: the histogram, mode, and standard deviation. He also invented the
chi-square test (see Chapter 17).
Karl Pearson believed himself to have been a careful thinker from the begin-

ning of his life. He claimed his earliest memory has him sitting in a high chair,
sucking his thumb when someone urged him to stop, so his thumb would not
wither away. Upon examining both thumbs he thought, “I can’t see that the
thumb I suck is any smaller than the other; I wonder if she could be lying to
me” (Walker, 1968, p. 497).
Pearson’s abiding belief in the importance of observation, if not his rejection

of authority, guided his lifelong pursuit: the development of mathematical tools
that could be used to test the theory of Darwinian evolution. Over his lifetime,
he published more than 500 works. When asked how he found the time to pub-
lish so much, he offered, “You Americans would not understand, but I never
answer a telephone or attend a committee meeting” (Stouffer, 1958, p. 25).
After earning a degree in mathematics at King’s College, Cambridge, Pearson

studied law and subsequently established a private practice for three years. In
1884, he abandoned law, became a professor of mathematics at University
College London, and began his illustrious career. The first major influence on
Pearson’s thinking was a book published by Sir Francis Galton, Natural Inherit-
ance. Although Pearson was never a formal student of Galton’s, he became his
disciple and defender. Pearson was looking for a model of semi-determinism as
an alternative to what he believed was the biological sciences’ rigid adherence
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to causality. He found this semi-determinism in the concept of the correlation.
For Pearson, the correlation represented a fundamental paradigm shift, which,
he believed, would revolutionize the biological and the social sciences.
Researchers could use the correlation as an important measure of the “degree
of relatedness” between two variables without having the strict determinist’s
burden of claiming causality. In 1896, Pearson introduced the formula that
we now use to compute the correlation between two continuous measures.
[As an historical aside, the Pearson formula was actually first published a year
earlier by Yule (1895), a student of Pearson’s who gave his mentor full credit for
the formula.]

Pearson was a product of his times. Darwin’s ideas about the fundamental
principles that guide evolution, namely, heredity, variation, and natural selec-
tion, influenced the thinking of many scholars. Galton had introduced the term
eugenics and started the eugenics movement, which was dedicated to improv-
ing the human race through selective breeding. This was a period of time when
many scientists believed nature (heredity) to be far more important than nur-
ture (environment) in determining personal qualities (like temperament, intel-
ligence, personality, and even one’s moral proclivities). Indeed, Pearson
developed formulas for correlation coefficients appropriate for noncontinuous
measures in his attempt to show that “…the degree of resemblance of the phys-
ical and mental characteristics in children is one and the same” (Pearson, 1903,
p. 203). He became a strong advocate for eugenical action. Pearson could be
quite accurately described as a Social Darwinist, an imperialist, nationalist,
and a racist (Grosskurth, 1980). For instance, he believed that war was necessary
to eliminate “inferior stock.” He also opposed legislation to aid the oppressed.
According to Pearson, “No degenerate and feeble stock will ever be converted
into healthy and sound stock by the accumulated effects of education, good
laws, and sanitary surroundings” (Semmel, 1958). Unfortunately, his nationalis-
tic and racist beliefs even influenced his scientific conclusions (e.g. Delzell &
Poliak, 2013). Several of his research projects serve as an example of how per-
sonal bias and preconceived notions can influence the methods used and even
the conclusions drawn from scientific investigations (see Box 2.3).

The eugenics movement was birthed in England, came of age in the United
States (where forced sterilization, marriage restrictions, and eugenical segrega-
tion policies were legalized to varying degrees across the country), and was
adopted as national policy in Nazi Germany (e.g. Kühl, 1994). The death of mil-
lions of physically, mentally, racially, and socially “inferior” people was the result.

Pearson died in 1936, just before the outbreak of World War II. Moving for-
ward we must take only the best of Karl Pearson, namely, his insistence on
the importance of quantifying social phenomena and the numerous correla-
tional techniques he developed to achieve this goal. Additionally, we can rec-
ognize that his vision to accomplish a paradigm shift in the social sciences has
led to many innovative, multivariate methods that bridge the gap between
experimental and correlational designs.
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The correlation coefficient is a measure that reflects the degree to which two
variables are associated. However, it cannot be inferred from a mere associa-
tion that a causal relationship in either direction exists between the two vari-
ables. For example, psychologists know that depressed persons are less likely
to reward themselves for achieving a goal. However, this could be because
depression leads to reward minimization (A causing B), minimizing rewards
leads to depression (B causing A), or some third variable is responsible for
both depression and a low rate of self-reward (C causing both A and B).
The methodological context within which the correlation between two
variables is found determines the most reasonable interpretation of the
correlation.1

The Distinction Between a Correlational Design
and the Correlation Coefficient

We have probably heard the motto “correlation does not imply causation.” This
phrase can be misleading if we do not keep in mind the difference between how
data are collected and the statistical analysis used to interpret the data. If we
conduct a study in which the researcher manipulates one variable and the other
is observed and measured, the study is called an experiment. Under these con-
ditions, we may be warranted in making causal statements about the relation-
ship between independent and dependent variables, even if we use the
correlation statistic for analysis. If we conduct a study and do not exert control
over an independent variable, then we are using a correlational design, and a
causal analysis is inappropriate. Whether causal language can be used to explain
a relationship is entirely determined by the nature of the research design, not the
statistical analysis. A much better motto would be, “correlational design does
not imply causation.” The following examples remind us of the difference
between a correlational design and an experiment.
Some people believe that a person’s mood is affected by the temperature out-

side. Suppose we tested this hypothesis by recording the daily temperature and
obtaining mood ratings every day from several people. After analyzing the data,
we discover that more positive mood ratings are associated with warmer tem-
peratures. Is there a causal connection? Well, obviously mood did not affect the
weather; so must it be that the changes in temperature directly caused the
changes in mood? Not necessarily. It could be that when it is cold, people do
not socialize as often; their mood is depressed due to the loss of social contact.
In other words, a third variable (socializing) may account for the observed rela-
tionship between temperature and mood.

1 For review, please go back and read Section 1.6.
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If we wanted to determine if there is a direct, causal relationship between tem-
perature and mood, we would have to find a way to systematically manipulate
the temperature, control for socialization, and then examine its effect on mood.
Perhaps we could alter the temperature in a room, holding all other conditions
constant (including socialization), and then see if the relationship between tem-
perature and mood holds. Now the design is experimental and a causal inter-
pretation is allowed.
Suppose we want to test the hypothesis that anxious individuals finish their

exams faster than calm individuals. Based on a standard assessment technique,
we classify everyone in the class as either anxious or calm.Without the students’
knowledge, we time how long it takes each student to complete their exam. We
then analyze the data by conducting a t test between the time-to-completion
means of the two groups. Even though we have used a t test, an analysis that
is usually associated with an experiment, can we make a causal statement?
No, because we have not manipulated any variables. Whenever a participant
variable is used to create groups (e.g. personality trait, biological sex, psychiatric
diagnosis), the design is correlational (see Chapter 1 for a discussion of partic-
ipant variables).
It is true that correlational designs often use a correlation coefficient (r) for

analysis and experiments often use t tests and F tests for analysis. However,
this is not always the case. For example, suppose we are interested in under-
standing the relationship between the use of practice imagery and bowling
proficiency. To do this, we randomly assign participants to various amounts
of imagery practice time where they visualize themselves using proper bowling
form. Subsequently, bowling scores are recorded. In this situation, a correla-
tional analysis could be used to identify the strength of association between
the amount of time visualizing proper bowling form and bowling scores. If
we found a strong correlation between these two variables, could we state that
the visualization technique caused an increase in bowling performance? Yes,
because we manipulated an independent variable. We directed participants to
practice imagery for differing stretches of time. In this context, we would be
justified in connecting correlation and causation. The basis for making causal
statements never resides with the type of statistical analysis, but rather with
the methodology used to collect the data.2 Cronbach (1967, p. 27) offers a
nice metaphorical distinction between the experimental and correlation
approaches, “… the experimentalist [is] an expert puppeteer, able to keep
untangled the strands to half-a-dozen independent variables. The correla-
tional psychologist is a mere observer of a play where Nature pulls a thousand
strings.”

2 For an introductory yet in-depth treatment of the use of correlational techniques as applied to
experimental designs, refer to Keppel and Zedeck (1989).
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15.2 The Correlation Coefficient and Scatter Diagrams

This section addresses the statistical aspects of correlation and hypothesis test-
ing. Recall that a correlation coefficient is represented by a number that ranges
from −1 to +1; the higher the coefficient’s absolute value, the stronger the asso-
ciation between the two variables. An r of −.80 reflects an association as strong
as an r of +.80. A correlation of 0 reflects no relationship between the two vari-
ables. If higher values of one variable are associated with higher values of the
other variable (as with IQ and academic performance), the correlation is said
to be positive. If higher values of one variable are associated with lower values
of the second variable, the correlation is said to be negative. For instance, edu-
cational achievement and number of children are negatively correlated. That is,
the more educated a person is, the fewer children they tend to have.3

Chapter 2 showed a few ways in which a distribution of scores can be dis-
played. For instance, polygons and histograms are common ways of displaying
data from a univariate distribution. When a bivariate distribution is plotted on a
graph, it is called a scatter plot (or scatter diagram). Consider a study in which a
child psychologist is interested in developing a measure of aggression (see
Box 15.1 for more information on scale development). A rating scale is given
to each of the ten children in a third-grade class; they are asked to rate the
aggressiveness of their peers (on a scale from 1, not aggressive at all, to 10,
extremely aggressive). To ascertain if the perceptions of aggression measured
by the rating scale correspond to observed aggression, the psychologist con-
ducts behavioral observations of interactions among the children during recess.
In Table 15.1, the X column lists the average peer ratings gathered for each of
the 10 children in the class. The Y column lists the number of observed
instances of aggression, over three days, for each child. The designation of
the X and Y variables is arbitrary. The X scores for all the children constitute
one univariate distribution, and the Y scores constitute another univariate dis-
tribution. Since 2 scores are recorded for each child (peer ratings and behavioral
observations), the 10 pairs of scores define 1 bivariate distribution.
The bivariate distribution can be represented visually by plotting each parti-

cipant’s X and Y score on a graph. For this data set, there are 10 points; each
point corresponds to a participant’s X and Y score. Figure 15.1 is the scatter plot
of the data in Table 15.1.
To draw a scatter plot, place the X variable on the horizontal axis and the Y

variable on the vertical axis. To plot the data point for participant 1’s score, fol-
low the X axis to the number 8. Imagine a line drawn vertically, parallel to the Y
axis. Now locate the participant’s Y score along the Y axis. The Y score for par-
ticipant 1 is 14. Imagine drawing a horizontal line, parallel to the X axis.

3 This observation, by the way, frustrated many eugenicists (e.g. Riddle, 1947).
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Table 15.1 Hypothetical data depicting peer ratings of aggression (X)
and observed aggression (Y).

Peer ratings of aggression: X Observed aggression: Y

P1 8 14

P2 10 12

P3 4 9

P4 1 4

P5 5 11

P6 6 10

P7 3 1

P8 9 12

P9 7 10

P10 2 4
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P1: (8, 14)

Figure 15.1 The scatter plot of the data from Table 15.1.
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Where the two imaginary lines intersect is where we plot the participant’s data
point. As Figure 15.1 is examined, make sure that all the pairs of scores in
Table 15.1 have been accurately plotted.

Interpreting the Scatter Diagram

The scatter plot provides a wealth of information about the relationship
between two variables. Figure 15.2 shows the scatter plot diagrams for several
correlations. The magnitude of the correlation can be estimated by looking at
the general shape formed by the data points. The more narrow the width of the
oval enveloping the data, the stronger the correlation. The more the data take
the shape of a circle, the weaker the correlation. Compare the correlation of +.70

y

x

y

y y

x

x x

(a) (b)

(c) (d)

r = + .70 r = – .70

r = + .40 r = 0

Figure 15.2 Several scatter diagrams that depict the magnitude and direction of the
correlation. (a) is a strong positive correlation; (b) is a strong negative correlation; (c) is a weak
positive correlation; and (d) reflects no correlation.
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in Figure 15.2a with the correlation of +.40 in Figure 15.2c. Figure 15.2d illus-
trates a plot of unrelated variables.
Not only does the scatter plot indicate the strength of association between X

and Y, but also it reveals the direction of the correlation. If the oval containing
the majority of the points slopes from the lower left to the upper right, the cor-
relation is positive. As the X scores tend to have higher values, the Y scores are
apt to be larger (see Figure 15.2a and c). If the plot slopes from the upper left to
the lower right, then the correlation is negative. As the value of the X score
increases, the value of the Y score tends to decrease (see Figure 15.2b). Please
note that the degree of the slope (e.g. gradual versus steep) is not indicative of
the strength of the correlation. The scatter plots of two correlations of the same
magnitude, but with different signs, are shown in Figure 15.2a and b.

Linear and Nonlinear Correlations

The scatter diagram provides a graphic representation of the relationship
between the distributions of both variables. Viewing the plot’s approximate
shape allows us to make a crude estimate of the strength of association of
the variables. However, a researcher would never report a correlation merely
based on looking at the shape and direction of the oval. So why construct a scat-
ter plot? Well, a visual analysis can be very helpful, especially for detecting non-
linear relationships.
In the examples of correlations provided so far, the higher values of one var-

iable are associated with higher values of the second variable (positive correla-
tion), or the higher values of one variable are associated with lower values of the
second variable (negative correlation). Whether the correlation is positive or
negative, the scatter plots illustrated in Figure 15.2(a–c) show linear relation-
ships between X and Y. When X and Y have a linear relationship, the correlation
is called a linear correlation. In a linear relationship, each time the value of one
variable increases, the value of the other variable shows a constant change. In
other words, the relationship between X and Y can be represented by a straight
line, thus the term “linear.” On the other hand, what if we observed that lower
scores onXwere associated with lower scores on Y,medium X scores were asso-
ciated with medium Y scores, but higher X scores were found to be associated
with lower Y scores? (See Figure 15.3.) If we were shown a scatter plot of the left
half of this bivariate distribution, we would estimate a positive correlation. How-
ever, we would assume a negative correlation between X and Y if only the right
portion of the distribution were illustrated. Figure 15.3 depicts the overall relation-
ship between arousal and task performance. In this example, the data are
distributed like an arch ( ). The variables are obviously associated (notice the nar-
rowness of the arch), but any straight line will fail to capture this association. This
is an example of a curvilinear relationship. How would we interpret the curvi-
linear relationship between arousal and performance, depicted in Figure 15.3?
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Given a certain level of task difficulty, performance is optimal when the person
performing a task is experiencing a moderate level of arousal. A low or high level
of arousal is associated with poor performance.
The formulas for calculating a linear correlation are different from those used

to calculate a curvilinear correlation. In fact, if a linear formula were applied to
the data of Figure 15.3, the correlation would be close to 0, suggesting no asso-
ciation between performance and arousal. However, by viewing the scatter plot,
we can see that in actuality, there is a strong correlation between the variables.
Indeed, we should always inspect the scatter plot of our data before we interpret
the correlation coefficient. If the plot shows an arch or an “s” shape, the formula
for a linear correlation should not be used. This chapter only addresses linear
correlation since it is the most common type of correlated relationship (and the
easiest to compute). Consult an advanced statistics resource to understand the
analysis of curvilinear relationships.
Now that we are familiar with how to plot a bivariate distribution and inter-

pret a scatter plot, we can turn to the statistical basis and computational meth-
ods of the correlation coefficient.

The z Score Formula for the Correlation Coefficient

The z score formula for the following correlation is not the preferredmethod for
computing the correlation. It is much too tedious. However, an examination of
the z score formula is a very good way to introduce the statistical conceptual-
ization of the correlation coefficient.

Arousal
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Figure 15.3 A plot of a curvilinear relationship between X and Y. As arousal increases,
performance improves until arousal becomes too high, and then performance declines.
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Recall that a z score locates a raw score in a univariate distribution. A z score is
the number of standard deviations a raw score is from the mean of the distri-
bution. All raw scores above the mean transform to positive z scores, while all
raw scores below the mean transform to negative z scores. Table 15.2 presents
the X and Y scores for five participants, as well as each score’s z score. In a bivar-
iate distribution, it is important to note that when transforming a raw score of
variable X to a z score (zX), the mean and standard deviation of variable X is used
in the z score formula. In Table 15.2, the mean and standard deviation for the X
scores is 17 and 2.83, respectively. The same point holds for the Y scores: the
transformation to z scores (zY) uses the mean and standard deviation of the
Y distribution.
The z score formula for the correlation coefficient of a population is given in

Formula 15.1.

The z score formula for the population correlation

ρ=
Σ zXzY

Np
(Formula 15.1)

where

ρ = rho, the symbol for the population correlation
Σ(zXzY) = sum of the cross products of z scores
Np = number of pairs of scores

Table 15.2 Computing the population correlation with the z score formula.

Participant X μ zX = (X − μX)/σX Y μ zY = (Y − μY)/σY zXzY

P1 13 17 −1.41 23 30 −1.52 +2.14

P2 15 17 −0.71 28 30 −0.43 +0.31

P3 17 17 0 30 30 0 0

P4 21 17 +1.41 32 30 +0.43 +0.61

P5 19 17 +0.71 37 30 +1.52 +1.08

zXzY = +4.14

Summary values

μX = 17; σX = 2.83; μY = 30; σY = 4.60; Np = 5

ρ=
Σ zXzY

NY

ρ=
+ 4 14
5

ρ = + .83
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The term zXzY is called a cross product. A cross product is a given participant’s
zX score multiplied by the corresponding zY score. In Table 15.2, the cross prod-
uct for participant 1 is (−1.41)(−1.52) = +2.14. The numerator of the z score for-
mula is the sum of all individual cross products.
There are two important points to make about the z score formula for the

correlation. First, under what condition would the z score formula yield a pos-
itive correlation? Remember that a positive correlation results when higher
scores on one variable are associated with higher scores on the second variable.
In terms of z scores, participants who score relatively high on the X variable will
receive zX scores that are positive. If they also tend to score high on the Y var-
iable, their zY scores will also be positive. This will produce many positive cross
products. Furthermore, those participants with X and Y scores below the means
of the X and Y distributions will have negative zX and negative zY scores. Two
negative z scores multiplied together also produce a positive cross product.
Refer to Table 15.2. The correlation between X and Y is positive (+.83). As
we inspect the zX and zY columns, note that negative z scores onX are associated
with negative z scores on Y, and positive z scores on X are associated with pos-
itive z scores on Y. Although, in this example, every cross product is positive, it is
not necessary for all cross products to be positive for the correlation to be pos-
itive. As long as the sum value of all cross products is positive, the correlation
will be positive.
Given this explanation of how a positive correlation can arise, it should be

easy to determine how a negative correlation can occur. A negative correlation
occurs when the higher scores on one variable are associated with lower scores
on the second variable. In terms of z scores, positive z scores would tend to be
associated with negative z scores. This would yield many cross products with a
negative sign. If the sum value of all cross products is negative, the correlation
will be negative.
The second important point about the z score formula has to do with themag-

nitude of the correlation. A z score not only specifies whether a raw score is
above or below the mean, but it also states how far the score is from the mean
(in standard deviations). Refer to Table 15.2. Think about the relative rankings
of the participants’ zX and zY scores. Notice that participant 1 has the lowest X
score in the X distribution and therefore has the largest negative zX score. Par-
ticipant 1 also has the lowest Y score in the Y distribution and, accordingly, the
largest negative zY score in the distribution. Participant 1 ranks at the bottom of
each distribution. Note that participant 2 ranks second from the bottom of each
distribution. Participant 3 ranks at the middle of each distribution. However,
participant 4 ranks the highest in the X distribution but the second highest
in the Y distribution. Participant 5 ranks the second highest in theX distribution
but the highest in the Y distribution. Considering the entire bivariate distribu-
tion in Table 15.2, the rankings of the zX scores are very similar to the way in
which their corresponding zY scores are ordered. When the rankings of the X
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scores have a high degree of correspondence to the rankings of the Y scores, the
correlation will be large. The bivariate distribution in Table 15.2 shows a good
deal of correspondence; therefore, the correlation is high: +.83. If the correlation
were high and negative, there would still be a good deal of correspondence
among the ranks of X and Y. However, high rankings on X would be associated
with low rankings of Y.

The Computational Formula for the Correlation Coefficient

The z score formula is instructive because it provides a way to conceptualize the
statistical basis of the correlation coefficient. However, since each raw score has
to be transformed into a z score, using the z score formula to calculate the cor-
relation is an arduous task. Formula 15.2 is much easier to use when working
with raw scores. It is the computational formula for computing the correlation.
In addition, the symbol r indicates that the correlation is being derived from a
sample of scores, not a population. This is much more typical of social and
behavioral science research.

Computational formula for Pearson r

r =
np ΣXY − ΣX ΣY

np ΣX2 − ΣX 2 np ΣY 2 − ΣY 2
(Formula 15.2)

where

ΣX2 = the sum of all the squared X scores
ΣY2 = the sum of all the squared Y scores
XY = the cross product of an X and Y score
ΣXY = the sum of the cross products
(ΣX)2 = the sum of all the X scores, quantity squared
(ΣY)2 = the sum of all the Y scores, quantity squared
np = number of pairs of observations

At first glance, this appears to be an imposing formula. If we accidentally
turned to this page the first day of class, we might have thought, “I’ll never
be able to do this.”However, we are already familiar with all of these terms. Even
the notion of cross products is not new; we just encountered it with the z score
formula for correlation. If we carefully follow the next worked problem, we
should have no trouble using the computational formula for hand calculations.

■ Question An investigator wants to know the correlation between subjective
ratings of discomfort and the length of time participants can keep their hands
in ice water. The X variable in the following table is the amount of discomfort;
higher scores indicate greater discomfort. The Y variable is the number of
minutes participants kept their hands in the water. What is the correlation
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between discomfort ratings and duration of hand immersion for this sample of
participants?

Solution

X Y X2 Y2 XY

3 2 9 4 6

5 3 25 9 15

4 4 16 16 16

7 5 49 25 35

10 6 100 36 60

ΣX = 29 ΣY = 20 ΣX2 = 199 ΣY2 = 90 ΣXY = 132

■

Using the Computational Formula

After we compute the summary statistics shown at the bottom of each column,
proceed as follows:

r =
np ΣXY − ΣX ΣY

np ΣX2 − ΣX 2 np ΣY 2 − ΣY 2

r =
5 132 − 29 20

5 199 − 29 2 5 90 − 20 2

r =
660−580

995−841 450−400

r =
80

154 50

r =
80

7700

r =
80

87 75

r = + 0 91
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15.3 The Coefficient of Determination, r2

If we have already covered the ANOVA chapters, we will recall the statistic, ω2,
omega-squared. Omega-squared is a measure of effect size; it reflects the
amount of variation in the scores of the dependent measure that are accounted
for by the levels of the factor. The coefficient of determination, represented as
r2, accomplishes for the correlation coefficient what ω2 accomplishes after an
F test has been performed. An r2 is a measure of the amount of variation of
the Y variable accounted for by variation of the X variable; a measure of shared
variance (or common variance). This is a bidirectional concept. Therefore, r2

can also be stated as the amount of the X variable accounted for by variation in
the Y variable.
Shared variance is the key concept in understanding the coefficient of deter-

mination. It is usually stated as a percentage. If the correlation between two
measures is .80, then the amount of shared variance is .802 × 100 = 64%. What
is the coefficient of determination when the correlation is −.30? Square the cor-
relation and multiply by 100 to arrive at 9%. Researchers will use different
phrases when referring to shared variance:

1) Sixteen percent of the variance of Y scores is explained by the variation of X
scores.

2) Nine percent of X is due to Y.
3) Twenty-five percent of the variance of Y is accounted for by X.

Keep in mind that shared variance is a bidirectional notion. Whether we state
it from the perspective of X or Y makes no difference. In addition, do not be
confused by the terms “explained” or “accounted for.” Strictly speaking, the
coefficient of determination does not explain or account for anything. In other
words, the coefficient of determination does not tell us why there is a relation-
ship between two variables.
The coefficient of determination is a concept more difficult to understand

than the correlation coefficient. However, many social and behavioral scientists
believe that r2 is a more useful measure of the relationship betweenX and Y than
the correlation coefficient. The following examples will help further explain this
important concept.
Suppose we administer two different tests of anxiety to a group of individuals.

From previous research, we know that anxious people score higher than calm
people on both tests. Now we give both tests to the same group of people. Since
both scales are measuring anxiety, would we expect the correlation between
them to be +1? Well, even though both tests are measuring the same concept,
the correlation between them will probably not be perfect.
The score of any measure is based on more than what the test is designed to

measure; all tests have some degree of measurement error. For example, in
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addition to tapping anxiety, a person’s score could be affected by fatigue, mis-
understanding the instructions, distractions during the testing, or perhaps the
tests use different ways of wording the questions.4 Moreover, one of the tests
may ask more questions aimed at the physical experience of anxiety (e.g.
“How often do you feel your heart pounding?”), whereas the other test may
ask more questions aimed at the cognitive aspect of anxiety (e.g. “How often
do you find yourself worrying more than other people?”). Two scales designed
to measure the same trait may be tapping into different aspects of that trait. In
Figure 15.4, the shaded, overlapping area is what the two tests have in common.
It is the shared variance of the tests. Note how the amount of shared variance
(shaded area) is larger as r and r2, increase in magnitude. The nonoverlapping
areas define the extent of unshared variance. Measurement error and differ-
ences in the focus and wording of the questions are all factors that account
for the size of the unshaded area.
Since the concept of r2 is so important, and because it can be difficult to grasp,

let us consider another more detailed example. TheWechsler Intelligence Scale
for Children (WISC-R) includes dozens of questions and tasks that are used to
assess various aspects of intelligence. The “block design” task, for instance,
requires the child to look at a picture of a design (e.g. a diamond). Several
wooden blocks, some white, some red, and some half white and half red are
given to the child who must then arrange the blocks to reproduce the design
in the picture. Another task, “object assembly,” presents the pieces of a puzzle;
the child must fit them together to form the correct figure (e.g. a horse). It is
reasonable to think that some of the abilities that would lead a child to do well
on the “block design” task would also lead to good performance on the “object
assembly” tasks; an assessment of these abilities is what the tests have in
common. Variance will be shared to the degree the measurements taken reflect

X X XY Y Y

r = 0

r2= 0

r = .70
r2= .49 (49%)

r = .97
r2= .94 (94%)

Common

variance

Common

variance

Figure 15.4 The shaded overlapping areas depict shared variance. As r increases so does r2.

4 Measurement error is similar to the concept of experimental error discussed in Chapters 12–14.
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these common abilities. Table 15.3 lists some of these common sources of
variance. However, each test is also influenced by unique factors or sources
of variance. Table 15.3 also lists some of these unshared sources of variance.
Suppose that the correlation between performance on “block design” and
“object assembly” is +.70. Refer to Figure 15.4, the middle illustration. If the cor-
relation is +.70, r2 is approximately 50%. The overlapping segment of the ovals,
the shaded area, represents this shared variance. The nonoverlapping segments
of the ovals make up the proportion of variance unique to each test. These abil-
ities are measured by one test but not the other. (See Box 15.1 for more infor-
mation about how the correlation concept is used in the development and
assessment of measurement tools.)

Comparing r and r2

If we compare an r of +.50 with an r of +.25, mathematically speaking, one is
twice the size of the other. However, the worth of the correlations is better cap-
tured by r2 not r. It is more appropriate to compare relationships in terms of
their shared variance, r2:

50 2 × 100 = 25

25 2 × 100 = 6 25

25
6 25

= 4

Table 15.3 Some shared and unshared abilities between the “block design” and “object
assembly” tasks of the WISC-R.a, b

Block design and object assembly

Shared abilities Abilities not shared

(Common variance; shared variance;
variance accounted for)

(Uncommon variance; unshared variance;
variance not accounted for)

Visual–motor coordination Analysis of whole into component parts (BD)

Spatial relations Reproduction of models (BD)

Perceptual organization Ability to benefit from sensory–motor
feedback (OA)

Working under time pressure

aSee Kaufmann (1979).
bThose abilities in common will contribute to shared variance, r2.
BD, block design; OA, object assembly.
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Box 15.1 Next Steps with Correlations: Scale Development

A common activity for many academic psychologists is the construction of mea-
suring tools. There are literally hundreds of different psychological traits, ten-
dencies, and abilities that psychologists are interested in measuring, from
commonly used concepts like extroversion and neuroticism to less frequently
referenced concepts like humility (e.g. Rowatt et al., 2006) and right-wing
authoritarianism (e.g. Mirels & Dean, 2006). The scales used to measure these
attributes, however, need to be created. They do not appear out of thin air.

Scale development is usually an extensive process. First, the concept is care-
fully defined, with a lot of thought given to identifying various subcomponents
of the concept (e.g. is extroversion marked by being very talkative, striving to be
the center of attention, enjoying meeting new people, being very physically
demonstrative, all four?). Second, researchers typically start to gather data to
see if their understanding of the concept fits well with how people answer ques-
tions about themselves. This usually involves the generation of numerous
response items, oftentimes presented in the form of a question or a statement
to be agreed or disagreed with by participants using a Likert scale. These
responses are then statistically analyzed.

This is where the correlation concept comes in. By looking at the size and
nature of the relationships between pairs of items, researchers can gain feed-
back information regarding the nature and scope of the concept they are study-
ing. For instance, if high correlations were found between individuals’
responses regarding questions related to how talkative a person is, how much
they enjoy being the center of attention, and how much they like meeting new
people, this interrelatability would provide statistical evidence, in the form of
shared variance, that the concept of “extroversion” encapsulates all of these
subcomponents. If, on the other hand, the responses of individuals to questions
related to being physically demonstrative do not tend to correlate highly with
the responses regarding these other components, this would provide statistical
evidence that this component is not necessarily a part of the concept “extrover-
sion.” Once data has been gathered and analyzed, this two-step process of con-
cept definition/clarification and data gathering/analysis can repeat itself, often
several times.

The process, as one might imagine, is actually much more sophisticated than
what has been presented here. It is described in simple terms to show the rela-
tionship between the correlation concept and this important professional activ-
ity. Correlations, by the way, are also the base concept behind other
sophisticated analytical techniques (see Box 16.3).
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In terms of r2, a correlation of .50 is actually four times as large as a correlation
of .25. The coefficient of determination, r2, is not directly related to r. In fact, as
Table 15.4 illustrates, we have to go all the way up to an r of ±.70 to find shared
variance equal to 50%. To give an account of shared variance from 50 to 100%
requires correlations from ±.70 to 1. Another way to clarify that there is not a
direct relationship between changes in r and changes in r2 is to compare two sets
of adjacent correlations. In Table 15.4, the adjacent correlations of .20 and .30
translate into amere 5% change in the amount of shared variance. Yet, the adjacent
correlations of .80 and .90 translate into a difference of 17% of the shared variance.
In other words, the difference between a correlation of .20 and .30 is not as mean-
ingful as the difference between a correlation of .80 and .90.

15.4 Using the Pearson r for Hypothesis Testing

The Null and Alternative Hypotheses

The statistic, r, is based on a sample of bivariate scores. It is an estimate of ρ, a
population of bivariate scores. The statistic, r, can be used to make a number of
inferences about ρ. For example, confidence intervals for ρ can be established,

Table 15.4 The relationship between r and r2.

r(±) r2

Small r’s

.00 .00

.10

.20

.30

.01

.04

.09

4

9
Difference of 5%

Moderate r’s

.40

.50

.60

.16

.25

.36

Large r’s

.70

.80

.90

1.00

.49

.64

.81

1.00

64

81
Difference of 17%

Correlations of small, moderate, and large are indicated on the left.
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two r’s can be compared to see if they have been drawn from populations having
different ρ’s, a given r can be tested to see if it is different from a specified value
of ρ (e.g. +.50), and r can be tested to determine if the population correlation
is different from 0. This section only addresses the most common form of
hypothesis testing: Is ρ different from 0? When asking the question, “Is the
population correlation different from 0?,” the null and alternative hypotheses
are stated as

H0 ρ= 0

H1 ρ≠0

Sampling Distributions

Whenever statistically testing a null hypothesis, whether it is concerningmeans,
variances, or a correlation, a sampling distribution is required. Recall that a
sampling distribution is a theoretical distribution made up of the statistic that
is being tested (see Chapter 7). If we are testing to see whether a sample mean
differs from a specified population mean, then the appropriate sampling
distribution is made up of means. If we are testing the difference between two
sample means, then the relevant sampling distribution is a distribution of
differences between means. Although a sampling distribution is never actually
constructed, the characteristics of the appropriate sampling distribution are
known, provided certain assumptions are met.
A statistical test of significance asks the question, “What is the probability

that we would obtain this sample statistic by chance when the null hypothesis
is true?” If the probability is low (e.g. less than five times out of 100), then the
null hypothesis is rejected, and we cautiously suggest something other than
chance is involved. Given this line of reasoning, testing the null hypothesis
that ρ = 0 involves computing r from a sample of scores and determining
how unlikely it is that the obtained rwould occur if the population correlation
was 0.
The appropriate statistical model for testing the significance of an r is the

t distribution. However, we do not need to compute a t ratio. A direct method
for testing the null hypothesis is to use a table of critical r’s (see Table A.7). This
table is derived from the sampling distributions of t; it allows us to make a direct
comparison between the size of the sample correlation and the critical value of
r in the table. As with t tests, we will need to determine both the size and the
placement of the rejection region, using either a two-tailed or one-tailed test.
The same issues discussed in Chapter 8 present themselves here. The size of
the rejection region determines the degree of Type I error risk we wish to
tolerate. In terms of placement, it is usually considered prudent to split the
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rejection region evenly between the two tails of the distribution, that is, to use a
two-tailed test.
The following worked problem illustrates how to use the table of critical

values to test the null hypothesis that there is no correlation between X and
Y in the population. Note: The degrees of freedom for a Pearson r correspond
to the number of paired scores minus 2 (np − 2). Assuming each individual con-
tributes a pair of scores, the number of paired scores equals the number of
participants.

■ Question An educational psychologist hypothesizes a relationship between
trait anxiety and GPA. A sample of 20 students is randomly selected; the corre-
lation between anxiety and GPA is found to be –.50. Is there statistical evidence
that ρ is different from 0?

Solution

Step 1. State the null and alternative hypotheses. In this case, H0: ρ = 0 and
H1: ρ ≠ 0.

Step 2. Establish an alpha level. Use α = .05.
Step 3. Compute robt. It is given as −.50.
Step 4. Locate rcrit in Table A.7, using df = np − 2 = 18, two-tailed test. The crit-

ical value equals ±.444.
Step 5. Compare robt with rcrit. If the sample correlation falls outside the rcrit

values, reject the null hypothesis. Since −.50 does fall outside of ±.444, reject
H0: ρ = 0.

Step 6. Interpret the findings. “There is statistical evidence to suggest a negative
correlation exists between trait anxiety and GPA, r(18) = −.50, p < .05. Stu-
dents who are anxious tend to have lower GPAs.”

Note that we cannot make a causal statement that trait anxiety leads to lower
grades. It could be the case that having lower grades leads to a chronic feeling of
anxiety. Moreover, there is always the possibility that a third, unmeasured var-
iable, accounts for this correlation. ■

The following worked problem also shows the steps involved in testing H0:
ρ = 0. However, this problem begins with raw data. Follow the steps to ensure
understanding of the procedural flow in computing robt and testing H0: ρ = 0.

■ Question A clinical psychologist hypothesizes a correlation between a person-
ality dimension, extroversion/introversion, and depression. Two questionnaires
are administered. One measures the personality trait, with higher scores indicat-
ing more extroversion. The other questionnaire measures depression, with higher
scores reflecting greater depression. Conduct a two-tailed test of r using an
alpha of .05.
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Extroversion/introversion: X Depression: Y

16 22

14 18

15 20

6 9

3 10

5 3

10 10

2 4

13 15

Solution

Step 1. State the null and alternative hypotheses. In this case, H0: ρ = 0 and
H1: ρ ≠ 0.

Step 2. Establish an alpha level. Use α = .05.
Step 3. Compute robt.

robt =
np ΣXY − ΣX ΣY

np ΣX2 − ΣX 2 np ΣY 2 − ΣY 2

robt =
9 1306 − 84 111

9 1020 − 84 2 9 1739 − 111 2

robt =
2430

2124 3330

robt =
2430

7072920

robt =
2430

2659 50
robt = + 0 91

Step 4. Locate rcrit in Table A.7, using df = np − 2 (9 – 2 = 7), two-tailed test. The
critical value equals ±.666.

Step 5. Compare robt with rcrit. Since .91 falls outside of ±.67, reject H0: ρ = 0.
Step 6. Interpret the findings. “There is statistical evidence suggesting a
correlation between extroversion and depression, r(7) = +.91, p < .05. Those
people who are depressed are more likely to be extroverts; those people who
are not depressed are more likely to be introverts.” ■
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General Considerations in Testing H0: ρ = 0

Hypothesis testing is an inferential procedure. In the context of correlational
analyses, a decision is made as to whether the population correlation differs
from 0 (the null hypothesis). As with any test of a null hypothesis, two types
of decision errors can be made. A Type I error is committed if a researcher
concludes that the population correlation ≠ 0, when, in fact, it does (i.e. a true
null hypothesis is rejected). A Type II error is made when a researcher cannot
conclude that the population correlation ≠ 0, when, in fact, it does not (i.e. a false
null hypothesis is not rejected).
The power of a statistical test is the probability that the test will correctly

reject a false null hypothesis. In the context of correlation, power is the ability
a test has to detect a nonzero population correlation. For a given sample size, as
ρ departs from 0, it is easier to obtain an r that leads to rejecting the null hypoth-
esis. Moreover, increasing the sample size decreases rcrit, making it easier to
detect a nonzero population correlation. Indeed, with very large samples,
extremely small population correlations can be detected. Whether a researcher
would want to detect such small correlations, however, is questionable. (This
issue is further discussed below.)

Rejecting Null Hypotheses and r2

Refer to Table A.7, which gives the critical values for a direct test of r. On the
left-hand column, we will see that critical values are once again linked to the
degrees of freedom (df ) associated with the inferential test. Now, look down
any other column. Notice that rcrit becomes smaller as the df becomes larger.
This means that an robt of a given magnitude may direct us to reject the null
hypothesis for one sample size, but not for another sample size. Although
the table of critical correlations is incomplete and stops at df = 100, complete
rcrit tables can be easily found online. In addition, statistical computer programs
such as SPSS test the null hypothesis for any sample size. With very large
samples, it is possible for a correlation to prompt the rejection of the null
hypothesis even though the magnitude of the correlation is very small. Under
these circumstances, it is especially important that we keep the proportion of
shared variance, r2, in mind. A statistically significant correlation may not be
theoretically and/or practically significant. A striking example of how small
correlations can achieve statistical but not theoretical significance comes from
a study on antismoking attitudes and general prejudice among West Germans
(Grossarth-Maticek, Eysenck, & Vetter, 1988).
Table 15.5 lists the types of general prejudice at that time, the correlation with

antismoking attitudes, r2, and the level of statistical significance attained by each
correlation. The correlation between anti-Semitism and antismoking prejudice,
for instance, is .06, significant at the .001 level. The r2 is .0036, meaning that well
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under 1% of the variance in antismoking attitudes is accounted for by variation
in the anti-Semitic scores!
How could such small correlations lead to a rejection of the null hypothesis?

Well, the sample size was 5977! With such a large sample, the statistical test of
the null hypothesis was exceptionally powerful. Obtaining data from 5977
participants is a time-consuming and expensive undertaking. We might ask
the question, “Given the effort and expense, how important is it to be able to
detect correlations that are so small as to be trivial?” We should not be
impressed by the level of statistical significance; always look at the magnitude
of the correlation and then square it to get r2, the shared variance.

Table 15.5 Correlations between political prejudice and antismoking attitudes.

Prejudice r p r2 Percent shared variance (%)

Anti-Semitic .06 .001 .0036 .36

Anti-Arab .05 .001 .0025 .25

Racist .11 .001 .0121 1.21

Anti-American .05 .001 .0025 .25

Box 15.2 Maternal Cognitions and Aggressive Children

Over the past several decades, studies have revealed that aggression is a rela-
tively stable, self-perpetuating behavior (Huesmann and Eron, 1984; Juon, Doh-
erty, & Ensminger, 2006; Olweus, 1979). Aggressive behavior in children is of
substantial concern to psychologists because it is predictive of later behavior,
including the number and seriousness of criminal convictions (Huesmann &
Eron, 1984), substance abuse, unemployment, divorce, and psychiatric illness
(Caspi, Elder, & Bern, 1987).

The processes that perpetuate aggression are still unknown. While genetic,
physiological, and other constitutional factors most likely contribute to the sta-
bility of aggression, research suggests that, in most cases, environmental con-
ditions are probably the most important source of influence. Factors from each
of the major systems in which young children interact (e.g. school, family, peers,
media, etc.) have been implicated as influencing the development and mainte-
nance of aggression (Slaby & Roedell, 1982).

Miller (1990) was interested in the relationship between a particular aspect of
family life and the aggressiveness of children. It was hypothesized that maternal
cognitions would be correlated with children’s aggression. More specifically,
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Miller expected to find a correlation between how dissatisfied mothers are with
their children and the aggressiveness of their children. Although Miller meas-
ured numerous maternal attitudes and behaviors to test competing models
of aggression, we will consider only a couple of simple correlations for the pur-
poses of illustrating the concepts discussed in this chapter.

To assess childhood aggression, a peer-nomination measure was used; each
child’s aggression score was derived from the reports of a sample of their class-
mates. The children were asked to name as many other children in the class as
they wished who behaved in a certain way (e.g. “Who pushes or shoves chil-
dren?”). The aggression score for a given child was the percentage of times they
were nominated by classmates on ten aggression items.

A second variable of interest was mothers’ dissatisfaction with their child.
A mother who scored high on the dissatisfaction questionnaire was the one
who complained that her child “is too forgetful,” “doesn’t follow directions,”
and “wastes too much time.” Miller was also curious to learn if there was a dif-
ference in this relationship based on the gender of the child. The following table
presents the correlations between maternal dissatisfaction and childhood
aggression found by Miller.

Correlations Between Maternal Dissatisfaction and Childhood
Aggression

Boys (n = 54) Girls (n = 45)

r p r p

.33 <.01 .31 <.05

A positive correlation means that higher measures of maternal dissatisfaction
correspond with greater aggressiveness in the child. Alternatively stated, the
more aggressive children have mothers who were more dissatisfied with them.
The correlations for both boys and girls are statistically significant – boys:
r(54) = .33, p < .01; girls: r(45) = .31, p < .05.

Considering these two correlations, an issue arises; one that frequently arises
when doing correlational research. Is there a causal connection between the
variables? Given only the information that has been presented from Miller’s
study, there is no way to know if a child’s aggression is influenced by maternal
dissatisfaction, or if maternal dissatisfaction is influenced by the child’s aggres-
sion. Furthermore, it is possible that some third variable accounts for the rela-
tionship between both variables. Perhaps the level of aggression exhibited by
the mothers influences both their dissatisfaction with their children and the level
of aggression demonstrated by their children.
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15.5 Factors That Can Create Misleading
Correlation Coefficients

The definition of a correlation coefficient can be deceptively simple: It is a meas-
ure of the strength of association between two variables. However, several fac-
tors can affect the size of the correlation; these factors can hide the real nature of
the relationship between the variables. This section addresses some of the issues
that arise when interpreting correlations.

Restricted Range

One problem that can arise when calculating correlations concerns the range of
each measure. Each measure will have a potential range of scores and an
obtained range of scores. For instance, a scale that measures kindness might
range from 20 to 60. If, for example, due to sampling error, the range of scores
obtained from a group of participants ranges from 39 to 60, the entire range of
test scores is not reflected in the sample. The range of scores is restricted. If we
correlate the kindness scale with some othermeasure, a problem arises. Samples
with restricted ranges tend to underrepresent population correlations.
In Figure 15.5, the correlation, based on the entire plot, is quite high, about

+.80. Now look at just the plot within the inset in the upper right corner.

High

Low

Low HighX

Y

Figure 15.5 The true strength of association between X and Y is underestimated when the
range of scores is restricted.
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Those scores are restricted to the upper ranges of X and Y. The plot in the inset
reflects a much lower correlation.
The problem of restricted ranges can arise when examining the relationship

between Graduate Record Examination (GRE) scores and the GPAs obtained by
students at the end of the first year of graduate school. Admissions committees
obviously do not admit students to graduate school at random. They favor stu-
dents who have performed very well on the GREs (in addition to other criteria).
As a result, the group of successful applicants will not show much variability on
GREs, at least not as much variability as the scores of all students applying to the
program. Likewise, students’ GPAs at the end of the first year tend to be
restricted to the upper grades.What would happen if we computed a correlation
between GRE scores and the GPA obtained at the end of the first year of grad-
uate school? The correlation would be spuriously (artificially) low. Failing to
consider the range restrictions on the first-year graduate student data, an admis-
sions official could erroneously conclude that GRE scores have no relationship
to subsequent GPA and therefore, should not be used as a criterion of admis-
sion. Thankfully, graduate admissions committees are aware of this issue; no
one is surprised that the correlation between GRE scores and graduate student
GPA is low.

A Nonlinear Relationship Between X and Y

The formula for the Pearson correlation discussed in this chapter is only
appropriate when there is a linear relationship between X and Y. The use of
the Pearson formula becomes less appropriate as the relationship between
X and Y increasingly departs from linearity. In these situations, the Pearson
r will underestimate the correlation. Other correlational techniques found in
advanced statistical manuals can be used to capture the strength of a
relationship when there is nonlinearity.
Figure 15.3 depicts an example in which there was a curvilinear relation-

ship between arousal and task performance. It was pointed out that using
the Pearson formula would yield a spuriously low correlation, when, in fact,
the association between the two variables was high. We need to protect
ourselves from misapplying the Pearson formula; fortunately, to do so is
not difficult. Simply examine the scatter plot. If the data can be circum-
scribed with an oval, we are safe in using the Pearson formula.
Figure 15.6 illustrates some nonlinear relations between X and Y. Note that
nonlinearity is a matter of degree. Nonlinearity is not confined to a plot
that takes the shape of a or . Nonlinearity is reflected by any plot that
shows a curve. The Pearson formula for r presented in this chapter should
not be used with bivariate distributions that have any of the shapes shown
in Figure 15.6.
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The X and Y Distributions Are Skewed

When the X and Y distributions are skewed in opposite directions, correlation
computations can generate misleading, artificially low, values. Under normal
circumstances, we might view a correlation of .50 as moderate. However, if
the distributions are oppositely skewed, it is conceivable that the highest pos-
sible correlation calculable to be around .60. If this were the case, an r of .50
would be considered very strong. Consider the following two frequency
distributions.

Score on X 0 1 2 3 4 5 6 7 8 9 10

Frequency 25 14 13 14 12 11 6 4 2 3 1

Score on Y 0 1 2 3 4 5 6 7 8 9 10

Frequency 0 1 3 2 2 5 3 10 15 20 44

The X distribution is positively skewed and the Y distribution is negatively
skewed. To understand how this bivariate distribution places a ceiling on the
potential size of the correlation, it is helpful to think in terms of the z score for-
mula for correlation:

ρ=
Σ zXzY

Np

With relatively few scores above the mean of the positively skewed X distri-
bution, and so few scores below the mean of the negatively skewed Y distribu-
tion, it is impossible for every positive zX score to be associated with a positive zY
score. For this reason, the correlation for this sample could never approach +1
or −1. One tactic that could be taken would be to reverse the scoring for one of
the variables. Now the skewness of the two variables is in the same direction.

Y Y Y

X X X

Figure 15.6 Some nonlinear relations between X and Y.
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Another way to address the problem would be to transform the raw data (see
Section 4.6). Mathematical steps like these can help to normalize the shape
of a distribution. An in-depth discussion of transformation techniques is
beyond the scope of this introductory-level textbook; consult an advanced
statistics resource for more information.

The Use of Extreme Groups

A common type of correlational design, particularly in the field of personality
research, is to compare extreme groups with respect to some variable. For
example, suppose we are interested in comparing Type A and Type B
individuals with respect to interpersonal dominance. To do this, we administer
a questionnaire that provides a continuous measure of the degree to which an
individual exhibits the characteristics of the Type A personality. We later select
only those individuals who scored in the top 10% (Type A’s) and the bottom 10%
(Type B’s). Now we administer our dominance questionnaire to the members of
these extreme groups and correlate the Type A/B scores with dominance.
This methodological approach will typically yield a correlation between X and

Y that is larger than would be found if the entire population were used. If,
instead of selecting only those participants with very high and very low scores,
we included all of the participants that had been administered the question-
naire, the resulting correlation would most likely have been lower. The associ-
ation betweenX and Y is oftentimes weaker in themidrange of the distributions.
Figure 15.7 depicts this point.
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Figure 15.7 Using extreme groups increases the magnitude of the correlation between
X and Y. The oval surrounding scatter plot (a) is narrower than the one surrounding
scatterplot (b).
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Figure 15.7a shows that the oval is fairly narrow when using only extreme
groups. When the entire range of the Type A/B scores is used, the oval becomes
more circular (Figure 15.7b). Because using only extreme groups can leave a
misleading impression regarding the strength of a correlation across the span
of a relationship, some statisticians warn against this type of methodology.
However, sometimes the theory being explored is based on the extremities of
a population. To be safe, we should use caution when interpreting correlations
based on data drawn only from the ends of distributions.

The Effect of an Extreme Score

A data point that stands off by itself, whether it be abnormally high or low, is
called an outlier. An outlier can create a spuriously low or high correlation. This
problem most arises when the sample size is small. A simple example will illus-
trate the point. The only difference between sample A and sample B is the Y
score of the last participant; it has been tripled in sample B.

Sample A Sample B

X Y X Y

2 4 2 4

3 4 3 4

5 6 5 6

9 8 9 8

3 3 3 9

The r between X and Y in sample A is +.94. Higher X values strongly corre-
spond with higher Y values. The creation of one outlier in sample B has dropped
r to +.49.
Wainer and Thissen (1976) presented a bivariate distribution of heights and

weights. The correlation for 25 participants was computed as +.83. However,
they showed that if a transcription error was made, and the height and weight
values for just one participant were switched, the correlation could change
dramatically (−.26!).
Outliers present a dilemma for researchers. There is a strict rule in research

that investigators should not simply discard data because it is inconsistent with
their expectations. It is a good rule because it guards against biasing the
outcome of a study to fit preconceived notions. Without the rule, confidence
in the findings of empirical research would drop dramatically.
The conventional approach to the extreme score problem is to analyze the

data with and without the outlier, noting the difference it makes in the type
of conclusion one would draw from the results. Sometimes an outlier will have
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only a small effect on the analysis, particularly when the sample size is suffi-
ciently large (yet another argument for large samples). If the outlier does make
a difference, the researcher may be justified in basing conclusions on the anal-
ysis conducted without the outlier. Since that one participant’s score is so aber-
rant, the researcher might suspect that the score is unreliable. It could be a
measurement or transcription error. On the other hand, it could be accurate
data. Whatever the case, outliers need to be carefully examined. Unusual data
can sometimes end up becoming very important. For example, interviewing the
participant responsible for the outlier may lead to another hypothesis for a sub-
sequent study.5

The correlation coefficient is one of the most useful measures for assessing
the degree to which two variables are related. However, since there are numer-
ous factors that affect the interpretation of the correlation, it is imperative that
we carefully “dig into the data.”Keep inmind r2 when r is statistically significant,
and pay close attention to the scatter plot to check for linearity, skewness,
restricted ranges, extreme samples, and the presence of outliers.

15.6 How to Present Formally the Conclusions
of a Pearson r

The proper reporting of Pearson r findings is similar to the proper reporting of
t test findings. When reporting a significant Pearson r, we must include the
degrees of freedom, the value of the obtained r (usually with the proper valence
and without the “0” preceding the decimal), and the alpha level used tomake our
decision. For instance, “Statistical evidence suggests a relationship exists
between shoe size and height, r(6) = + .94, p < .05.” A failure to reject the null
might read, “There was no statistical evidence found to suggest a relationship
between shoe size and height, r(6) = + .04, n.s.” A measure of shared variance
(r2) can be added to a rejected null hypothesis if needed.
Many other principles common to the proper reporting of all types of statis-

tical findings were first laid out in Section 8.8. Please consult this portion of the
text for more general information about the proper reporting of statistical
findings.

5 A note of caution is in order. Outliers should be examined irrespective of the implications they
have on our findings. Discarding an outlier only when it negatively affects our experimental
hypothesis potentially biases our findings. To be fair, we should attend to outliers irrespective of the
magnitude of the correlation.
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Summary

A correlation is a measure of the strength of association between two variables.
The distribution of pairs of scores is called a bivariate distribution. The
correlation based on a sample is symbolized as r; the population coefficient is
symbolized as ρ.
Be careful not to imply causality when interpreting correlations. This is a com-

mon interpretive mistake. However, some correlational coefficients may imply
causality but only if the data has been gathered experimentally. The basis for
making causal statements never resides with the type of analysis, but rather with
the methodology used to collect the data. “Correlational design does not imply
causation” is amore accuratemotto than “correlation does not imply causation.”
A correlation coefficient is represented by a number that ranges from +1 to

−1; the higher the coefficient’s absolute value, the stronger the association
between the two variables. An r of +.60 reflects a strength of association as
strong as an r of −.60. If higher values of one variable are associated with higher
values of the other variable, then the correlation is described as “positive.” If
higher values of one variable are associated with lower values of the second
variable, then the correlation is described as “negative.”
When a bivariate distribution is plotted on a graph, it is called a scatter plot or

scatter diagram. The scatter plot provides a great deal of information about the
relationship between two variables. The magnitude of the correlation can be
estimated by looking at the general shape formed by the points. The size of
the correlation is estimated by examining the width of an oval used to envelope
the data: Themore narrow the oval, the higher the correlation. If the points have
no trend and are best contained within a circle, the correlation is close to zero;
that is, the variables are unrelated.
Not only does the scatter plot indicate the strength of association between X

and Y, but also it reveals the nature of the correlation. If the enveloping oval
slopes from the lower left to the upper right, the correlation is positive. If the
oval slopes from the upper left to the lower right, then the correlation is neg-
ative. The degree of the slope (e.g. gradual vs. steep) is not indicative of the cor-
relation strength.
The scatter plot can also reveal when the oval arches or forms a or . Plots

shaped like this reveal a nonlinear relationship between X and Y. The formulas
for calculating a linear correlation are different from those used to calculate a
correlation based on a curvilinear relationship.
Raw scores above the mean of a distribution transform to positive z scores,

and raw scores below the mean transform to negative z scores. If X and
Y are positively correlated, then positive z scores of variable X will be paired
more often with the positive z scores of variable Y; the negative z scores of
the X distribution will be paired more often with the negative z scores of the
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Y distribution. IfX and Y are negatively correlated, then the positive z scores ofX
will be paired more often with the negative z scores of Y, and vice versa. This is
the underlying logic of the z score formula for the correlation coefficient. Most
often, however, when sample correlations are hand calculated, the computa-
tional formula (Formula 15.2) is used.
The coefficient of determination, r2, is a measure of the amount of variation

associated with the Y variable that is accounted for by variation in the X variable.
(This can also be stated the other way around; it is a bidirectional concept.)
Shared variance is usually stated as a percentage. If the correlation between
two measures is .60, then the amount of variance held in common is
.602 × 100 = 36%.
We can compare two correlation coefficients and see that one is larger than

the other. However, we cannot say that an r of +.80 is twice as large as an r of
+.40 or that .50 is half the size of a perfect correlation. Any effect size compar-
isons should be made in terms of shared variance, r2.
The test of the null hypothesis for r asks the question, “Is the magnitude of

r sufficiently large to conclude that ρ is not 0?” For any inferential test, a
theoretical sampling distribution is needed. The correct sampling distribu-
tion for using r to test a null hypothesis is a t statistic, based on a transfor-
mation of r’s. The transformation has the effect of normalizing the sampling
distribution of correlations. When testing the significance of a correlation,
the most common null and alternative hypotheses are H0: ρ = 0 and H1:
ρ ≠ 0.
Several factors can affect the size of the correlation. These factors can hide the

real nature of the relationship between the variables being correlated.
When the distribution of X and/or Y is restricted, then the correlation is likely

to be spuriously low. Familiarity with the potential range of values is important
when interpreting correlations.
The use of the Pearson formula is inappropriate as the relationship between

X and Y departs from linearity. In these situations Pearson r will underestimate
the relationship between X and Y.
When the X and Y distributions are skewed in opposite directions, correlation

computations can generate misleading, artificially low, values. Various mathe-
matical transformations can be considered to change the shape of either the
X and/or Y distributions and reduce the underrepresentation of the relationship.
A common type of correlational design is to compare extreme groups with

respect to some variable. This methodological approach typically yields a
correlation between X and Y that is larger than what would be found if normal
sampling was used. Exercise caution when interpreting correlations from
designs that use extreme groups.
A data point that stands off by itself is called an outlier. Outliers can create a

misleading r, especially when the sample size is small.
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Using Microsoft® Excel and SPSS® to Calculate
Pearson r

Excel

General instructions for data entry into Excel can be found in Appendix C.

Data Entry
Enter the bivariate data into two adjacent columns, being sure to keep the data
from each participant together in the same row. Label the columns appropri-
ately. (See Figure 15.8 for an example.)

Data Analysis
1) Excel has built-in programs for many inferential tests, including a Pearson r.

To access it, click on the Data tab on the topmenu and then clickData Anal-
ysis. (Some versions of Excel have a “Tools” tab. The Data Analysis function
may be under this tab.) If this option is not found, the Data Analysis ToolPak
needs to be installed. See Excel instruction materials for how to install this
feature.

2) With the Data Analysis box open, select Correlation.
3) Input the data range by dragging over the entire data set and placing

those coordinates into the Input Range box. (If we include the labels
in the data range, make sure to click the Labels box to exclude
those cells.)

4) Decide on an Output option. The default is to place it on a separate
worksheet.

5) Click OK.
6) A correlation grid is produced. Each variable is listed down both the

left-side column and across the top of the grid. (Excel can run multiple
correlations at once. For example, if we had three variables and
included them in the analysis, both the left-hand column and the
top row would have all three variables listed.) Down the diagonal spine
of the correlation grid will be the value 1, representing the correlation
between a variable and itself. The correlations of interest can be found
by locating the coordinate between one variable on the left-hand col-
umn and the other across the top row. The table is redundant showing
each correlation from each perspective. (See Figure 15.8 for a worked
example.)

7) Excel does not test the null hypothesis that ρ = 0. We will need to use a crit-
ical value table (e.g. Table A.7 in the Appendix A) to find rcrit and make our
decision regarding the null hypothesis.
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SPSS
General instructions for inputting data into SPSS can be found in Appendix C.

Data Entry
In SPSS, each row of the data file represents a participant. Since bivariate data is
used in calculating a Pearson r, create a series of variables withinVariable View
corresponding to the variables measured. Then, go to Data View and input the
data, being careful to keep the values from each participant within a given row.
See Figure 15.9 for an example.

Data Analysis
1) Click Analyze on the tool bar, select Correlate, and then click Bivariate.
2) Use the arrow key to move the variables of interest into the Variables box.
3) The default correlation coefficient calculated is the Pearson; leave this box

checked. Make a selection regarding the critical r value to be calculated, one
tailed or two tailed.

4) If descriptive statistics are of interest, open the Options box in the upper
right corner, and click the Means and standard deviations option.

5) Click Ok.

Shoe size Height

72 10 Shoe size Height

66 9 Shoe size 1

74 13 Height 0.93 489 1

68 10

63 7

70 10

73 12

67 9

Figure 15.8 A worked example using Microsoft Excel to calculate a Pearson r.

Shoe size Height

1 

2 

3 

4 

5 

6 

7 

8 

72 10

66 9

74 13

68 10

63 7

70 10

73 12

67 9

Figure 15.9 An example of entered data for a
Pearson r calculation in SPSS.

Using Microsoft® Excel and SPSS® to Calculate Pearson r 565



6) If descriptives were asked for, the first box will present the means, standard
deviations, and sample size of all selected variables. The next box is the cor-
relation grid box simply labeled Correlations. Each variable is listed both
down the left-side column and across the top of the grid. (SPSS can run mul-
tiple correlations at once. For example, if we had three variables and moved
all of them into the Variables box, both the left-hand column and the top
row would have all three variables listed.) Down the diagonal spine of the
correlation grid will be the value 1, representing the correlation between a
variable and itself. The correlations of interest can be found by locating
the coordinate between one variable on the left-hand column and the other
across the top row. The table is redundant showing each correlation from
each perspective. Within each correlation box can also be found the prob-
ability of getting a Pearson r of that size if ρ = 0 [Sig. (2-tailed)] as well as a
count of the number of paired scores (N). If the significance value is equal to
or less than .05, there is statistical evidence to reject the null hypothesis. (See
Figure 15.10 for a worked example.)

Key Formulas

The z score formula for the population correlation

ρ=
Σ zXzY

Np
(Formula 15.1)

Computational formula for Pearson r

r =
np ΣXY − ΣX ΣY

np ΣX2 − ΣX 2 np ΣY 2 − ΣY 2
(Formula 15.2)

Correlations

Correlations

Shoe size Height

Shoe size Pearson correlation

Sig. (2-tailed)

N

Height Pearson correlation

Sig. (2-tailed)

N

1 .935**

.001

8 8

.935** 1

.001

8 8

** Correlation is significant at the 0.01 level (2-tailed).

Figure 15.10 An output table from a worked example using SPSS to calculate a Pearson r.
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Key Terms

Correlation coefficient Curvilinear relationship
Bivariate distribution Coefficient of determination
Pearson product-moment
correlation coefficient
Scatter plot Shared variance (or common variance)
Linear relationship

Questions and Exercises

1 What is the distinction between a correlational and experimental design?
Why does an experimental design offer the potential for making causal
statements about the relationship between two variables?

2 Which statement is most accurate?
a Correlational design does not imply causation.
b Correlation does not imply causation.
c Correlation implies causation.
d Correlation equals causation.

3 Describe what is meant by the term “bivariate distribution.”

4 Provide examples of variables that are positively correlated.

5 Provide examples of variables that are negatively correlated.

6 Which of the following is the strongest legitimate correlation? Why?
a −1.14
b −.69
c 1.09
d .58

7 Describe what a scatter plot of a +1 or −1 correlation would look like.

8 What information can be gleaned by examining a scatter plot? What feature
of a scatter plot is uninformative?

9 Given the following population of z scores, what is the correlation between
X and Y?
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zX zY

−0.32 −0.56

−0.10 0

0.42 −0.12

0 0.68

10 Given the following population of z scores, what is the correlation between
X and Y?

zX zY

1.48 −0.75

−0.31 −1.14

−1.62 1.55

0.45 0.34

11 For the following correlations and degrees of freedom, what are the rcrit’s
for α = .05 and α = .01 (two-tailed tests)? (Note: Use an online table when
Table A.7 is incomplete.) In each case, should the null hypothesis be
rejected?

rcrit at α = .05 Reject H0? rcrit at α = .01 Reject H0?

a r = .39 df = 100 ___________ Y or N ___________ Y or N

b r = −.47 df = 21 ___________ Y or N ___________ Y or N

c r = −.09 df = 11 ___________ Y or N ___________ Y or N

d r = .44 df = 6 ___________ Y or N ___________ Y or N

e r = −.62 df = 12 ___________ Y or N ___________ Y or N

f r = .93 df = 29 ___________ Y or N ___________ Y or N

12 Draw a scatter plot reflecting the following correlations.
a A moderately strong positive correlation.
b A very strong negative correlation.
c A very weak positive correlation.
d A curvilinear correlation.
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13 Estimate the r for each of these scatter plots.

Y

Y

Y

Y

XX

XX

(a)

(d)(c)

(b)

14 For the following correlations and df, what are the critical r’s when using a
5 and a 1% alpha value (two-tailed test). (Note: Use an online table where
Table A.7 is incomplete.) In each case, should we reject or fail to reject the
null hypothesis at the 5% level? At the 1% level?
a r = .67, df = 24
b r = .39, df = 24
c r = .89, df = 12
d r = .74, df = 18
e r = .45, df = 29
f r = .95, df = 7
g r = .62, df = 13
h r = .24, df = 100
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15 For the following data set:
a Calculate r and conduct a two-tailed test of the null hypothesis (α = .05).
b Specify the null and alternative hypotheses.
c What is rcrit?
d Reject or fail to reject the null hypothesis?
e What percent of the variance of Y is accounted for by the variance of X?

X Y

6 4

7 5

7 6

4 6

16 For the following data set:
a Calculate r and conduct a two-tailed test of the null hypothesis (α = .05).
b Specify the null and alternative hypotheses.
c What is rcrit?
d Reject or fail to reject the null hypothesis?
e What percent of the variance of Y is accounted for by the variance of X?

X Y

6 3

9 7

7 6

10 9

17 For the following data set:
a Calculate r and conduct a two-tailed test of the null hypothesis (α = .05).
b Specify the null and alternative hypotheses.
c What is rcrit?
d Reject or fail to reject the null hypothesis?
e What percent of the variance of Y is accounted for by the variance of X?

X Y

10 12

9 6

11 10

13 13
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18 For the following data set:
a Calculate r and conduct a two-tailed test of the null hypothesis (α = .05).
b Specify the null and alternative hypotheses.
c What is rcrit?
d Reject or fail to reject the null hypothesis?
e What percent of the variance of Y is accounted for by the variance of X?

X Y

1 3

2 4

4 5

6 5

7 7

19 Provide an example of a correlational design in which X is a personality
variable and Y is a measure of observed behavior.

20 Provide an example of an experimental design in which X is a medicinal
manipulation and Y is a measure of observed behavior.

21 Why is a causal interpretation prohibited for the analysis of Exercise #19
but allowed for the analysis of Exercise #20?

22 Answer these questions for the following data set.
a Calculate r and conduct a two-tailed test of the null hypothesis (α = .05).
b Specify the null and alternative hypotheses.
c What is rcrit?
d Reject or fail to reject the null hypothesis?
e What percent of the variance ofX scores is explained by the variance of Y

scores?

X Y

1 8

3 7

3 6

5 5

6 4
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23 Draw the scatter plots for the data of problems 15, 16, 17, and 22.

24 For a group of 75 participants, Σ(zXzY) is 64. What is ρ?

25 In what way might the range of scores sampled influence the size of the
correlation?

26 In what way might the use of extreme groups affect the correlation?

27 If we use the Pearson r to estimate the population correlation
between X and Y when X and Y are related nonlinearly, what is the
likely result?

28 A sports psychologist is interested in the relationship between how many
weeks people exercise and their resting heart rate. Using the following data,
answer these questions.
a What is r?
b What are the null and alternative hypotheses?
c What is rcrit for a nondirectional test when α = .05?
d What percent of the variance of resting heart rate scores is accounted for

by the number of weeks of exercise?
e Should we reject or fail to reject the null hypothesis?

Weeks of exercise Resting heart rate

2 82

4 78

8 72

14 66

10 66

9 70

9 69

29 A school psychologist hypothesizes a relationship between IQ and num-
ber of siblings. Please use the data below to answer the following
questions.
a What is r?
b What are the null and alternative hypotheses?
c What is rcrit for a nondirectional test when α = .05?
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d What percent of the variance of IQ scores is accounted for by the num-
ber of siblings?

e Should we reject or fail to reject the null hypothesis?

Number of siblings IQ

8 123

3 100

1 90

4 111

2 102

0 95

30 A psychologist is interested in the strength of association between age and
performance on a certain task requiring motor skills. Plot the scatter dia-
gram of the following data and decide on the most reasonable course of
action for testing the hypothesis.

Age in years Number of errors

6 23

7 19

8 17

9 16

10 16

11 18

12 18

13 19

14 20

15 22

Computer Work

31 A research team is interested in the relationship between smoking and ill-
ness. They randomly select a sample of 13 smokers in a large office and ask
them to report the average number of cigarettes they smoke per day. They
then obtain the company records that monitor the number of sick days
each employee has taken over the past six months of employment. Please
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calculate a Pearson r and make a decision about the null hypothesis. Inter-
pret the finding. If warranted, indicate the value of r2.

Number of cigarettes Number of sick days

11 1

10 1

26 5

15 3

9 2

16 2

20 2

8 1

3 0

24 4

21 6

5 0

14 3

32 A psychologist is interested in the relationship between intelligence and
word processing speed on a keyboard. Twelve university students are ran-
domly selected and measured in both domains. Below are the gathered
data. Please calculate a Pearson r and make a decision about the null
hypothesis. Interpret the finding. If warranted, indicate the value of r2.

Intelligence Word processing speed

108 28

96 46

90 55

111 40

119 34

105 38

98 57

93 47

117 48

127 73

101 56

103 48
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33 Baron, Logan, and Kao (1990) studied the relationship between student
dentists’ perceptions of their patients’ discomfort and the patients’ percep-
tions of their own discomfort. Discomfort was defined as a combination of
anxiety, pain, and distress (with low numbers indicating low discomfort).
Discomfort ratings were obtained under two conditions: during drilling
and during the rubber dam placement. (The rubber dam is a thin rubber
sheath attached to a metal frame. It fits around the tooth, which isolates it
and prevents debris from being swallowed. Placement of the rubber dam
requires more of the dentist’s attention than a simple filling.)
The following data set is hypothetical. The numbers are selected so that

the correlations will lead to conclusions that are consistent with what was
found by the authors. Please calculate a Pearson r and make a decision
about the null hypothesis.

Discomfort ratings during drilling

Dental students Patients Dental students Patients

8 6 3 3

6 9 9 7

3 1 7 8

1 4 6 9

5 5 2 8

4 6 5 7

8 8 6 6

7 6 3 2

9 6 1 1

2 3 5 7

1 1 6 9

6 8 8 8

4 6 9 6

Discomfort ratings during rubber dam

Dental students Patients Dental students Patients

8 6 3 3

6 9 9 7

3 1 7 8

(Continued)
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Discomfort ratings during rubber dam

Dental students Patients Dental students Patients

1 4 6 9

5 5 2 8

4 6 5 7

8 8 6 6

7 6 3 2

9 6 1 1

2 3 5 7

1 1 6 9

6 8 8 1

4 6 9 4

34 Carrie (1981) investigated the relationship between a biological female’s
symptomatic reports during pregnancy and menstruation and the associ-
ation of these reports with the general tendency to report psychological
and physical symptoms. Among the findings was the fact that there is a
relationship between the number of symptoms experienced during men-
struation and the number of symptoms reported during pregnancy. The
following raw data are hypothetical yet will give a correlation value that
is consistent with what was found in the study by Carrie. Please calculate
a Pearson r and make a decision about the null hypothesis.

Hypothetical questionnaire scores

Last menstruation symptoms Last pregnancy symptoms

93 87

75 64

34 78

23 55

76 43

34 45

21 20

34 54

60 60

45 82

(Continued)
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Hypothetical questionnaire scores

Last menstruation symptoms Last pregnancy symptoms

67 67

50 48

89 72

61 68

56 45

82 75

45 34

53 55

71 50

59 90

90 56

43 62

49 32

(Continued)
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16

Linear Regression

16.1 The Research Context

Regression is a set of statistical procedures that build on the concepts of cor-
relation presented in Chapter 15 and allow a researcher to use information
about one variable to predict the value of a second variable. The idea of using
statistical techniques for prediction purposes is new territory and is uniquely
associated with this chapter. On many occasions, social and behavioral scien-
tists would like to make predictions. Graduate admissions committees, for
example, would like to select students who will do well in their school’s graduate
programs. If a measure such as Graduate Record Examination (GRE) scores is
found to correlate with future grade point averages, then an individual’s GRE
scores can be used to predict that person’s subsequent GPA. If a researcher finds
a correlation between the number of times prisoners get into fights while incar-
cerated and the number of domestic quarrels after release, a parole board may
be able to predict the level of postrelease, familial fighting. A generation ago,
researchers Zullow and Seligman (1990) showed that the outcome of presiden-
tial elections could be predicted by examining the content of campaign
speeches. They found that the more a candidate dwelled on negative events,
the less likely they were to win the election. They concluded that the American
voter “places a high premium on the appearance of hope.” Any time two vari-
ables are correlated, one of them can be used to predict the other.
In addition to these practical problems, researchers often use regression stra-

tegies to make behavioral predictions in order to build and test theories. For
example, Zullow and Seligman’s study not only had obvious practical implica-
tions for speechwriters, but also their data had theoretical interest to behavioral
and social scientists. Indeed, Zullow and Seligman derived their research
hypothesis about election outcomes from work in the area of depression! They
noted that people who tend to dwell on negative events are more vulnerable to
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depression (Zullow, 1984). Furthermore, they found depressed people to be rel-
atively passive, conveying a sense of hopelessness, and more disliked by others.
Consequently, Zullow and Seligman predicted that voters would react nega-
tively to candidates who dwell on negative events in a similar manner, that
is, with rejection.1

However, recent political results in many parts of the world suggest there are
limitations to this theory. When this happens, theory construction often
requires the introduction of other variables to help build a better theory of
behavior. For instance, Combs and colleagues (Combs, Powell, Schurtz, &
Smith, 2009), using regression analyses, found that political partisanship pre-
dicts people’s type of emotional reactions to tragic events in the news. For exam-
ple, an economic collapse would seem to be bad news regardless of whether a
person is a republican or a democrat. Bad economic news, after all, is bad for
everyone. However, when people interpreted the negative event as caused by
a rival party, their levels of political partisanship predicted increased happiness
about it (even while acknowledging being hurt by the negative event!). This
more elaborate picture predicts those who are politically partisan will respond
positively to negative events if they are seen as caused by the rival party. Under-
standing complex real-world relationships like the one surrounding partisan-
ship, tragedy, and emotion would be next to impossible using experimental
designs. For questions like this, correlational designs and regression analyses
are welcome tools to the researcher.

16.2 Overview of Regression

The actual prediction is accomplished by using a regression equation. For lin-
ear regression to be of use to an investigator, the two variables must be related
(correlated). This precondition makes perfect sense. If high school GPA is
uncorrelated with university GPA, then there is no way to use high school
GPA to predict the subsequent GPA. Not only must two variables be correlated,
but also to use linear regression, the relationship between the variables must be
linear. In a linear relationship, each time the value of one variable increases, the
value of the other variable shows a constant change. If the change in the second
variable is not constant, the relationship between X and Y is nonlinear. This
quality will be reflected in the scatter plot. Chapter 15 presented numerous scat-
ter plots in which the oval surrounding the majority of data points was curved,
indicating a nonlinear relationship between X and Y. The Pearson formula for
the correlation is not used when there is a nonlinear relationship betweenX and Y;

1 Technically, Zullow and Seligman (1990) used more sophisticated analyses than simple
regression. However, their data set and the type of question they were researching are consistent
with regression.
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likewise, the regression methods presented in this chapter cannot be used when
X andY are related in a nonlinear fashion. Inspecting the scatter plot is very helpful
when deciding whether linearity exists.
This chapter considers the use of simple regression in which information

about only one variable (called the predictor or independent variable) is used
to predict a second variable (called either the predicted, criterion, or dependent
variable). The terms independent and dependent variable have different mean-
ings in the context of regression. In a regression context, the experimenter typ-
ically does not manipulate the independent variable. It is simply the variable
used for prediction purposes; it is the X. The dependent variable, that is, the
value of Y that is predicted for a given X, is said to depend on the value of X.
This should not to be understood as implying cause and effect.2 Despite this
confusion, many resources for statistical analysis choose to employ the terms
independent and dependent variables. In an effort to avoid confusion, we will
not use these terms.
Regression analyses are bidirectional. For instance, if there is a correlation

between stubbornness and empathy, regression can be used to predict a per-
son’s level of empathy based on their known level of stubbornness. Conversely,
a person’s stubbornness can be predicted based on their known empathy score.
The bidirectionality of the analyses should remind us that causal relationships
should not be inferred.
The word “prediction” implies a temporal sequence between the variables;

this is potentially misleading. We might be tempted to conclude that a current
predictor variable is used to predict a future predicted variable. However, no
futurity is implied with regression. To say that empathy can be predicted from
stubbornness is not to suggest that stubbornness occurs first and then empathy
later. In fact, the temporal relationship can even be known to run the opposite
direction. For example, we could use SAT scores to predict IQ scores even
though it is obvious that a person’s intelligence is needed to generate the
SAT score. To say “X predicts Y” is merely to say that if a Y value is unknown,
X can be used to make a prediction of it.
In simple regression, only one predictor variable is used.Multiple regression

employs more than one predictor variable. The inclusion of additional predictor
variables usually increases the accuracy of the prediction. This is attractive to
researchers. For a recent example, multiple regression was used to determine
that a student’s level of sexual identity-related distress could be predicted by
combining information about a person’s public sexual identity, private sexual

2 Regression techniques can be used with experimental designs. Interested readers are referred to
advanced statistics texts (e.g. Ryan, 2008) for a discussion of regression analyses in the context of true
experiments.
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identity, organizational religiosity, intrinsic religiosity, and level of same-sex
attraction (Yarhouse, Dean, Stratton, & Lastoria, 2018). Although multiple
regression is beyond the scope of this text, it is based of the concepts discussed
in this chapter. (See Box 16.1 to learn more about how the regression concept
underlies other more complex statistical analyses.)

Box 16.1 Next Steps with Regression Analyses

This is an introductory statistics textbook; as a result, we should not be surprised
to learn that there is much more to know about each one of the statistical pro-
cedures that is being presented. We have already learned there are many ver-
sions of follow-up t tests and ANOVAs that can be applied to complex research
designs. The analytical tool of regression is no different. In fact, there are numer-
ous concepts that build upon the basis of the linear regression idea. This box will
briefly identify several of them.
Recall that in linear regression a known relationship between two variables is

used to help predict unknown values for one of the variables (Yp). As was briefly
mentioned earlier in the chapter,multiple regression uses more than one predic-
tor variable to construct predictor equations for unknown values. If one variable
(X) can account for a given percentage of the variance in another variable (Y),
perhaps a third variable (Z), also shown to relate to Y, can increase the
accounted for variance of Y. Furthermore, if the use of two predictor variables
is better than one, is not three better than two?What about four? And so on. The
addition of these other predictor variables introduces new problems andmakes
the analysis more complicated, but the basic idea remains; use known relation-
ships between variables to help make more accurate predictions of unknown
values for a variable of interest.
Factor analysis is a statistical technique designed to take a collection of inter-

related variables and shrink them down to the fewest number of actual core
concepts. Many times these are inferred variables that are not themselves being
actually measured (they are hidden or latent). For instance, we may find that
dozens of medically interesting variables seem to be correlated. A factor anal-
ysis might show that the dozens of correlated variables may be reducible down
to just a handful of core variables, like activity level, social-support network, diet
type, and lifestyle. Factor analysis finds hidden patterns in the data by helping
to identify a small set of core variables underlying the host of measured vari-
ables (these sets of identified hidden variables are oftentimes called “dimen-
sions” or “factors”). These factors can then be listed according to their factor
loadings; that is, howmuch variation in the data they can account for or explain.
For instance, we may learn that “type of diet” explains a large percentage of the
shared variance among a handful of different correlated medical variables.
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It is typically understood that there are two types of factor analysis, explor-
atory and confirmatory. Exploratory factor analysis takes place when the
researcher does not have any preexisting ideas about how many factors may
be present behind the nest of correlational data. One of the challenges with
exploratory factor analysis is trying to identify and name the underlying con-
cepts that best describe the interrelatability among a set of variables. This is
often not an easy determination to make. Confirmatory factory analysis is used
to verify a preexisting set of dimensions. These analyses are usually run to test
hypotheses derived from exploratory factor analyses about what factors best
account for a set of interrelated variables.

Path analysis is often described as a straightforward extension of multiple
regression. The purpose of the procedure is to generate size and significance
estimates of the hypothesized causal connections between sets of variables.
As the name implies, path analysis organizes the predictor variables into a
causal sequence of variables where one variable leads to another and so forth.
However, rarely are the paths simple relationships where one variable leads to
one and only one other variable. Oftentimes the paths determined by the anal-
ysis are complex. The path analysis diagram below reflects the idea that two
variables (X1 and X2) seem to be causing, both directly and indirectly (through
D1), an effect on a given dependent variable (D2). We can think of path analysis
as a form of multiple regression that attempts to develop a causal model
between the correlated variables.

X1

X2

D1 D2

Structural equation modeling will be mentioned last because it is a collection
of regression-related techniques, including factor analysis and path analysis,
which is designed to “model” very complex relationships between numerous
variables. Its use is growing in the social and behavioral sciences because of
its ability to suggest predictive (and even causal) relationships amid a collection
of hidden (latent) variables while relying only on data gathered from observable
variables. As computing power increased at the end of the last century, this
sophisticated collection of techniques has emerged as a powerful analytical tool
for researchers.
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Using Correlated Information to Make Predictions

If we were asked to predict the height of a randomly selected American biolog-
ical male, our best guess would be the mean height for all American males.
Assuming the data are normally distributed, most heights will be clustered
around this value. It will probably be wrong, but it will most likely be close.
It is the best guess we could make. Suppose the mean height is known to be
5 ft 10 in. Now, imagine we were asked to make a prediction for a series of ran-
domly selected American males. Each time we are asked to make a prediction,
we should guess 5 ft 10 in. A few times we would be correct, but most of the time
wewould be incorrect.Moreover, when incorrect, much of the timewewould be
a little bit incorrect (the selected personmight be 5 ft 9 in.), but some of the time
we would be very incorrect (the person might be 6 ft 7 in.). Ultimately, using the
mean height for all Americanmales would lead to a lot of wrong predictions; but
at least our predictions would be unbiased. That is, after we had made a large
number of predictions and examined our overall accuracy, we would find that
we had overpredicted to the same extent that we had underpredicted.
Now let us change the game. Suppose we are told there is a correlation

between the heights of fathers and sons. Furthermore, we are given a table that
states the mean height of sons for fathers of a specific height. We might learn
that for fathers who are 5 ft 5 in., the mean height of their sons is 5 ft 7 in; for
fathers who are 6 ft 6 in., themean height of their sons is 6 ft 3 in; and so on. Now
someone says, “I have selected a biological male. The height of his father is 5 ft 5
in. Guess the height of the son.” Now we have correlated information available
to aid in prediction. Instead of predicting the mean height of all males, we
should predict 5 ft 7 in., the mean height of all males that have fathers who
are 5 ft 5 in. Every time we have to make a prediction, we should attempt to
obtain the height of the father and use the table to predict the height of the son.
By using correlated information in prediction, we will still make many errors,

but the overall error will be smaller than if we had ignored the correlated infor-
mation. If this strategy seems obvious, then we already have an intuitive under-
standing of what regression is about. Although regression does not entail using a
table tomake predictions, an equation accomplishes the same thing. Some score
(e.g. height of father) is entered into the regression equation, and the predicted
score (e.g. height of son) is computed.

Regression as a Two-Step Process

The regression procedure involves two steps. The first step is to identify two
variables that are correlated and to gather this bivariate data. From the bivariate
data, we construct a regression equation for later use. The second step involves
the application of the regression equation to data from participants not included
in the original sample. In this second step we only have the value of the X var-
iable available, which is the predictor variable. In this way, the regression equa-
tion initially emerges from group data and is then later applied to individuals.
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For example, if our ultimate goal is to predict GPAs from performance on the
GREs, a large sample of participants is required to obtain both GRE scores
and subsequent GPAs. From this data, a regression equation is established.
This equation can then be used to predict the GPAs of new applicants.
A prediction can be made for each applicant based on that person’s GRE score.

16.3 Establishing the Regression Line

In linear regression, the regression equation is used to plot a straight prediction
line that goes through the middle of the scatter plot. This is called the regres-
sion line. The termmiddle, however, has a precise meaning; it will be explained
shortly. Formula 16.1 is the formula for a straight line.

Straight line formula

Y = a + bX (Formula 16.1)

In this formula, a is the Y intercept – that point at which the prediction line
crosses the ordinate (i.e. the Y axis) when X is 0. The other constant, b, defines
the angle, or slope, of the line.3 Figure 16.1 shows a scatter plot with several
straight lines drawn through the plot. Since each line has a different angle and
a different point at which it crosses the Y axis, the constants a and b are different
for each line. Yet each line is described by the general equation for a straight line.
The regression equation chooses among an infinite number of straight lines

that could be drawn through the scatter plot. A criterion has to be established,
which must be met when estimating a and b; then formulas have to be developed

Y
 v

al
ue

s

X values

Figure 16.1 Several straight lines drawn
through a scatter plot. The regression
equation establishes which line, of a
potentially infinite number of lines, is the
best one to predict a Y score given an X score.

3 Algebra texts usually use different symbols in the formula for a straight line, e.g. Y =mX + b, where
m is the slope of the line and b is the intercept.
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for a and b that meet the criterion. The least squares method is the most typical
method used to determine where the regression line will be drawn through the
scatter plot. Before discussing the criterion that is met by the least squares
method, it is important that we understand how to interpret a regression line.

Reading the Regression Line: All Predicted Y’s Are on the
Regression Line

In regression, an X score is used to predict the value of a Y score. Provided there
is a correlation between X and Y (which is the only time regression should be
used), there is a different Y predicted for each value of X. Every predicted Y
(symbolized Yp) lies on the regression line.4 To find Yp for a given X, find the
X value on the horizontal axis (abscissa), and draw a line parallel to the vertical
axis (ordinate). When that line meets the regression line, another line is drawn
at a right angle (parallel to the X axis) until it meets the vertical (Y) axis. The
value at which this line intersects the Y axis is Yp. In Figure 16.2, a Y of 6 would
be predicted for anyone who obtained an X of 4.

Reading the Regression Line: The Slope of the Regression Line

The slope of the regression line measures the “rise over the run”; how many
units the line rises on the Y axis for every one unit moved to the right on the
X axis. For instance, if b = 0.93, the regression line ascends 0.93 Y units with

Y
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Yp= 6

(4, 6)

X = 4

Figure 16.2 Using the regression line to predict Y given X = 4.

4 Some textbooks use the symbol Y (“Y prime”) instead of Yp. We will use Yp to prompt us to think,
“predicted Y.”
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each successive unit of X. Suppose for the relationship between height (the Y
variable in inches) and weight (the X variable in pounds), a regression line
has a slope of +2. This means that an increase of 1 lb corresponds to an increase
of 2 in. In addition, a positive slope corresponds to a positive correlation, and a
negative slope corresponds to a negative correlation. Larger absolute values of b
indicate steeper slopes of the regression line. Figure 16.3 illustrates lines with
three different slopes. In Figure 16.3a, the line “rises” one unit on the Y axis
for every “run” of two units on the X axis. The slope is 0.5. In Figure 16.3b,
the slope of the line neither ascends nor descends. A line that is parallel to
the X axis has a slope of 0. In Figure 16.3c, the line descends one unit for every
one unit of increase on the X axis. The slope is −1.

The Least Squares Criterion

The criterion that is used to select the best straight line that could be drawn
through the scatter plot is called the least squares criterion. This criterion
assures that the regression line chosen has the least amount of prediction error
possible.
If the relationship between X and Y is perfect (r = ±1), then all data points will

lie along a straight line. The regression line will have all the points of the scatter
plot on it. Since a correlation of ±1 is extremely rare, there is typically a spread of
points surrounding the line; every point not on the line reflects an amount of
error. “Error” is the difference between the actual Y score obtained by an indi-
vidual and Yp, the score predicted for that person by the regression line.
Figure 16.4 shows a hypothetical regression line for the relationship between

GRE scores and subsequent GPA. For purposes of visual clarity, the swarm of
data points surrounding the regression line is not depicted. Dan received a GRE
score of 650. Next years’ predicted GPA for Dan is 3.62. If the GPA turns out to
be 3.00, we have missed by 0.62 GPA points. Marcy also scored 650 on the GRE.
The same GPA (3.62) was predicted for next year. Marcy later achieved a 4.00
GPA. In this case, we have erred by 0.38 GPA points.
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Figure 16.3 The straight lines with different slopes. (a) Slope of 0.5; (b) slope of 0; (c) slope of –1.
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Of all the straight lines that could be drawn through the scatter plot, we want
the line that creates the least amount of total error possible. Moreover, we
want unbiased predictions. This means we want a line that overpredicts to
the same extent that it underpredicts. Every data point not falling on the regres-
sion line has a correspondingmargin of error, defined as Y − Yp (symbolized as e;
Y − Yp = e). Sometimes Y − Ypwill be positive, and sometimes it will be negative,
depending on whether Y falls above or below the regression line. An unbiased
regression line will perfectly balance the positive and negative values, such that
Σ(Y − Yp) = 0. However, to use Σ(Y − Yp) as the least squares criterion would be
misleading because it suggests an overall summed error of zero. This is similar
to the problem addressed in Chapter 4 of using deviation scores to measure var-
iability in univariate distributions.When developing the variance formula, it was
noted that Σ(X −M) = 0. The solution was to square each deviation score in
order to remove the negative signs. This same solution is applied to determining
the regression line. The least squares criterion requires that the regression line
be fitted to the scatter plot in such a way that the sum of the squared errors (Σe2)
is minimized. The way in which the criterion is met mathematically is called the
least squares method.
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Error = Y– Yp
           = 4.00 – 3.62 = + 0.38

Error = Y – Yp
           = 3.00 – 3.62 = – 0.62

Yp= 3.62 for X = 650

Figure 16.4 An error is the deviation of an actual Y from the predicted Y (Yp).
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In Figure 16.5b, a regression line has been fitted to the scatter plot depicted in
Figure 16.5a. Each data point not on the line possesses some amount of error.
No other line drawn through the plot will yield a smaller value for Σe2.

Establishing the Regression Equation

Linear regression produces a straight line drawn through the middle of a scatter
plot. Recall that the general form of the equation for a straight line is Y = a + bX.
Once the least squares criterion has been specified (i.e. Σe2 is at a minimum),
formulas for a and b can be derived so that the criterion is met (see Draper
and Smith, 1966).

Estimate for the intercept

a = MY − bMX (Formula 16.2)

where

a = Y intercept
b = slope of the regression line
MY; MX = means of Y and X values

To arrive at the regression equation, we first substitute the formula for a into the
general equation for a straight line:

Y = a+ bX

Regression equation: interim step 1

Yp = MY − bMX + bX (Formula 16.3)
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Figure 16.5 (a) The scatter plot has been fitted with a regression line in (b). The line is drawn
so that Σe2 is minimized.
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Rearranging the terms yields Formula 16.4.

Regression equation: interim step 2

Yp = MY + bX − bMX (Formula 16.4)

Since both X and MX are multiplied by b, b can be factored out to form
Formula 16.5.

Linear regression equation

Yp = MY + b(X −MX) (Formula 16.5)

Formula 16.5 is the general linear regression equation for predicting Y given X
(also called Y on X).5 This equation, as well as others presented later, is for pre-
dicting Y given X. The addendum to the formula section of the end of this chap-
ter presents formulas for predicting X given Y. Only use the formulas in the
addendum if Y is determined to be the predictor variable and X is the predicted
variable (solving for Xp).
Formula 16.6 is the computational formula for the slope, given the least

squares criterion.

Computational formula for the slope

b=
np ΣXY − ΣX ΣY
np ΣX 2 − ΣX 2 (Formula 16.6)

Although it is possible to find Yp for a given X using a graph with the regression
line, this strategy is less precise than plugging the X value into the regression
equation and performing the simple arithmetic.

■ Question Use the data below to create a regression equation and find Yp

for X = 9.

X X2 Y Y2 XY

9 81 11 121 99

6 36 8 64 48

5 25 6 36 30

7 49 9 81 63

4 16 7 49 28

5 There are numerous equivalent formulas for the regression equation. Some textbooks use Yp = a
+ bX and provide formulas for b and a. In the author’s opinion, however, this is the easiest one with
which to work.
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Solution
MX = 6.20; MY = 8.20; ΣX2 = 207; ΣX = 31; ΣY = 41; ΣXY = 268; np = 5

b=
np ΣXY − ΣX ΣY
np ΣX 2 − ΣX 2

b=
5 268 − 31 41

5 207 − 31 2

b=
1350−1271
1035−961

b=
69
74

b= + 93

Yp =MY + b X−MX

Yp = 8 20 + 0 93 X−6 20

Yp = 8.20 + 0.93(X – 6.20) is the regression equation for Y given X. Now, any X
value can be placed in the equation to yield the Yp for that given X. The question
asks for the predicted Y when X = 9.

Yp = 8 20 + 0 93 9−6 20

Yp = 8 20 + 0 93 2 80

Yp = 8 20 + 2 60

Yp = 10 80 ■

Plotting the Regression Line

To plot the regression line, two points are required. Simply solve the regression
equation for any two values of X (ideally, the two points will be a good distance
apart). If we make X = 0, the Yp will fall on the Y axis – the Y intercept. There is
nothing particularly special about the intercept. However, for purposes of plot-
ting the line, it is oftentimes considered a helpful reference point.
For this example, we will select X’s of 4 and 8 to draw the regression line.

Yp = 8 20 + 0 93 4−6 20

Yp = 8 20 + 0 93 −2 20

Yp = 8 20−2 05

Yp = 6 15
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A Y of 6.15 is predicted for every person who has an X score of 4. What is the Yp

when X = 8?

Yp = 8 20 + 0 93 8−6 20

Yp = 8 20 + 0 93 1 80

Yp = 8 201 67

Yp = 9 87

The two coordinates are X = 4, Yp = 6.15 and X = 8, Yp = 9.87. Figure 16.6 shows
the regression line for Y given X.

More About the Slope

Formula 16.6 is used to compute the slope from raw data. Formula 16.7 can be
used if r (the correlation), sY (the standard deviation of Y), and sX (the standard
deviation of X) are provided. Since the correlation is used in Formula 16.7, it is
referred to as the correlation formula for the slope.
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Figure 16.6 Drawing the regression line using two points: (4, 6.15) and (8, 9.87).
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Correlation formula for the slope

b= r
sY
sX

(Formula 16.7)

■ Question What is the slope and Yp when r = 0?

Solution

b= 0
sY
sX

= 0

It does not matter what values sY and sX take, when r = 0, b = 0. A slope of zero
means that the regression line goes neither up nor down as the value of X
changes. In Figure 16.7, the scatter plot shows a regression line when b = 0.
When r = 0, b will always = 0, and Yp is always MY:

Yp =MY + 0 X−MX

Yp =MY

In Figure 16.7, note that the regression line is parallel to theX axis and intersects
the Y axis at MY. ■

Analysis of Regression

That X and Y are correlated at the population level is assumed when performing
a regression analysis. We do not have a separate section of the text dealing with
the assumptions behind the regression analysis, but they are very similar to the

High

Low
High

X

Y

Low

MY

Figure 16.7 When r = 0, the slope of
the regression line is zero (b = 0). The
regression line will intersect the Y
axis at MY.
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assumptions for other inferential statistical procedures, namely, population rep-
resentativeness in the samples, independent observations, the use of interval or
ratio data, and data that is normally distributed. Additionally, a regression anal-
ysis assumes X and Y are correlated at the population level. (There are two
additional assumptions discussed later in the chapter). Unlike some of the
others, the assumption that X and Y are correlated can be investigated. In fact,
an ANOVA can and should be run to test the null hypothesis that b = 0. The F
ratio is a ratio of two variances; the numerator is the variance of the Y scores that
is predicted by the regression equation. This variance measures the systematic
changes in Y that occur as the X value changes. This is the portion of variable Y
variance that is shared with variable X. The denominator is the unpredicted var-
iance in the Y scores. This variance measures the changes in Y scores that are
unrelated to changes in the value of X. As with other ANOVAs, these variances
are weighted according to the degrees of freedom associated with them. If the
amount of Y variance accounted for by X is similar, per df, to the amount of Y
variance not explained by X, the F ratio will be unimpressive (close to 1), and the
null hypothesis cannot be rejected.
In deference to brevity, we will not walk through the associated ANOVA for-

mulas or summary table. However, virtually all statistical software programs,
including Microsoft® Excel and SPSS®, generate an ANOVA to test the null
hypothesis that b = 0 when a regression analysis is performed. (More informa-
tion regarding the use of Excel and SPSS to test this null hypothesis can be found
at the end of this chapter.) Although the specifics of the analysis of regression
process are not covered here, oftentimes the F associated with this analysis is a
necessary part of reporting the findings. (See Section 16.7.)

How Accurate Is the Regression Equation?

Regression equations look very scientific. There is a tendency to equate “looking
scientific” with “accurate.” Regression equations, however, are merely statistical
tools, and just as some carpentry tools are more refined than others, some
regression equations are more accurate than others. For regression equations,
the measure of accuracy is embodied in the concept of prediction error. In
regression, the measure of prediction error is called the standard error of
the estimate, which is symbolized as se.

6 An understanding of the conceptual
basis of the standard error of the estimate first requires a discussion of condi-
tional distributions.

6 There are many different symbols used to represent the standard error of the estimate. We have
chosen to use the symbol se, so that the subscript reminds us that it is a measure of error.
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Conditional Distributions

A bivariate distribution is based on two related univariate distributions. One
univariate distribution is comprised of all of the observations of X, and the other
is comprised of all of the observations of Y. They have a correlated relationship;
together, the distribution of the pairs of scores comprises one bivariate
distribution.
Imagine we have conducted a study and recorded each participant’s X and Y

scores on a chip and then deposited all the chips in a box. Then someone asks to
see all of the chips that have an X score of 5. Do we think every Y score written
on a chip with a 5 will be the same? Unless the correlation between X and Y is +1
or −1, there will be an array of Y values associated with an X value of 5. In other
words, for that given value of X, there exists a corresponding distribution of Y
scores. The spread of Y scores for a given X is called a conditional distribution;
this means that every X value has a conditional distribution of Y scores. Each
conditional distribution has all the characteristics of any distribution of scores;
it has a mean, median, standard deviation, range, and so forth.
Figure 16.8 represents a few conditional distributions for different values of X.

The figure is idealized in that each conditional distribution assumes a normal
shape. (This figure is also a bit misleading since a flat surface forces us to illus-
trate the concept using only two dimensions. More visually appropriate would
be to imagine these conditional distributions protruding off the surface into a
third dimension.) With very large samples, normally distributed conditional

Y

X
0

Figure 16.8 Normally distributed conditional distributions of four values of X.
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distributions are usually the case. Presented later will be a discussion of the
implications for prediction when this condition is not met.
In the absence of correlated information, repeatedly predicting the mean of a

univariate distribution will minimize prediction errors. (Recall the task of pre-
dicting the height of an American biological male without any additional infor-
mation.) In the presence of correlated information, if conditional distributions
are normal, the mean is still the best prediction; but now it is the mean of each
conditional distribution. Each X score has an associated Y distribution of scores.
When asked the question “What would we predict for this X?,” the regression
equation answers “The mean of the conditional distribution of Y scores associ-
ated with that particular X.” The regression line connects all the means of the
conditional distributions (see Figure 16.8). The regression line connects the
means of each conditional distribution; for this reason, it can be referred to
as the “line of moving means.”
Francis Galton has the distinction of originating the concept of regression.

Spotlight 16.1 presents the man in the context of his discoveries.

Spotlight 16.1 Sir Francis Galton

Francis Galton (1822–1911) is credited with developing the concepts of corre-
lation and regression, although his understudy Karl Pearson was responsible for
many of the mathematical underpinnings of correlation. Galton led a full and
varied life. Born into a wealthy English family, he was afforded the luxury of
indulging his scientific curiosities. In the mid-1800s, European explorers were
mapping the interior of Africa. Perhaps inspired by the travels of his prodigious
cousin, Charles Darwin, Galton departed for Africa at the age of 28. His maps of
unknown regions of Africa were published, for which he received a gold medal
from the Geographical Society. For the next few years, Galton dabbled in geog-
raphy and meteorology. He coined the term anticyclone, invented three-
dimensional weather maps, and even invented spectacles that could be used
to read underwater (they did not sell well).
Galton was intellectually gifted and preoccupied with measurement. All

throughout life, he zealously counted things. Once, when attending a lecture,
he counted the number of fidgets per minute of members of the audience and
looked for variation as a function of audience attentiveness versus boredom. His
observations were published in Nature (Galton, 1885). While his portrait was
being painted, he counted the number of brush strokes in an hour. Multiplying
by the number of hours it took to paint his portrait, he estimated the total num-
ber of strokes at 20 000. (Contemporary clinicians might wonder if Galton suf-
fered from obsessive–compulsive disorder.)
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Without question, the greatest influence on Galton’s work was Darwin’s Origin
of Species, published in 1859. The mature years of Galton’s career were devoted
almost entirely to the quantification of heredity. This work led to the develop-
ment of statistical tools such as correlation and regression. He established the
Anthropometric Laboratory and collected thousands of observations on physical
and mental attributes, many from parents and their offspring. Indeed, Galton is
viewed as the father of biometrics, the quantitative aspect of biology, as well as
the father of mental testing. Galton’s book, Hereditary Genius (1869), put forth the
belief that intelligence is inherited. His evidence was based primarily on studies
that counted the number of eminent people who also had eminent relatives, an
admittedly weak methodology by today’s standards. In trying to find a quantita-
tive method for showing a link between cross-generational abilities, he came
upon the ideas of correlation and regression. Galton had collected data on the
heights of parents and their children and had drawn a graph with the average
of the parents’ heights on one axis and the height of their child on the other axis.
However, he was unable to arrive at a suitablemethod for statistically relating the
two distributions. Galton wrote in his autobiography of the moment in which he
was struck by the solution to his problem.

But I could not see my way to express the results of the complete
table in a single formula. At length, onemorning, while waiting at a road-
side station near Ramsgate for a train, and poring over the diagram inmy
notebook, it struck me that the lines of equal frequency ran in concentric
ellipses (Galton, 1908, p. 302).

The insight that “struck” Galton was the bivariate normal surface, that is, the
infinite series of conditional distributions depicted in the text of this chapter.
Galton’s discovery of correlation and regression has revolutionized the fields
of biology and the social sciences.
Galton’s abiding belief in the inheritance of physical, mental, and, in fact,

moral attributes led him to begin a movement to better the human race
through selective breeding, which he called eugenics, meaning “good birth.”
To be fair to Galton, there is little evidence he could foresee where his ideas
might lead. At the time, it held great appeal for many of the brightest scientists,
writers, and politicians of the era. Karl Pearson, Sir Ronald Fisher, George Ber-
nard Shaw, George Orwell, Teddy Roosevelt, and Winston Churchill were just
some of the prominent and ardent supporters of the eugenics movement. How-
ever, the sorrowful story of eugenics in America includes political actions endor-
sing forced sterilizations and marriage restrictions for the poor, ethnic
minorities, and the handicapped, immigration laws restricting entry to peoples
from certain parts of the world, and even more well-documented horrific and
drastic measures undertaken by German scientists (e.g. Lifton, 2000) and poli-
ticians (e.g. Kuhl, 1994) in Nazi Germany. There is simply no positive spin that
can throw into better light this darkest chapter of modern scientific reasoning.
However, we can say that despite the evils that emerged from the resonance of
Galton’s utopian ideal, the techniques he invented for exploring the world
around us have revolutionized the quantitative aspects of many disciplines
in the social and behavioral sciences.



Formulas for the Standard Error of the Estimate7

To recap, the regression line connects the means of all of the conditional
distributions, and Yp is the mean of the conditional distribution associated
with a given X value. If a conditional distribution has little variability, most
of the Y scores bunch around the mean of the distribution. As a result,
less error in prediction is made relative to predictions made when a
conditional distribution is highly variable. It would make sense that an over-
all measure of prediction error would be based on the amount of variability
found across the set of conditional distributions. Therefore, it should come
as no surprise that the definitional formula for the estimated standard error
of the estimate looks very much like a standard deviation formula. Formula
16.8 is based on the average of the squared errors for all possible predicted Y
scores.

Definitional formula for se

se =
Σ Y −Yp

2

n−2
(Formula 16.8)

The measure of error for a given X is the standard deviation of the Y scores
around the Yp value. If the amount of variability of Y scores differed for each
value of X, then a researcher would be in the awkward position of having a dif-
ferent se for each X. With two additional assumptions, se can be used as a meas-
ure of prediction error for any value of X. The first assumption is that each
conditional distribution is normally distributed. If Yp is the mean of each con-
ditional distribution, then it is important that themean falls at the center of each
conditional distribution. (Recall the discussion in Chapter 3 about the problems
with using the mean as a measure of centrality for skewed distributions.) The
second assumption is that each conditional distribution has the same standard
deviation. This assumption is termed homoscedasticity (homo meaning same,
scedasticmeaning scatter). Formula 16.8 is the definitional formula for the over-
all amount of prediction error, irrespective of the value of X and the predicted
Y score.
The definitional formula for se emphasizes the fact that the standard error of

the estimate is a standard deviation. The definitional formula is computationally
prohibitive since every X score would have to be entered into the regression

7 In this text, regression is discussed as a set of inferential techniques. It is assumed that sample data
are used to make inferences about population parameters, in this instance, the standard error of the
estimate. Therefore, when we read “the standard error of the estimate,” bear in mind that we are
estimating a population parameter. The formulas for se are presented with the assumption that
sample data is being used.

598 16 Linear Regression



equation and then Σ(Y − Yp)
2 would have to be computed for all obtained Y

values. When working from raw data, however, the following computational
formula can be used.

Computational formula for se

se =
1

np np−2
npΣY 2− ΣY 2 −

npΣXY − ΣX ΣY 2

npΣX2− ΣX 2 (Formula 16.9)

How Does the Size of the Correlation Affect Prediction Error?

An equivalent formula for the standard error of the estimate is presented, which
allows a researcher to examine the relationship between r and se. Formula 16.10
is the correlation formula for the standard error of the estimate. It can be used
for computational purposes if sY, np, and r are provided.

Correlation formula for se

se = sY 1−r2
np

np−2
(Formula 16.10)

Suppose the correlation between X and Y is perfect. Substituting r in the
formula with either +1 or −1 yields se = 0. A perfect correlation means no
prediction error.

Interpreting the Standard Error of the Estimate

With a normal distribution, approximately 68% of the scores fall within ±1
standard deviation of the mean. In regression, Yp is the mean of a conditional
distribution; approximately 68% of the actual Y scores fall within ±1se of the
mean (Yp) of the conditional distribution. For a given X score, 95% of the actual
Y scores fall between Yp ±1.96se (Glass & Stanley, 1970; Shavelson, 1988;
Wiggins, 1973).8 Figure 16.9 shows conditional distributions for three values
ofX. The dotted lines mark the cutoffs between which 95% of the actual Y scores
lie, for each value of X.
Suppose we are interested in predicting the GPAs of first-year graduate stu-

dents from quantitative GRE (GRE-q) scores. Assume that se = 0.25 and that the

8 Recall the 68-95-99.7 rule introduced in Chapter 4, roughly reflecting the percent of scores within
±1, ±2, and ±3 standard deviations of themean. Since se is a standard deviation, the same relationship
applies here. Of course ±1.96 is a more accurate number than 2 to encapsulate the middle 95% of the
scores.
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regression equation predicts a GPA of 3.50 for everyone with a GRE-q of 160.
Although we predict a GPA of 3.50 for every student with a GRE-q of 160, there
will be error since the correlation between GRE-q and GPA is not perfect. We
can estimate that 68% of the students with a GRE-q of 160 will achieve a GPA
between 3.75 and 3.25 (Yp ± 1se = 3.50 ± 0.25). We can also estimate that 95%
of the students with a GRE-q of 160 will achieve a GPA between 3.99 and
3.01 [Yp ± 1.96se = 3.50 ± 1.96(0.25)].

16.4 Putting It All Together: A Worked Problem

A team of researchers is interested in the relationship between marital satisfac-
tion among couples and the subsequent marital satisfaction reported by their
children. A large sample of couples had been studied 15 years earlier; their
scores from a marital satisfaction questionnaire (MSQ) are still available. They
obtain the data from all couples who had a 15-year-old child at the time of the
original study. A random sample of seven couples is drawn, their MSQ scores
are recorded, and their children, now 30 years of age, are located. All seven chil-
dren are now married and the MSQ is administered to each of them. The
researchers are interested in the correlation between parents’ and children’s
level of marital satisfaction. They would also like a regression equation that

Y

X
0

47.50%

47.50%

Yp

+1.96 se

–1.96 se

Figure 16.9 Ninety-five percent of the actual Y scores fall between Yp ± 1.96 se.
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can be used to predict the future marital satisfaction of children, knowing only
the level of satisfaction reported by their parents. The following table and list of
steps show the calculation of the correlation, regression equation, and the
standard error of the estimate. Figure 16.10 shows the scatter plot of the pairs
of scores. Marital Satisfaction scores can range from 0 (very dissatisfied) to
10 (very satisfied). An interpretation of the findings is also provided.
Step 1. Construct a scatter diagram to see if there is a linear relationship

between X and Y. Figure 16.10 indicates that the relationship is linear; there
is no curve to the swarm of data points. (The regression line is drawn later.)
Moreover, the scatter plot reveals a positive correlation between X and Y
because the swarm of points ascends from the lower left to the upper right
of the graph.

Step 2. Compute the correlation between X and Y. Mathematically speaking, it
is not necessary to compute the correlation in order to establish the regres-
sion equation. However, the correlation is always of substantive interest; in
addition, regression is useless if there is no correlation between the variables.
The correlation coefficient is computed using the Pearson raw score formula
and is found to be large, +.80.
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Figure 16.10 The scatter plot and regression line for the data on marital satisfaction.
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Marital Satisfaction

Parents: X Children: Y

1 3

3 2

7 6

9 7

8 8

4 6

5 3

MX = 5.29 MY = 5.00

np = 7

ΣX = 37 ΣY = 35

ΣX2 = 245 ΣY2 = 207

sX = 2.87 sY = 2.31

ΣXY = 217

r =
np ΣXY − ΣX ΣY

np ΣX2 − ΣX 2 np ΣY 2 − ΣY 2

r =
7 217 − 37 35

7 245 − 37 2 7 207 − 35 2

r =
1519−1295

1715−1369 1449−1225

r =
224

346 224

r =
224

278 40
r = + 80

Step 3. Compute the slope. Formula 16.6 is used when working from raw data.
Since r has been computed and sX and sY are provided, Formula 16.7 would be
the formula of choice. Nonetheless, the computational formula is used for
illustrative purposes.
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b=
np ΣXY − ΣX ΣY
np ΣX 2 − ΣX 2

b=
7 217 − 37 35

7 245 − 37 2

b=
1519−1295
1715−1369

b=
224
346

b= + 0 65

Step 4. The necessary values for establishing the regression equation are now
available. Use the regression equation to plot the regression line. Pick any two
values of X (preferably at some distance from each other), compute Yp for
each value, plot each Yp, and draw a straight line. X values of 3 and 8 have
been chosen. Figure 16.10 shows the regression line.

Yp =MY + b X −MX

Yp = 5 00 + 0 65 X−5 29

Yp for X = 3 = 5 00 + 0 65 3−5 29 = 3 51

Yp for X = 8 = 5 00 + 0 65 8−5 29 = 6 76

Plot points at coordinates 3, 3.51 and 8, 6.76.
Step 5.Compute the standard error of the estimate. Formula 16.10 would be the

easiest to use because r and sY are known. However, Formula 16.9, the com-
putational formula, will be used to illustrate its computational steps.

se =
1

np np−2
npΣY 2− ΣY 2 −

npΣXY − ΣX ΣY 2

npΣX2− ΣX 2

se =
1

7 7−2
7 207 − 35 2 −

7 217 − 37 35 2

7 245 − 37 2

se = 0 029 1449−1225 −
1519−1295 2

1715−1369

se = 0 029 224 −
224 2

346
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se = 0 029 224−145 02

se = 0 029 78 98

se = 2 29

se = 1 51

The measure of prediction error is se = 1.51. Suppose, for a specific 15-year-
old adolescent biological male, we want to predict his level of marital satisfac-
tion when he is 30 years old. We administer the MSQ to his parents, find that
their score is 7, and, using the regression equation, find Yp = 5.00 + 0.65
(7 − 5.29) = 6.11. Therefore, we predict that he will report a level of marital sat-
isfaction of 6.11 when he is 30 years old. However, what about the accuracy of
our prediction?We can state that approximately 68% of all 15-year-old children
who have parents who scored a 7 on the MSQ will report, 15 years later, marital
satisfaction scores between 4.60 and 7.62 (6.11 ± 1.51).
By now, we might have wondered why a prediction equation goes by the term

regression. Galton coined the term for good reason. Box 16.2 details the origin of
the term and explains why the term reflects a fundamental aspect of making
predictions.

Box 16.2 Why Is a Prediction Equation Called a Regression Equation?

While in grade school, one of the authors of this text, Laurence, had a teacher
who wanted to reward effort. She gave a test at the beginning of the term (pret-
est) and another test at the end of the term (posttest). She subtracted each stu-
dent’s pretest score from their posttest score to arrive at a difference score
(Y − X = D). A positive D score indicated improvement, a 0 showed no improve-
ment, and a negative D score meant that the student had done worse on the
second test. She then used the D score as a measure of effort and assigned her
grades accordingly; those students with positive D scores received the highest
grades, and those students with negative D scores received the lower grades.
Her intent was commendable. She wanted to make her grading fair by not dis-
advantaging the students who performed poorly on the pretest. She wanted to
impress on us the importance of always “trying really hard,” irrespective of our
previous scores. As she reminded us, “No matter how good you are; there is
always room for improvement.” Although Laurence did quite well on the pret-
est, he recalled that he did not do as well on the posttest and received a rather
mediocre grade. Years later, after learning something about regression analysis,
he exclaimed, “I was robbed!” (Not that he harbored any deep-seated resent-
ment.) The teacher had failed to understand a fundamental concept of regres-
sion, called regression toward the mean. Without intending, she had doomed
most of the students who did well on the pretest. Similarly, she had practically
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assured that the students who scored low on the pretest would eventually
receive high grades.9

Regression toward the mean is a built-in characteristic of using one variable
to predict a second variable, when the correlation between the variables is less
than perfect. Galton was the first to discover this phenomenon and referred
to it as “regression to mediocrity.” In his work on heredity, he gathered mea-
sures of fathers’ and sons’ heights (Galton, 1869). He found that their heights
were positively correlated (although not perfectly). Tall fathers tended to have
tall sons and short fathers tended to have short sons. However, very tall fathers
tended to have sons who were not as tall as the father, and very short fathers
tended to have sons who were not as short as their father. In general, the
heights of sons tended to “regress” toward the mean height of all sons. This
is the meaning of “regression toward the mean.” A statistical way of stating
the regression effect is as follows. Suppose we examine just those fathers
who have heights that are two standard deviations above the mean height
of all fathers. We will find that their sons will not be, on the average, two stand-
ard deviations above the mean of the height of all sons. The sons of these tall
fathers will tend to be above the mean of all sons, but not two standard devia-
tions above the mean. The same logic holds for short fathers and their sons. The
regression effect is also found in situations that have nothing to do with
heredity.

Whenever two variables are imperfectly correlated (i.e. less than ±1), regres-
sion toward the mean is likely to occur. This fact has a very important implica-
tion for designing studies. Suppose we want to show the advantages of a study
program for poor students. We administer some test of ability, take the lowest
10% of the group, and put them into the study. After six months in the program,
we administer the same ability test and conduct a dependent-samples t test,
comparing the pretest and posttest means. We will most likely find a significant
improvement in ability. Should we conclude the study program was effective?
Not according to the foregoing discussion of the regression effect. Those stu-
dents who scored low on the pretest will tend to score to some degree higher
on the posttest independent of any effect from the educational program.
(Including a control group of low-ability students who did not receive the pro-
gram would not eliminate the regression effect, but it would allow the investi-
gator to examine how much improvement was due to regression toward
the mean.)

So, whenever a teacher that hands out grades based on improvement is
found, kindly explain to them the concept of regression toward the mean.

9 The other author of this text, Paul, feels he may have had a different feeling about this grading
system, given his typical performance on grade-school pretests!
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16.5 The Coefficient of Determination in
the Context of Prediction

The concept of r2 was discussed in Chapter 15. The coefficient of determination
reflects the amount of shared variance between X and Y, that is, the amount of
variance in the Y scores accounted for by the variance in X scores. Now that we
have learned some of the intricacies of regression, r2 can be presented from the
perspective of prediction. Indeed, the coefficient of determination is easier to
understand when viewed with respect to prediction.
From the discussion of the standard error of the estimate, we know that as the

correlation increases, the amount of prediction error decreases. The correlation
formula for the standard error of the estimate (Formula 16.10) was stated as

se = sY 1−r2
np

np−2

A simpler version of Formula 16.10 leaves off the component incorporating
sample sizes (this feature of the formula becomes increasingly irrelevant as
np increases). This formula merely estimates the standard error of the
estimate.

Correlation formula for estimating se

se = sY 1−r2 (Formula 16.11)

The percentage of prediction error can range from 100 to 0%. Using Formula
16.11, when r = 0, there is no improvement (reduction in error) over the value

of sY se = sY 1−02 = sY . In this case, prediction error is at a maximum –

100%. What happens when r = .50 and the coefficient of determination
is r2 = .25?

se = sY 1− 50 2

se = sY 1− 25

se = sY 75

se = sY 87

Prediction error is now 87% of the value of sY. If prediction error is 100% when
se = sY, then when r = .50, prediction error decreases by 13% (100 − 87%). We
might ask, “decreases prediction error relative to what?”Well, relative merely to
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predicting the mean of the Y distribution. Some correlations and their corre-
sponding reductions in prediction error follow.

r Reduction in Prediction Error (%)

1.00 100

.75 34

.50 13

.25 3

.00 0

Whenever correlated information is available, we should use it to improve pre-
diction. However, as is shown in the preceding table, substantial reductions in
prediction error are only achieved with strong correlations. Also, note that the
relative reduction in prediction error “gains speed” as the size of the correlation
increases. While there is only a 10% improvement in error between correlations
of .25 and .50, there is a 21% improvement in error rate between the correlations
of .50 and .75.

16.6 The Pitfalls of Linear Regression

Chapter 15 discussed several factors that lead to the misinterpretation of a
correlation. Since regression is intimately connected with correlation, it should
be no surprise to learn that the same conditions that create misleading correla-
tions will adversely affect the usefulness of regression analyses. This
section discusses some of the factors that can undermine the accuracy of the
prediction equation. (For a more detailed presentation of these factors, refer
back to Section 15.5.)

Restricted Range

Figure 16.11 reveals a linear relationship between X and Y. What if the sampled
values of X are confined to the area between the vertical lines? The scatter plot
between the lines fails to capture the true relationship between X and Y. As was
previously discussed in Chapter 15, the problem of range restriction can arise
when using GRE scores to predict GPA in graduate school. The available GREs
are the GREs of the students who have been accepted to a graduate program.
This sample does not accurately reflect the full range of GRE scores; scores
above the population mean are overrepresented. Not only will the correlation
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between GRE and GPA underestimate the strength of the relationship between
the variables, but also the accuracy of the regression equation will diminish.
Examining the scatter plot will not help to decide if there is a range restriction

for X and/or Y. We will need to know the range of possible values for each var-
iable and then separately examine the X and Y sample distributions to see if
these scores are an accurate representation of the population from which they
are drawn.

Extreme Scores

An extreme score can create the false impression that there is a linear relation-
ship between X and Y. Figure 16.12 shows a scatter plot in which there is one
outlier in the upper right corner of the plot. Were it not for this extreme point,
the regression line would be parallel to the X axis, indicating no relationship
between X and Y. However, the extreme point could lift the regression line
so that its slope is nonzero. With the outlier included, the regression equation
might be relied upon for predictions when, in fact, there is no relationship
between X and Y. Thankfully, this pitfall is mitigated as the sample size
increases. This is another reason to create a scatter plot; it will reveal the pres-
ence of an extreme score.

Y

X

Figure 16.11 A linear relationship may be impossible to detect if either X or Y has a restricted
range of scores.
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Overgeneralization

It is a mistake to apply a regression equation to different populations from the
one used to establish the regression equation. Recall the hypothetical study in
which parents’ marital satisfaction was used to predict the level of marital sat-
isfaction among their children, 15 years later. All the children in the sample
were 15 years old when values of the predictor variable (parents’ MSQ score)
were obtained. It is most likely still appropriate to apply the regression equation
to predict the future marital satisfaction of any 15-year-old adolescent. How-
ever, it is dubious to think we could use the equation to predict the future mar-
ital satisfaction of 2-year-old children or 20-year-old children. The regression
equation was not constructed using data from parents of children with these
ages. To apply the regression equation to a different population is to overgen-
eralize the results obtained from one sample.

Violating Homoscedasticity

What happens to prediction error when the standard deviations of the condi-
tional distributions are dissimilar (called heteroscedasticity)? Figure 16.13
shows a heteroscedastic plot for Y given X. There is a positive linear relationship
between the variables, but the amount of prediction error increases as the value
of X increases. The standard error of the estimate would be different for every
value of X. The magnitude of the prediction error for each predicted Y would
fluctuate accordingly. Prediction in this case would be worse for higher values of
X as compared with lower values of X. As a result, we would not be justified

Y

X

Figure 16.12 Even though the majority of scores suggest no relationship exists between X
and Y, the extreme score in the upper right can create the impression of a linear relationship
between X and Y.
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in assuming that 68% of the actual Y scores for a given X score lie between
Yp ± 1se.
Be careful not to get lost in the mechanics of calculating regression equa-

tions. Regression is a powerful statistical tool that can give the researcher
the ability to predict unknown values, but there are also many pitfalls to be
carefully avoided.

16.7 How to Present Formally the Conclusions
of a Linear Regression Analysis

The proper reporting of regression equations is a bit different from the
reporting of t, F, and r tests. When reporting a linear regression, we must
identify the predictor and predicted variables, register the rejected F testing
the null that b = 0, and include a quantitative measure of the relationship
between them (slope) and, typically, the r2 value as well. For instance, “A sim-
ple linear regression was calculated to predict height based on shoe size. Sta-
tistical evidence for a regression equation was found, F(1, 6) = 41.63, p < .05,
with an r2 of .87. The resulting equation suggests height increases 0.46 in. for
each unit increase in shoe size.” Notice that a “0” preceding the decimal is
typically not reported in professional writings. A failure to reject the null
might read, “A simple linear regression was calculated to predict height based
on shoe size. No statistical evidence was found for a regression equation,
F(1, 6) = 1.63, n.s.”

Y

X

Figure 16.13 Conditional
distributions with
progressively larger standard
deviations as the value of X
increases. This is a violation of
homoscedasticity.

610 16 Linear Regression



Summary

Linear regression is a statistical method utilizing bivariate data to predict the
value of one variable when information about another variable, correlated with
the first one, is available. Regression proceeds in two steps. First, a prediction
equation is established from a random sample of participants. Second, the pre-
diction equation is applied to individual cases where the value of only one var-
iable is known.
The regression equation defines a line along which each predicted Y for any

given X lies. The slope is the angle of the regression line. It reflects the “rise over
the run.” The slope states the number of units Y changes as X changes by one
unit. A positive slope indicates a positive correlation, whereas a negative slope
indicates a negative correlation. A slope of zero is a straight line parallel with the
X axis, intersecting the Y axis at the mean of the Y distribution.
A correlation of zero will yield a slope of zero, neither ascending nor descend-

ingwith increasing values ofX. Since a slope of zerowill intersect theY axis atMY,
a correlation of zeromeans thatMY should always be predicted in the absence of
correlated information. An analysis of regression can be run testing the null
hypothesis that b = 0 for the population of bivariate scores. If this null hypothesis
cannot be rejected, the findings of a regression analysis are meaningless.
An error in predication is the difference between the actual score obtained by

the participant and the score predicted for the person. The prediction line must
be drawn such that the sum all of the errors will equal zero, indicating an unbi-
ased prediction equation. Additionally, the regression line is to be drawn so that
the sum of the squared errors, Σe2, is at a minimum. This is called the least
squares method.
Each X score is associated with an array or distribution of Y scores. These sets

of Y scores for given values of X are called conditional distributions. The regres-
sion analysis assumes them to be normal and to have similar standard deviations
across the range of possible X values (the assumption of homoscedasticity). For
any givenX score, it is themean of the corresponding conditional distribution of
Y’s that is the predicted value (Yp).
The standard error of the estimate is a measure of prediction accuracy. Sixty-

eight percent of the actual Y scores will fall within ±1se of any Yp. When the
correlation is ±1, prediction error is zero. This reflects the fact that when
r = ±1, all points lie on the regression line; there is no array of Y scores asso-
ciated with any X score.
The viability of a regression analysis is based on several factors. A regression

equation should only be used with individuals who are represented in the sam-
ple from which the regression equation was established. Range restrictions of X
and/or Y as well as the presence of extreme scores or heteroscedasticity will also
invalidate regression analyses.
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Using Microsoft® Excel and SPSS® to Create a Linear
Regression Line

Excel

General instructions for data entry into Excel can be found in Appendix C.

Data Entry
Enter the bivariate data into two adjacent columns, being sure to keep the data
from each participant together in the same row. Label the columns appropri-
ately. (See Figure 16.14 for an example.)

Data Analysis
1) Excel has built-in programs for many inferential tests, including linear

regression. To access it, click on the Data tab on the top menu and then click
Data Analysis. (Some versions of Excel have a “Tools” tab. The Data Anal-
ysis function may be under this tab.) If this option is not found, the Data
Analysis ToolPak needs to be installed. See Excel instruction materials for
how to install this feature.

2) With the Data Analysis box open, select Regression.
3) Input the data range for each variable by dragging over the data set for each

variable into the corresponding Input Range box. Make sure that the pre-
dicted variable (Y) is placed in the Input Y Range box and the predictor var-
iable (X) is placed in the Input X Range box. Accidentally switching these

Shoe size Height

72 10 Summary output

66 9

74 13 Regression statistics
68 10 Multiple R 0.9 348 898

63 7 R Square 0.874 019

70 10 Adjusted R square 0.8 530 222

73 12 Standard Error 0.709 876

67 9 Observations 8

ANOVA

df SS MS F Significance F
Regression 1 20.97 645 601 20.97 646 41.62 623 0.000 656 801

Residual 6 3.02 354 399 0.503 924

Total 7 24

Coefficients Standard error t Stat P-value
Intercept –21.521 685 4.892 131 999 –4.39 924 .004 572

X variable 1 0.4 560 099 0.070 679 057 6.451 839 .000 657

Figure 16.14 A worked example of a regression analysis using Microsoft Excel.
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around will give us a faulty slope value. In the Figure 16.14 example shown,
we are predicting height (Y) using shoe size (X). (If we include the labels in
the data range, make sure to click the Labels box to exclude those cells.)
Leave the Constant to Zero box unchecked (we do not want to force the
regression line through origin of the graph), and leave the Confidence Level
box at the 95% default value.

4) Decide on an Output option. The default is to place it on a separate work-
sheet. Leave the other boxes below also unchecked. These are for analyses
that are more sophisticated.

5) Click OK. (Increase column width as necessary so the longer output labels
can be read.)

6) Three tables are produced. Below are the outputs of particular importance to a
regression analysis. Multiple R is the correlation between the two variables
(Pearson’s r).R Square is the coefficient of determination (r2). Standard Error
is the standard error of the estimate. [The ANOVA analysis in the middle box
tests the null hypothesis that b = 0. If the regression F is not large and the prob-
ability associatedwith it (SignificanceF) is larger than .05, thenwecannot reject
this null, and the regression analysis is meaningless. This is akin to testing the
null hypothesis that ρ = 0 inChapter 15 and failing to reject the null.] The coef-
ficient associated with theX variable (XVariable 1) in the last box is the slope.
Excel’s regression analysis does not produce eitherMX orMY. We will need to
use theDescriptive Statistics function found in theData Analysis toolbox to
generate those values. (See Figure 16.14 for a worked example.)

7) The slope, MX, and MY can be used to construct a regression line equation
and solve for the corresponding Yp for any given value of X.

SPSS

General instructions for inputting data into SPSS can be found in Appendix C.

Data Entry
In SPSS, each row of the data file represents a participant. Since bivariate data is
used in calculating a regression equation, create a series of variables withinVar-
iable View corresponding to the variables measured. Then, go to Data View,
and input the data, being careful to keep data from each participant within a
given row. See Figure 16.15 for an example.

Data Analysis
1) Click Analyze on the tool bar, select Regression, and then click Linear.
2) Use the arrow key to move the variable to be predicted into the Dependent

box and the predictor variable into the Independent(s) box. Be careful not
to get these two confused. Doing so would generate a wrong slope value.
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Shoe size Height

1 

2 

3 

4 

5 

6 

7 

8 

72 10

66 9

74 13

68 10

63 7

70 10

73 12

67 9

Figure 16.15 An example of entered data
for a regression analysis in SPSS.

Regression

Model summary

Model R R square
Adjusted R

square

Std. error
of the 

estimate

1 .935a

aPredictors: (constant), shoe size

ANOVAa

Model
Sum of 
squares df

Mean 
square F Sig.

1 Regression

Residual

Total

3.024 6 .504

24.000 7

aDependent variable: height

bPredictors: (constant), shoe size

Coefficientsa

Model

Unstandardized
coefficients

Standardized
coefficients

t Sig.B Std. error Beta

1 (Constant)

Shoe size

.874 .853 .710

20.976 1 20.976 41.626 .001b

–21.522 4.892 –4.399 .005

.456 .071 .935 6.452 .001

aDependent variable: height

Figure 16.16 Output tables from a worked example using SPSS to run a regression analysis.
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3) Since we will need MX and MY to create the regression equation, click the
Statistics box in the upper right-hand corner, and then select Descriptives.
Click Continue.

4) Click Ok on the main menu and run the analysis.
5) The first box will give us both MX and MY.
6) The slope can be found in the Coefficients box at the bottom. The slope is

the unstandardized coefficients B value associated with the predictor
variable.

7) Other helpful information presented includes an ANOVA test of the null
hypothesis b = 0. In theANOVA box, if the probability (Sig.) associated with
the F value is larger than .05, then the null cannot be rejected, and the anal-
ysis is meaningless. (This is akin to testing the null hypothesis that ρ = 0 in
Chapter 15 and failing to reject the null.) In the Model Summary box, R is
the Pearson r, R Square is the coefficient of determination (r2), and Std.
Error of the Estimate is the standard error of the estimate. (See
Figure 16.16 for a worked example. Note: Some unreferenced tables have
been removed from the figure.)

Key Formulas

Straight line formula

Y = a + bX (Formula 16.1)

Estimate for the intercept

a = MY − bMX (Formula 16.2)

Regression equation: interim step 1

Yp = MY − bMX + bX (Formula 16.3)

Regression equation: interim step 2

Yp = MY + bX − bMX (Formula 16.4)

Linear regression equation

Yp = MY + b(X −MX) (Formula 16.5)

Computational formula for the slope

b=
np ΣXY − ΣX ΣY
np ΣX 2 − ΣX 2 (Formula 16.6)

Correlation formula for the slope

b= r
sY
sX

(Formula 16.7)
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Definitional formula for se

se =
Σ Y −Yp

2

n−2
(Formula 16.8)

Computational formula for se

se =
1

np np−2
npΣY 2− ΣY 2 −

npΣXY − ΣX ΣY 2

npΣX2− ΣX 2 (Formula 16.9)

Correlation formula for se

se = sY 1−r2
np

np−2
(Formula 16.10)

Correlation formula for estimating se

se = sY 1−r2 (Formula 16.11)

Addendum

The following formulas predict X given Y.

Regression equation

Xp = MX + b(Y −MY)

Formulas for the slope

b=
np ΣXY − ΣX ΣY
np ΣY 2 − ΣY 2

b= r
sX
sY

Formulas for the estimated standard error of the estimate

Correlation formula for estimating se

se = sX 1−r2

Computational formula for se

se =
1

np np−2
npΣX2− ΣX 2 −

npΣXY − ΣX ΣY 2

npΣY 2− ΣY 2
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Key Terms

Regression Least squares criterion
Regression equation Least squares method
Multiple regression Standard error of the estimate
Regression line Conditional distribution
Y Intercept Homoscedasticity
Slope Heteroscedasticity

Questions and Exercises

1 If blindly guessing a value from a known distribution of normally distrib-
uted scores, what value should be chosen? Why?

2 What are the two important uses of regression analysis?

3 Why must we use care when interpreting the findings of regression ana-
lyses in the same way we use care when interpreting correlations?

4 What does it mean to say the regression line is based on the least squares
method?

5 What is the name of the place on the Y axis where the regression line passes
through?

6 Why cannot Σ(Y − Yp) be used as the basis for measuring error?

7 What concept does se represent?

8 What is the difference between a small standard error of the estimate and a
large one?

9 If r = 0, what must b equal?

10 What does the slope tell us? What does it not tell us?

11 Even though a data set may have many different Y values associated with a
given X value, why is the generated Yp always the same?

12 When is it not reasonable to perform a regression analysis on bivariate
data? Why?
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13 Why is the assumption of normality for conditional distributions
important?

14 When using the standard error of the estimate as a measure of prediction
error, why is the assumption of homoscedasticity important?

15 Why does a multiple regression analysis typically explain a larger percent-
age of variability in a predicted variable than a linear regression analysis?

16 Why must a researcher be careful when using a prediction equation with
an individual who has characteristics unlike the people who were
included in the original sample from which the regression equation
was derived?

17 Use the correlation formula (Formula 16.7) to determine the slope for pre-
dicting Y from X of the following bivariate distributions.
a r = −.51, sY = 3.75; sX = 8.54.
b r = .33, sY = 1.71; sX = 2.17.
c r = .82, sY = 1.03; sX = 1.54.

18 Suppose a tax official learns that the slope for the regression line between
the price of gas and the number of nonwork-related miles driven by drivers
to be −0.40. Interpret the likely relationship between gas prices and trans-
portation activities like traveling for vacation.

19 Suppose a regression analysis of bivariate data gathered on the variables
“hours studied per week” and “GPA” results in a regression equation as fol-
lows: Yp = 2.92 + 0.08(X − 18). What would be our predicted GPA if we
adopted each of the following study plans?
a 10 hours a week.
b 22 hours a week.
c 30 hours a week.

20 Provide the requested statistics based on the following data set.

X Y

2 4

7 12

3 7

7 14

5 11

3 5
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a Calculate the slope of the regression line for predicting Y from X.
b Establish the regression equation for predicting Y from X.
c Calculate the corresponding se using the computational formula.

21 Provide the requested statistics based on the following data set.

X Y

12 4

4 11

13 7

6 14

9 3

8 9

a Calculate the slope of the regression line for predicting Y from X.
b Establish the regression equation for predicting Y from X.
c Calculate the corresponding se using the computational formula.
d Determine Yp when X = 1.

22 In a study on pain tolerance, a researcher is interested in predicting the
amount of time that participants are able to keep their hands in ice-cold
water. Based on previous research, the researcher knows that vitamin
E intake over the past 12 hours is correlated with tolerating a painful stim-
ulus, at least when the stimulus is freezing water. The following table lists
the pairs of scores for the study sample.

Vitamin E: (X) Tolerance Times (in seconds): (Y)

5 23

9 32

22 65

12 40

16 42

a What is the b?
b What is the Y intercept?
c What is the se?
d What tolerance time should we predict for someone who has taken

16 units of Vitamin E the morning of the study?
e Withinwhat time interval shouldwebe68%confident lies the right answer?
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23 A sociologist is interested in predicting yearly income (Y) based on
prior education level (X), with education level defined as the number
of years of formal schooling. The following data were collected from
six individuals.

Education: (X)
Income
×1000: (Y)

10 15

14 29

9 14

14 37

12 20

13 23

a What is the b?
b What is the Y intercept?
c What is the se?
d What income should we predict for someone with ten years of

education?
e Within what pay range should we be 95% confident lies the right

answer?

24 An admissions committee needs to predict whether a particular student
will be able to make passing grades during the first year of graduate school.
In order to make it past the first year, the student will have to achieve a 3.00
GPA in the first semester of graduate school. The admissions committee
has data from past years on the relationship between undergraduate GPA
and the subsequent first-year graduate school GPA. Those data are as
follows.

Undergraduate
GPA: (X)

Graduate School
GPA: (Y)

3.50 3.33

3.98 3.63

3.10 3.40

2.90 3.41

3.40 3.40
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a What is the b when predicting graduate school GPA?
b Should they admit a student with a 3.00 GPA?
c Of the incoming students with a GPA of 3.67, what is the graduate
school GPA predicted range for the middle 68%?

25 (This problem uses the research scenario and data from Chapter 15, ques-
tion 31.) A researcher is interested in the relationship between smoking
and illness. A sample of 13 smokers in a large office is randomly selected
and asked to report the average number of cigarettes they smoke per day.
The researcher then obtains the company records that monitor the num-
ber of sick days each employee has taken over the past six months of
employment. Run a regression analysis predicting the number of sick days,
and answer the following questions.

Number of Cigarettes Number of Sick Days

11 1

10 1

26 5

15 3

9 2

16 2

20 2

8 1

3 0

24 4

21 6

5 0

14 3

a What is the slope?
b What is the regression equation?
c What is the Y intercept?
d What is the se?
e What number of sick days should be predicted for an employee who

smoked 15 cigarettes a day?
f What is the 68% confidence range of missed days for someone who
smokes 10 cigarettes per day?

26 (This problem uses the research scenario and data from Chapter 15, ques-
tion 32.) A psychologist is interested in the relationship between
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Intelligence andWord Processing Speed on a keyboard. The gathered data
from 12 participants are below. Either use a computer program to test the
null hypothesis that b = 0, or find the correlation. Should a regression anal-
ysis be run on this data? Why or why not?

Intelligence Word Processing Speed

108 28

96 46

90 55

111 40

119 34

105 38

98 57

93 47

117 48

127 73

101 56

103 48

27 Suppose another researcher, accessing a different population (older indi-
viduals who originally learned how to type on a typewriter), found the fol-
lowing bivariate data regarding intelligence and typing speed (in words per
minute). It was found that r(10) = .86. Run a regression analysis predicting
Word Processing Speed, and answer the following questions.

Intelligence Word Processing Speed

109 48

94 36

100 45

117 59

104 39

90 32

116 57

87 37

122 53

88 46

126 59

101 45
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a What is the slope?
b What is the regression equation?
c What is the Y intercept?
d What is the se?
e What words per minute should be predicted for a person with an IQ

of 100?
f What is the 95% confidence range of words per minute for this
person?

28 Gerson, Plagnol, and Corr (2016) examined the relationship between
social media use and happiness (known as “subjective well-being in
the professional literature”). Examine the manufactured data below
which has been designed to reflect merely one aspect of the study
(use of social media for social comparison purposes). Higher subjective
well-being numbers mean greater happiness. Run a regression analysis
predicting subjective well-being, and answer the following questions.

Using social media for social comparison purposes

Use (hours/day) Subjective well-being

3.1 3

2.8 4

1.8 6

3.0 4

3.3 2

1.5 7

0.8 6

2.2 4

1.8 6

0.6 8

a What is the slope?
b What is the regression equation?
c What is the se?
d What subjective well-being should be predicted for a person who

spends three hours a day on social media for social comparison
purposes?

e What is the 95% confidence range of subjective well-being for this
person?

f Any methodological concerns?
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29 (Based on Chapter 15, Problem 33.) Compute the regression equation and
se for both conditions. If, during drilling, the dentist rates the patient’s dis-
comfort as 7, what should we predict is the patient’s discomfort rating?
Answer the same question for the rubber dam condition, and report the
standard error of the estimate.

30 (Based onChapter 15, Problem 34.) For a womanwho reports 54menstrual
symptoms, how many symptoms will she report during pregnancy? Iden-
tify two values of pregnancy symptoms, between which we should find the
correct number of pregnancy symptoms for 68% of the women who report
54 menstrual symptoms.
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Part 6 Review

Linear Correlation and Linear Regression

Review of Concepts Presented in Part 6

As with previous review sections, the purpose here is to revisit both the similar
concepts that hold Chapters 15 and 16 together and the concepts that distin-
guish them one from another. First let us look at the numerous similarities.
Although previous chapters have dealt with the measurement of more than
one data point per participant (Chapter 10, “Dependent-Samples t Test,” and
Chapter 14, “Repeated-Measures ANOVA”), there was only one variable being
measured. These previous chapters involved the use of repeated-measures
designs; the repeated measurement of the same variable under different condi-
tions. In Chapters 15 and 16, the concept of bivariate data is introduced, where
two different variables are measured for each participant. The purpose of mea-
suring bivariate data is to explore the nature and strength of the relationship
between them. Both the correlation and regression concept help achieve
that goal.
Unfortunately, when describing relationships between variables, it is tempting

at least to think of, if not state, a specific causal structure for the relationship.
However, the same cautions introduced in Chapter 1, as well as at other places
in the text, are in effect here as well. The language of causality is restricted to
data gathered experimentally, where a hypothesized causal variable is controlled
and manipulated by the experimenter and a dependent variable is carefully
measured. Typically, bivariate data is gathered in nonexperimental situations
and so causal language is not warranted; however, that is not necessarily
the case.
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Another common concept is the notion of shared variance, the degree to
which the variance associated with one variable corresponds to variance found
in a second variable. It is captured in both chapters, as the coefficient of deter-
mination (r2) in Chapter 15, and extrapolated into a measure of prediction error
(se) in Chapter 16.
There are also many common pitfalls associated with analyzing bivariate data.

Although there are advanced techniques associated with both the correlation
and regression procedures to allow for the analysis of nonlinear relationships
between variables, the introductory concepts presented in these chapters can
only be used on bivariate data reflecting a linear relationship. Furthermore,
bivariate data sets that do not capture the entire range of scores for each variable
can lead to a mischaracterization of their relationships. Finally, the appropriate-
ness of including or excluding outlier data can become problematic, either
underrepresenting or overrepresenting the strength of the relationship between
the variables.
A final area of commonality concerns the visual representation of the data,

typically in the form of a scatter plot, on a two-dimensional graph. Although
not meant to replace the necessary role for a mathematical analysis, especially
whenmaking decisions regarding null hypotheses, a visual representation of the
relationship can help make sense of the data in a number of nonquantifiable
ways. Most notably, a visual representation is necessary to avoid many of the
pitfalls previously mentioned.
There are also several areas of distinction between the two chapters. First, we

should recognize that the regression concept is built upon the correlation con-
cept. It takes the idea of quantifying the shared variance between two variables,
extends it, and applies it to a specific purpose – the prediction of unknown
values.
Another distinction concerns variable designation. Correlations are bidirec-

tional. The assignment of X and Y to the variables is inconsequential to the out-
come; the r will be the same either way, as will a decision regarding the null
hypothesis. Although a regression analysis allows for both the prediction of Y
from X and the prediction of X from Y, the mathematics used to make those
predictions require the proper specification of a predictor and predicted varia-
ble; otherwise the conclusions will be in error.
Each technique also has a distinct approach to testing a null hypothesis, an

important objective if the data is to be used either as statistical evidence for a
relationship or as a predictor variable. With correlational analyses, the null
hypothesis of no relationship (ρ = 0) can be tested. With a regression analysis,
the null hypothesis of no slope (b = 0) can be tested. This is being identified as a
distinction between the two concepts, since the symbols that are used differ.
However, underlying both tests is the same mathematical question. As a result,
one test is not more powerful than the other.
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Finally, although many of the assumptions behind both inferential tests are
shared, a regression analysis includes a couple additional ones, namely, the
normality of conditional distributions and the concept of homoscedasticity.
A regression analysis assumes the distribution of Y data corresponding to a
given value of X to be normally distributed across the range of the X variable,
and it assumes those conditional distributions will have similar measures of
dispersion.
Since real-world research problems do not come with a label informing the

researcher of which test to use for analysis, it is important for us to work on
our diagnostic skills. Understandably, the exercises at the end of each particular
chapter only require the use of the tests found and studied within that chapter
for solution. The work exercises at the end of chapters are designed to get us
familiar with using the tools just described to solve a statistical problem. They
are not designed to challenge our diagnostic skills (i.e. knowing which test to use
for a given situation). The following review section is designed to help us
develop these abilities.
The questions and exercises below will help us review the statistical differ-

ences between the correlation and regression concepts and will also continue
the work of helping us recognize the appropriate diagnostic cues for the proper
application of all of the tests presented up to this point in the text. In keeping
with this goal, the hypothesis testing exercises will not identify which test is
appropriate for the described scenario. We will need to use the available infor-
mation presented in the exercise to make that determination. (Note: Most of
the exercises below can be solved either with or without the use of statistical
software.)

Questions and Exercises

1 Select the proper statement.
a Correlation is to regression as relationship is to prediction.
b Correlation is to regression as prediction is to relationship.
c Correlation is to regression as independent variable is to dependent
variable.

d Correlation is to regression as dependent variable is to independent
variable.

2 What does a regression analysis add above and beyond what is learned from
a correlational analysis?

3 Sarah is an above-average tennis player but decides to change sports and
take up ping-pong.
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a What information is needed to see if Sarah can expect to be an above-
average ping-pong player?

b What additional information is needed to predict how Sarah will
eventually perform in this new sport?

4 Cheryl is an above-average runner but decides to change sports and take up
wrestling. If there is no known relationship between running and wrestling,
predict how Cheryl will rate as a wrestler.

5 Describe in what way r is related to prediction error.

6 If a researcher wanted to investigate the strength of the relationship
between a measure of political conservatism and a person’s degree of phil-
anthropic giving, what statistical tool seems most appropriate? Why?

7 If a researcher wanted to investigate the relationship between political
attitudes and philanthropy by classifying people as either liberals, conser-
vatives, or independents and then investigate their charitable giving as
recorded on their tax returns, what statistical tool seemsmost appropriate?
Why?

8 If a researcher wanted to predict charitable giving based on the level of
political conservatism espoused by an individual, what statistical tool
seems most appropriate? Why?

9 If a researcher wanted to investigate the relationship between biological
sex, political attitudes, and philanthropy by classifying people as either
male or female and as either liberals, conservatives, or independents and
then investigate their charitable giving as recorded on their tax returns,
what statistical tool seems most appropriate? Why?

10 For the following bivariate data set, answer the following questions:

X Y

3 9

5 4

7 0

4 2

9 0

2 10

5 5
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X Y

4 7

2 8

1 8

a What is the correlation between X and Y?
b What is Yp if X = 10?
c Can the null hypothesis that μX = μY be rejected?

11 Imagine the following data set is gathered regarding biological male–
female sibling pairs and their average daily time spent doing leisurely
activities.

Male Female

3.9 4.2

1.6 1.9

2.9 1.6

3.5 2.3

3.3 2.1

4.9 4.0

5.5 3.5

4.4 5.3

3.7 2.1

3.5 2.0

a Test the null that there is no difference between biological males and
biological females regarding daily leisure time.

b Test the null that there is no relationship for time spent in leisure
between siblings.

c What if we know our friend, Jimmy, spends two hours playing video
games every day in an otherwise highly structured life, how many hours
might Jenny, his sibling, have to engage in a leisurely activity?

12 Suppose we are interested in the relationship between the number of sib-
lings a child has and the age at which they learn to walk. We ask mothers of
seven two-year-olds how many older siblings the child has and the age the

(Continued)
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child began to walk. Data are listed below. Answer the questions that
follow.

Number of
siblings

Age of walking
(months)

1 16.0

2 8.5

0 16.5

3 10.0

1 11.0

2 10.0

4 9.0

a Is there evidence of a relationship?
b If so, how strong is the relationship?
c Suppose a new child enters into the study with five older siblings. When
might they begin to walk?

d How confident are we in our prediction?

13 Some recent research suggests early retirement may lead to memory
decline (Rohwedder and Willis, 2010). The researchers gathered data
based on a memory test given to numerous individuals aged 60–64 from
a variety of countries throughout the world. An average memory score for
each country cohort was generated as well as national statistics on the per-
centage of retired people in the same age window. The data below are sim-
ilar to what the researchers found.
a Is there a relationship between memory performance for those aged
60–64 and the percent of retirees in that same age window?

b What analysis could be used to forecast what is going to happen to
memory scores if the number of early retirees increases in a given
country?

c As a country goes from 20 to 40% early retirees, what sort of memory
decline could be expected?

d Is the causal relationship between the variables clear?

Country Percent retired Memory score

Sweden 39 9.8

United States 47 10.6

Switzerland 47 9.6
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Country Percent retired Memory score

Denmark 58 10.4

England 59 10.5

Greece 69 8.4

Germany 69 9.3

Spain 73 6.3

Netherlands 77 9.3

Italy 81 7.7

France 86 8.0

Belgium 87 8.3

Austria 90 9.1

14 A soft drink company believes their new energy drink actually helps users
lose weight responsibly. To test this hypothesis, 15 adult consumers are
gathered, their current weight is measured, and they are asked to use
the soft drink company’s product at least twice a day. After six months,
the participants are contacted and weighed. The pre-measure is subtracted
from the post-measure to create a variable called “weight change.” If we
assume the body weight of adults does not change over time, what test
should be used to evaluate the null hypothesis?

(Continued)
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17

The Chi-Square Test

17.1 The Research Context

Starting with Chapter 8, we have been discussing a variety of different inferential
tests. However, all of the tests up to this chapter require an interval or ratio scale
of measurement and involve finding means as well as other mean-based statistics
(e.g. the variance). These scales of measurement are used for continuous quan-
tities and capture a sense of how much more or less one entity is compared with
another (see Chapter 2). However, not all research questions can be answered by
using continuous measures; instead of asking “how much,”many research ques-
tions ask “howmany.”The following are example of research situations are exam-
ples in which the data come in the form of a frequency count:

► Example 17.1 A developmental psychologist hypothesizes that fear of
strangers occurs more often at a certain age. A random sample of children, ages
2 through 6, is taken. For each age category, the number of children who are
afraid of strangers is counted. The dependent variable is not the amount of fear
the children have but rather how many children are afraid. Each child is cate-
gorized based on the presence or absence of fear. ◄
► Example 17.2 A political scientist hypothesizes that students grow more
politically liberal over their four years of undergraduate education. A random
sample of freshmen and seniors is obtained, and the number of students report-
ing liberal and conservative views is tabulated for each class. Once again, the
dependent variable is not how liberal or conservative are the students. Each stu-
dent is classified as either liberal or conservative. ◄
► Example 17.3 A health psychologist hypothesizes that the percentage of
urban dwellers who struggle with anxiety issues is higher than those who live
in rural areas. A random sample of urban and rural residents is gathered and
assessed. A frequency count of the number (percentage) of those who suffer
with anxiety-related issues in each environmental setting is tabulated. ◄
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► Example 17.4 A social psychologist is interested in the relationship
between obedience and service in the armed forces. A random sample is
obtained of former service personnel as well as individuals who never served
in the military. An experimental task is administered that allows the researcher
to assess whether the participant will follow an unpleasant order. The data are
collected in the form of a frequency count of the number of participants who
obey or disobey the order. ◄
► Example 17.5 A clinical psychologist hypothesizes that schizophrenics
prescribed with medication after being discharged from the hospital are less
likely to be rehospitalized compared with released schizophrenic patients not
maintained on medication. A year after discharge, the number of medicated
and nonmedicated patients who were and were not rehospitalized is counted.◄

In each of the preceding research contexts, the data come in the form of a
frequency count that is tabulated for each category. In addition, note that the
frequency count data have a discontinuous either-or quality. For example,
the child either is afraid of strangers or is not afraid of strangers, the student
is either liberal or conservative, the participant either obeys or does not obey,
and so on. Recall from Chapter 2 that variables having an either-or quality
are measured on a nominal scale. Because nominal data are arranged by cate-
gories, nominal data are oftentimes referred to as categorical data.
A statistical test that analyzes categorical data is the chi-square test (pro-

nounced kigh square, symbolized as χ2). One important difference between
the chi-square test and the previously discussed tests is that the chi-square
test makes no assumptions about population parameters or population charac-
teristics for its use. For this reason, the chi-square test is one example of a
nonparametric test. Tests that do make assumptions about population para-
meters are known as parametric tests. For example, the F test assumes that
the population distributions are normally distributed and have equal variances.
If these assumptions are grossly violated, interpretations of the test results can
be misleading. Nonparametric tests do not make assumptions about the shape
of population distributions; for this reason, they are sometimes referred to as
distribution-free tests.
There are times when an investigator uses a scale of measurement that would

normally lead to the use of a parametric inferential test. However, if the assump-
tions of the test are not met, the data can be transformed and analyzed using a
nonparametric test. The decision to switch from a parametric to a nonparamet-
ric test should not be taken lightly. Nonparametric tests are generally not as
powerful as parametric tests; this means it is more difficult to reject a false null
hypothesis when using a nonparametric test. If given the choice to conduct
either a parametric or a nonparametric test, the parametric alternative should
be chosen; the Type II error rate will be smaller. Of course, if the data are based
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on a nominal or ordinal scale, there is no alternative; a nonparametric test must
be used. Thankfully, the chi-square tests, although nonparametric, are still
rather powerful. A more detailed discussion of parametric versus nonparamet-
ric tests is provided in Chapter 18. The following sections present two versions
of the chi-square test, one for single-factor research situations and another for
two-factor research situations.

17.2 The Chi-Square Test for One-Way Designs:
The Goodness-of-Fit Test

The goodness-of-fit test is the categorical counterpart to the one-way ANOVA.
It is designed to detect differences among a set of categories falling along a single
factor. In these methodological situations, an ANOVA is typically used if the
measuring scale is interval or ratio; the chi-square goodness-of-fit test is used
if the measuring scale is nominal.
Chapter 2 defined a frequency distribution as the number of observations for

each score in a distribution. When using nominal data, the frequency distribu-
tion is the number of observations per category. The chi-square test uses the
frequency distribution of a sample to make an inference about the frequency
distribution of a population. The goodness-of-fit test uses the chi-square sta-
tistic to analyze how well the sample data “fit” (correspond) with the hypothe-
sized frequency distribution. In doing this, we must first state a null hypothesis
that indicates what the population data would look like if there were no effect.
The frequencies of the distribution specified by the null hypothesis are called
expected frequencies, symbolized as fe. The frequencies of the distribution
obtained from the sample are called observed frequencies, symbolized as fo.

The Null and Alternative Hypotheses for the Chi-Square
Test for Goodness of Fit

The goodness-of-fit test requires us to specify the population frequency distri-
bution that will be used as the null hypothesis. Frequencies are typically pre-
sented as percentages. How do we arrive at the null hypothesis; that is, what
frequencies should be specified for each category? Hypothesized population fre-
quencies can be determined either rationally or empirically. First, consider the
rational approach. Suppose we would like to find out if people prefer colaA or B.
We conduct a blind taste test with 100 participants. If there is no preference
among the participants between the colas, what percentage of people would
we expect to choose cola A, and what percentage would we expect to choose
cola B? On the average, we would expect 50% of the participants to select cola
A and 50% to choose cola B. This null hypothesis can be represented as follows:
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A B

H0 50% 50%

Now suppose we add a third drink, cola C. What would be the expected fre-
quency distribution for a null hypothesis of no preference? The answer is

A B C

H0 33.33% 33.33% 33.33%

If we add a fourth beverage, the expected frequencies would be 25% for each
category. A null hypothesis of no preference states that the expected frequencies
are equally distributed across the categories. The alternative hypothesis states
that the population frequencies are not distributed equally across the categories.
Another example of the rational approach to specifying the null hypothesis

would be the distribution of expected frequencies as predicted by a theory. A
genetic theory of ulcer susceptibility might predict the percentage of rats that
will develop ulcers under stress. The theory might hypothesize that after four
generations of inbreeding, 40% of the offspring of rats will show stomach ulcers
under stress. This null hypothesis can be represented as

Ulcers

Yes No

H0 40% 60%

The alternative hypothesis states that the population distribution of frequencies
is not distributed in the expected manner.
The empirical approach to specifying expected frequencies requires existing

data, although not necessarily the data that we have collected. For example, sup-
pose the percentage of people who voted Democratic in the last gubernatorial
election was 60%, whereas 30% voted Republican and 10% of the population
voted Other. Since the last election, however, a popular Republican president
campaigned for the present Republican gubernatorial candidate. Before the
election, several thousand voters are polled to determine if the percentage of
people in the Democrat, Republican, and Other categories has changed. There-
fore, using the data from the last election, the null hypothesis would be stated as:

Democrat Republican Other

H0 60% 30% 10%
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The alternative hypothesis states that the relative frequency of voters across
the categories differs from the last election.

Computing the Chi-Square Statistic for the Goodness-of-Fit Test

The purpose of the goodness-of-fit test is to determine if the observed frequen-
cies, obtained from a sample of participants, meaningfully differ from the
expected frequencies derived from an understanding of the null hypothesis. Recall
from previous discussions of null hypotheses that it is highly unlikely that sample
means will be identical even when the H0 is true. In much the same way, simply
finding that the observed frequencies differ from the expected frequencies is itself
not a sufficient reason to reject the null hypothesis. The chi-square goodness-of-
fit test allows an investigator to determine the likelihood that the difference
between the expected and observed frequencies is due to chance. The following
scenario will show us how to compute a goodness-of-fit chi-square test.
Two students are discussing the reasons why their peers choose a particular

undergraduate major. The psychology student makes the somewhat provoca-
tive statement that business majors select their program of study because they
are most interested in making money. The other student, a business major,
insists that money is onemotive, but not themost importantmotive for entering
the business world. They decide to conduct a study in which business majors are
asked to respond to one statement: “Making money is the most important rea-
son for majoring in business.” Participants are told to either Agree, Disagree, or
be Undecided about the statement. One version of a rationally derived null
hypothesis states that the percentage of responses in each category is the same.

Agree Disagree Undecided

33% 33% 33%

Although the null hypothesis is typically stated in terms of percentages, the chi-
square test is not performed using percentages. Specifying the exact expected
frequencies in each category requires knowledge of the total number of parti-
cipants in the study. Assume 90 participants were used. To determine the exact
(expected) frequency for a given cell (category), fe, each percentage (or propor-
tion) is multiplied by n, the number of participants.

33 of 90 = 0 33 90 = 30 Agree responses

33 of 90 = 0 33 90 = 30 Disagree responses

33 of 90 = 0 33 90 = 30 Undecided responses

Instead of converting percentages into frequencies, the fe for each category can
also be found by dividing the number of participants (observations) by the
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number of categories:N/C = 90/3 = 30. This method only works, however, when
the expected frequencies for each cell are hypothesized to be the same. There
will be research situations when the null hypothesis will state different percen-
tages for each cell. In these situations, the expected frequencies will differ from
cell to cell. Familiarity with the null hypothesis is critical for the goodness-of-fit
chi-square test.
The next step in computing the χ2 statistic is to find the observed frequencies,

fo. This is accomplished by simply counting the number of participants in the
sample who agreed, disagreed, and were undecided. With expected and
observed frequencies calculated, Formula 17.1 is used to compute χ2.

Formula for χ 2

χ2 =
fo− fe

2

fe
(Formula 17.1)

Assume the data show observed frequencies in each category as indicated in the
following.

Agree Disagree Undecided

fe = 30 fe = 30 fe = 30

fo = 60 fo = 20 fo = 10

In using Formula 17.1, arithmetic operations are performed for each cell:

fo− fe
2

fe

After we obtain this value for each cell, the Σ symbol in Formula 17.1 directs us
to sum all the values in each category.

Computational Steps
Step 1. For the first category, subtract the expected (hypothesized) frequency

from the observed frequency (the data), fo – fe.
Step 2. Square the difference, (fo – fe)

2. This removes any negative signs.
Step 3. Divide the number found in step 2 by the fe specified for that cell,

( fo – fe)
2/fe.

Step 4. Repeat the first three steps for each cell.
Step 5. Sum all the quantities from all the categories.

χ2 =
fo− fe

2

fe
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Agree Disagree Undecided

χ2 =
60−30 2

30
+

20−30 2

30
+

10−30 2

30

χ2 =
900
30

+
100
30

+
400
30

χ2 = 30 + 3 33 + 13 33

χ2 = 46 66

Deciding Whether to Reject the Null Hypothesis

This section shows us the steps involved in deciding whether to reject the null
hypothesis. The next section addresses the characteristics of the sampling dis-
tribution of the χ2 statistic. This section will give us a deeper understanding of
how hypotheses are tested in chi-square analyses.
In viewing the formula for χ2, it should be clear that χ2 will become larger as

the difference between the expected and observed frequencies increases.

χ2 =
fo− fe

2

fe

A close fit between the expected frequency distribution and the observed fre-
quency distribution will lead to a relatively small χ2.
Similar to other statistical tests, the larger the χ2 statistic, the less likely it will

be generated from a null distribution. To see if the χ2 is large enough to reject
the null hypothesis, it is compared with a critical value, χ2crit . If χ

2
obt is equal to or

greater than χ2crit , the null hypothesis is rejected; statistical evidence has been
found suggesting a population consistent with the null hypothesis did not gen-
erate our observed frequencies. The difference between the obtained and
expected values is probably not due to chance.
The critical value for χ2 is found by using Table A.8, a portion of which is

shown in Table 17.1.
The degrees of freedom for the goodness-of-fit test are the number of columns

in the design minus one. In the “reason for majoring in business” example, the
number of columns (categories) is equal to 3. Therefore, df = C − 1 =
3 − 1 = 2.What would be the critical value for χ2 if alpha were set at .05? Referring
to Table 17.1, the answer is 5.99. Since the obtained χ2 = 46.66 and 46.66 > 5.99,
we would reject the null hypothesis.
We will need to wait until later in the chapter to learn about follow-up

analyses, but for now we can state that statistical evidence suggests the opinions
of business majors were not equally distributed across the three options,
χ2(2, n = 90) = 46.66, p < .05.
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Consider another worked problem using the goodness-of-fit test, this time
where the expected cell frequencies are not all the same.

■ Question A professor states papers are graded using the following categories:
excellent, above average, average, and below average. Furthermore, the professor
maintains that turned-in papers are graded graciously and offers the following
distribution of percentages as an estimate of the manner in which the grades are
distributed.

Excellent Above Average Average Below Average

25% 35% 25% 15%

A group of students suspects the professor may indeed be generous but only in the
perception of being an easy grader. All of the students who had previously taken
this professor’s course in the last three years are available, and amazingly, they
still have their papers. A random sample of 100 former students is taken, and the
actual distribution of evaluations is recorded.

Excellent Above Average Average Below Average

25% 35% 25% 15%

fo = 20 fo = 25 fo = 30 fo = 25

Note that since the sample size is 100, the observed frequencies sum to 100. Is
there a reason to conclude that the professor’s claim is mistaken?

Table 17.1 A portion of the table of critical values for the chi-square distribution.

Proportion of critical region

Alpha Level

df .10 .05 .02 .01 .001

1 2.71 3.84 5.41 6.64 10.83

2 4.60 5.99 7.82 9.21 13.82

3 6.25 7.82 9.84 11.34 16.27

4 7.78 9.49 11.67 13.28 18.46

5 9.24 11.07 13.39 15.09 20.52

6 10.64 12.59 15.03 16.81 22.46
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Solution Before the formula for χ2 can be used, the fe’s need to be calculated.
25% = (0.25) 100 = 25 expected in the Excellent category
35% = (0.35) 100 = 35 expected in the Above Average category
25% = (0.25) 100 = 25 expected in the Average category
15% = (0.15) 100 = 15 expected in the Below Average category
Placing the expected and observed frequencies in a table shows

Excellent Above Average Average Below Average

fe = 25
fo = 20

fe = 35
fo = 25

fe = 25
fo = 30

fe = 15
fo = 25

Computing χ2,

χ2 =
fo− fe

2

fe

χ2 =
20−25 2

25
+

25−35 2

35
+

30−25 2

25
+

25−15 2

15

χ2 =
25
25

+
100
35

+
25
25

+
100
15

χ2 = 1 + 2 86 + 1 + 6 67

χ2 = 11 53

df =C−1 = 4−1 = 3

α = .05; therefore χ2crit = 7 82

Since 11.53 > 7.82, the H0 is rejected.
As a consequence of rejecting the null hypothesis, we can conclude that sta-

tistical evidence has been found suggesting the observed frequency distribution
has been generated by a population that is different than the one claimed by the
professor. By examining the specific observed frequencies in the cells, we see
that the “excellent” category has the fewest number of students. Indeed, the
sample shows that most of the students received an “average” on their papers.
This is contrary to the professor’s claim to be an easy grader. However, the mere
fact that the null hypothesis has been rejected does not mean we know which
cells are causing this rejection. We have yet to introduce a follow-up analytical
tool needed for further investigation. Additionally, a rejected null hypothesis
does not automatically mean that the professor is mistaken. For instance, sup-
pose that the observed frequency of the “excellent” category was found to be 70,
with the remaining 30 frequency counts spread across the other categories.
The null hypothesis would be rejected, but the fact that the “excellent” category
had such a high count would actually strengthen the professor’s claim.
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After rejecting a null hypothesis, we have to examine the pattern of cell frequen-
cies and perform some additional analyses to interpret properly the meaning of
the finding. ■

17.3 The Chi-Square Distribution and
Degrees of Freedom

The chi-square statistic indicates how well the hypothesized expected frequen-
cies correspond to the observed frequencies. The closer the fit, the smaller the
value of χ2. The test statistic for the chi-square distribution is χ2, which is the
basis for the sampling distribution, just as the t statistic and F ratio are the basis
for the t and F distributions.
As with previous descriptions of sampling distributions, the chi-square dis-

tribution is theoretical, formed by taking an infinite number of samples from a
null population and computing the chi-square statistic for each sample. The rel-
ative frequency of each value of chi-square is plotted to show a chi-square dis-
tribution. A separate chi-square distribution is created for each df, thereby
establishing a family of chi-square distributions. The shape of each distribution
is defined by the number of categories used to compute χ2.
Note that the degrees of freedom for a χ2 test are not based on the number of

participants in the study. Instead, the number of categories determines the
degrees of freedom. Suppose we conducted a study with four categories and
150 participants. If the first three categories contained a total of 100 partici-
pants, the number of participants in the fourth category would be automatically
determined (50). In other words, the frequency count of three of the four cate-
gories is free to vary. Once the count of three categories is specified, the count in
the fourth category is strictly determined. As a result, in the simple one-way
design, df equals the number of categories minus 1, (df = C − 1).

Characteristics of Chi-Square Distributions and
Rejecting the Null Hypothesis

Rejecting the Null Hypothesis
The null hypothesis for the χ2 test is specified by the expected frequencies in
each cell of the design. The χ2 test measures the degree to which the observed
frequencies correspond to the expected frequencies. If the null hypothesis is
true, then the observed frequencies for each cell will be very close to the
expected frequencies, and the value of χ2 will be small. If the null hypothesis
is false, the expected and observed frequencies will be discrepant from one
another. Even if the null hypothesis were true, because of sampling error, we
would not expect the observed and expected frequencies to match perfectly.
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As the expected and observed frequencies become increasingly discrepant, χ2

becomes larger. How large does χ2 have to be in order to reject the null hypoth-
esis? If the χ2 computed on the sample data is unlikely to occur when the null
hypothesis is true, then we conclude that the null hypothesis is false. As with
previous inferential tests, the meaning of “unlikely” is defined by the level of
alpha. If α = .05, the null hypothesis is rejected if the probability of obtaining
a χ2 statistic of a given size is equal to or less than .05. As a result, each chi-
square distribution can bemarked with a critical value to identify the percentage
of χ2 values that lie, for instance, in the upper 10, 5, or 1% of the sampling
distribution.
Figure 17.1 shows chi-square distributions for 1, 5, and 8 degrees of freedom.

The rejection region for each of the distributions when α = .05 is also shown in
Figure 17.1. An obtained value of χ2 that falls in the rejection region would allow
us to reject the null hypothesis. Note, however, that as the degrees of freedom
increase, a larger χ2obt is required to reject the null hypothesis. Take another look
at the formula for χ2.

χ2 =
fo− fe

2

fe

Assume that the null hypothesis is true and, therefore, any discrepancies
between fo and fe are due to sampling error. Remember that the formula for
χ2 requires that we sum all the categories in the design. What happens as the
number of categories increases? Even if the value of (fo – fe) for each cell is quite
small, summing a large number of cells will lead to a large χ2, even when the null
hypothesis is true. Therefore, for a given level of alpha, as the number of cate-
gories increases, a larger χ2obt is necessary to reject the null hypothesis.
Finally, the χ2 test is nondirectional. The observed frequencies can fit poorly

with the expected frequencies by being either too large or too small. Although
the total number of observed and expected frequency counts will be equal,
which cells underpredict and which cells overpredict the frequency counts is
not something stated by the alternative hypothesis.

Characteristics of the Chi-Square Distribution
The characteristics of the chi-square distribution are as follows:

1) Since the numerator of the χ2 statistic is squared, all values of χ2 are positive.
2) Chi-square distributions are unimodal and typically positively skewed. How-

ever, as the df increases, the chi-square distribution approximates the shape
of a normal distribution.

3) As the df increases, the critical value of χ2, beyond which the rejection region
lies, becomes relatively larger.
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Figure 17.1 Chi-square distributions for degrees of freedom of 1, 5, and 8.
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17.4 Two-Way Designs: The Chi-Square
Test for Independence

The chi-square test can also be used to determine if there is a relationship
between two factors. We may recall that a cell structure featuring two factors
was also used by the two-way ANOVA presented in Chapter 13. Similar to
the goodness-of-fit test, the chi-square test for independence also uses the fre-
quency counts from a set of observations across both factors. Some examples of
research questions in which the chi-square test is applied with two variables are
as follows:

1) A clinical psychologist hypothesizes that birth complications are associated
with a subsequent diagnosis of schizophrenia. Three comparison groups
are included in the study: a group of schizophrenic patients, a group of
depressed patients, and a group of normal participants. Each participant
in the study is categorized on two variables: diagnosis and history of birth
complications. This design is represented in the following table, called a
contingency table (also called a frequency or cross-tabulation table). Since
there are two rows and three columns, the table is called a 2 × 3 contin-
gency table.

Schizophrenic Depressed Normal

Birth Complications 20 6 8

No Birth Complications 8 20 22

The numbers in the cells refer to the number of participants that meet the
classification criteria for both variables. For example, 20 schizophrenics were
found to have had birth complications, 20 depressed patients did not have
birth complications, 8 normal participants had birth complications, and
so on.

2) A social psychologist hypothesizes that biological males are more likely than
biological females to help someone in an emergency and that helping will be
affected by the presence or absence of bystanders. This two-way design,
without obtained frequencies, is represented in the following 2 × 2 contin-
gency table.

Bystanders

Present Absent

Males

Females
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3) A health psychologist hypothesizes that individuals who have high cardio-
vascular fitness are tougher negotiators than those who have low cardiovas-
cular fitness. A sample of college students is classified as fit, not fit, and
somewhat fit (based on resting heart rate and blood pressure readings).
An experimental task that requires negotiating a conflict is presented to each
participant. The outcome is classified as either a win or a loss. The design is
represented as a 2 × 3 contingency table.

Fit Not fit Somewhat fit

Win

Loss

The Null Hypothesis and the Concept of Independence

The null hypothesis, H0, applied to a two-way design states that the two vari-
ables are independent. The alternative hypothesis, H1, states that the two
variables are not independent; that is, they are related. This is conceptually sim-
ilar to testing for evidence of an interaction in a two-way ANOVA analysis (see
Chapter 13). Figure 17.2 shows bar graphs of the hypothetical data from the
schizophrenia and birth complications example. The illustration on the left
shows the relative number of schizophrenics, depressed, and normal partici-
pants who had complications associated with their births. Compare this graph
with the one adjacent, which depicts the relative number of participants among
the diagnostic categories who do not have a history of birth complications. Just
by “eyeballing” the two graphs (birth complications versus no birth complica-
tions), we can see that the pattern of data is different in the birth complications
category compared with the pattern of data in the no birth complications cat-
egory. This indicates that the manner in which the data are distributed for one
variable depends on the level of the second variable.1 In this example, the two
variables do not appear to be independent.
Now consider Figure 17.3. Hypothetical data have been used to reflect inde-

pendence between the diagnostic category and birth complications category.
The graph on the left is now quite similar to the graph on the right in the pattern
of the bars representing relative frequency. In other words, the likelihood of
someone being classified as schizophrenic, depressed, or normal does not
appear to be related to the presence or absence of birth complications. Stated
differently, the frequency distribution for one variable has the same pattern for

1 The word “depends” in this context does not imply a causal relationship between the variables.
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f f

Depression DepressionSchizophrenia Normal

Birth complications

Schizophrenia Normal

No birth complications

(a) (b)

Figure 17.2 Each bar reflects the number of people given one of the three diagnoses. The
pattern of bars in (a) is different from the pattern of bars in (b). This indicates that the
distribution of various diagnoses depends on the presence or absence of a history of birth
complications. Viewed together, these graphs reflect a relationship between diagnostic
category and birth complications, with schizophrenics showing a greater frequency of birth
complications.

f f

Depression DepressionSchizophrenia Normal

Birth complications

Schizophrenia Normal

No birth complications

(a) (b)

Figure 17.3 Unlike Figure 17.2, the relative occurrence of different diagnoses is similar in
(a) and (b). This reflects the fact that birth complications and diagnostic category are
independent, that is, unrelated.
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each level of the second variable. The chi-square test for independence checks to
see if the frequency distribution for one classification variable is different, depend-
ing on the level of the second classification variable. If the distributions are dif-
ferent, then the null hypothesis that the variables are independent is rejected.
The failure of the test for independence to reject the null hypothesis for values

represented in Figure 17.3 informs us that this analysis is restricted tobetween cate-
gories and not within the conditions of a category. In this example, we find those
who are depressed to be less frequent to those who are schizophrenic and normal.
Although the chi-square test for independence corresponds with a two-way
ANOVAintermsof investigatingan interaction, itdoesnot investigatemaineffects.

Computing χ 2 for a Two-Way Design

Whether we are conducting a goodness-of-fit test or testing the independence
of two variables, the formula for χ2 is the same:

χ2 =
fo− fe

2

fe

Moreover, observed frequencies are still obtained from sample data. Specifying
the expected frequencies under the null hypothesis, however, is not as straight-
forward as it was with the goodness-of-fit test.

Computing Expected Frequencies in the Two-Way Design

Computing the proper fe value for each cell requires a bit of arithmetic. Let us
use new frequency count data from the schizophrenia and birth complications
study as a working example to illustrate the calculation of expected frequencies.
The observed data should be organized, counted, and presented in a two-factor
grid such as Table 17.2. From this observed data, we can generate the expected
data to test the null of independence.
Using the observed data, marginal frequency counts need to be determined.

This is done by simply adding up the frequency counts in all conditions asso-
ciated with each row and each column (see Table 17.3). Additionally, the total
number of participants can be placed in the lower right-hand corner. In our

Table 17.2 Observed frequencies for a worked problem.

Schizophrenic Depressed Normal

Birth Complications fo = 20
fo = 8

fo = 6
fo = 20

fo = 8
fo = 22No Birth Complications
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example, the total number of participants is 84. From the marginal means, we
can determine various values such as the total number of participants having
birth complications is 34, the total number of participants having a diagnosis
of schizophrenia is 28, and the total number of participants having no psychi-
atric diagnosis is 30.
Table 17.3 also shows the expected frequencies for each cell of thematrix. The

following explains how the expected frequency is calculated for the uppermost
left cell, which is the cell that corresponds to schizophrenic and birth complica-
tions. In computing this expected frequency, we only need to consider the Birth
Complication row and the Schizophrenic column. If we were to take a partic-
ipant at random from the total number of participants in the study, what is the
probability that that participant would have had a complicated birth? Since
there is a total of 84 participants and 34 of them had birth complications, the
answer is 34/84 = 0.4048. Now consider just the Schizophrenic column. What
is the probability that a participant selected at random from the entire study
sample would have a diagnosis of schizophrenia? Since there are 28 schizophre-
nics in the total sample of 84 participants, the answer is 28/84 = 0.3333. To find
the probability of someone being diagnosed as schizophrenic and having had
birth complications, multiply (0.4048)(0.3333) to arrive at 0.1349.The expected
frequency for this cell is the number of people we would expect to find in this
cell if the null hypothesis is true: 0.1349(84) = 11.33.The formula below reflects
a simplified version of the process described above.

Formula for computing fe

fe =
fcfr
N

(Formula 17.2)

where

fc = the frequency total for the relevant column
fr = the frequency total for the relevant row
N = the total number of participants

Table 17.3 Observed, expected, and marginal frequencies for a worked problem.

Schizophrenic Depressed Normal

Birth Complications
fo= 20

fe = 11.33 fe = 10.52 fe = 12.14

fe = 16.67 fe = 15.48 fe = 17.86
fo= 8

fo= 6

fo= 20

fo= 8

fo= 22

34

No Birth
Complications

50

28 26 30 84

17.4 Two-Way Designs: The Chi-Square Test for Independence 651



Formula 17.2 can be used to compute the expected frequencies for each of the
cells represented in Table 17.3.

Schizophrenic and Birth Complications

fe =
28 34
84

= 11 33

Depressed and Birth Complications

fe =
26 34
84

= 10 52

Normal and Birth Complications

fe =
30 34
84

= 12 14

Schizophrenic and No Birth Complications

fe =
28 50
84

= 16 67

Depressed and No Birth Complications

fe =
26 50
84

= 15 48

Normal and No Birth Complications

fe =
30 50
84

= 17 86

Computing χ 2 and Testing the Null Hypothesis

The task of computing χ2 is easier if we work from a frequency summary table.
In Table 17.4, the observed and expected frequencies are ordered in the first two
columns. The next two columns are interim calculations necessary for comput-
ing χ2. The value of χ2 computes to 16.77.
The degrees of freedom associated with a two-way design are df = (R − 1)

(C − 1), which is the number of rows (R) minus one multiplied by the number
of columns (C) minus one. For the foregoing example, df = (2 − 1)(3 − 1) = 2.
(Notice that the df for the goodness-of-fit test used C to symbolize the number
of categories. Here C symbolizes the number of columns.)
The critical value for the chi-square test is found in Table A.8. If alpha is set at

.05, the critical value associated with df = 2 is 5.99. Since 16.77 is larger than
5.99, we have statistical evidence to reject the null hypothesis. Therefore, we
have reason to believe that a dependency exists between psychiatric diagnosis
and birth complications.
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The steps involved in conducting a chi-square analysis for a two-way design are:

Step 1. Specify the null and alternative hypotheses. H0 is a statement that the
two variables are independent. H1 states that the two variables are not
independent.

Step 2. Specify alpha; it is typically .05 or .01.
Step 3. Use Formula 17.2, fe = fcfr,/N, to compute all expected cell frequencies.
Step 4. Place the observed and expected frequencies in a frequency summary

table and perform the computational steps for χ2.
Step 5. Compute df by (R − 1)(C − 1).
Step 6. Find χ2crit in Table A.8 of the appendix and decide whether to reject the

null hypothesis.
Step 7. Interpret the findings.

17.5 The Chi-Square Test for a 2 × 2 Contingency Table

We have just completed an example of how to compute χ2 for a 2 × 3 contin-
gency table. If the two-way design is in the form of a 2 × 2 table, a shortcut
method can be used that does not involve computing expected frequencies
for each cell. Formula 17.3 requires us to place the letters A, B, C, and D in
the cells as indicated in the following diagram. In this case, only the observed
cell frequencies are needed to compute χ2.

A B A + B
C D C + D

A + C B + D N 

Table 17.4 Computing χ2.

fo fe (fo – fe) (fo – fe)
2 (fo – fe)

2/fe

20 11.33 8.67 75.17 6.63

6 10.52 –4.52 20.43 1.94

8 12.14 –4.14 17.14 1.41

8 16.67 –8.67 75.17 4.51

20 15.48 4.52 20.43 1.32

22 17.86 4.14 17.14 0.96

χ2 = 16.77

χ2 =
fo− fe

2

fe
= 16 77
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Chi-square formula for a 2 × 2 contingency table

χ2 =
N AD−BC

A+B C +D A+C B+D
(Formula 17.3)

where

A, B, C, D = the observed frequencies, fo, in each cell
AD = fo for cell A × fo for cell D
BC = fo for cell B × fo for cell C
N = total number of participants

Box 17.1 looks at one of the studies that explored the “What is beautiful is
good” stereotype, a very robust finding of social psychology. Formula 17.3 is
used for the analysis.

Box 17.1 What Is Beautiful Is Good

Social psychologists have discovered that attractive people are the recipients of
a positive social stereotype that can be summarized as “What is beautiful is
good.” Comparedwith physically unattractive people, those who are good look-
ing are assumed to bemore successful, mentally healthier, smarter, and happier
(e.g. Dion et al. 1972; Eagly, Ashmore, Makhijani, & Longo, 1991), as well as a host
of other positive qualities (e.g. Segal-Caspi, Roccas, & Sagiv, 2012). Many social
psychologists believe this occurs because people are more eager to bond with
attractive people; this motive causes us to project desirable attributes onto
them (e.g. Lemay, Clark, & Greenberg, 2010). Interestingly, the initial findings
in this area were based almost exclusively on paper-and-pencil ratings of pic-
tures of attractive and unattractive “target” persons. Benson, Karabenick, and
Lerner (1976) wondered if people’s overt behavior would be influenced by
the attractiveness of another person. More specifically, they hypothesized that
males would be more likely to help a physically attractive female in comparison
to a physically unattractive female.

Method

The study took place at an airport several decades ago, a time before cell
phones. The experimenters placed a completed graduate school application
on a shelf in a telephone booth. Attached to the application was a picture of
the applicant. In the Attractive condition, the picture was of a female that
had been pre-rated by judges to be extremely attractive. In the Unattractive
condition, the picture affixed to the application was of a female pre-rated as
extremely unattractive. An addressed, stamped envelope accompanied the
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application, with a clearly displayed note from the applicant: “Dear Dad, Have a
nice trip. Please remember to mail this application before you leave Detroit on
your (time of departure) flight to New York. Love, Linda.” The time of departure
was constantly altered to indicate that the flight had already left.

The experimenter surreptitiously observed the male participants enter the
telephone booth and categorized each one as either Helpful or Nonhelpful
based on the following criteria. First, only participants who looked at the appli-
cation were included in the study. A helpful response consisted of either mailing
the application in a nearby mailbox or turning the application over to an
employee at the airport. If the experimenter lost sight of the participant, a help-
ful response could be determined by whether the application arrived at the
experimenter’s psychology department, the address that was placed on each
envelope. A response was considered nonhelpful if the participant, after looking
at the application, either left it in the telephone booth, destroyed it, or left with
the application but never mailed it.

The design of this study conforms to a 2 × 2 contingency table with
one factor being Attractive/Unattractive and the other factor being Help-
ful/Nonhelpful. The dependent variable is in the form of a frequency count;
therefore, a chi-square test is appropriate. Observed frequencies for each
cell are shown in the following table, and Formula 17.3 is used to analyze
the data.

Attractive Unattractive

Helpful A 
55

B 
35

A + B 
55 + 35 = 90

Non
helpful

C 
55

D 
71

C + D 
55 + 71 = 126

A + C
55 + 55 = 110

B + D
35 + 71 = 106

N = 216

χ2 =
N AD−BC 2

A+B C +D A+C B+D

χ2 =
216 55 71 − 35 55 2

55 + 35 55 + 71 55 + 55 35 + 71

χ2 =
216 3905−1925 2

90 126 110 106

χ2 =
216 3920400
132224400
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17.6 A Measure of Effect Size for Chi-Square Tests

Recall that hypothesis tests only indicate the degree of certainty associated with
rejecting the null hypothesis; that is, how certain are we that there is an effect?
However, the certainty of an effect and the size of an effect are not the same
thing. For instance, with large sample sizes comes great statistical power –
power to detect even very small effects. As with other inferential tests, a separate
measure of effect size can be helpful when interpreting themeaning of a rejected
null hypothesis.
For the chi-square tests, the standard effect size measure is Cramér’s V (or

Cramér’s phi – pronounced “fie,” rhymes with fly) and is oftentimes symbolized
as ϕ (although it may also be represented as V). Once the chi-square has been
calculated, this measure of effect size can be a fairly straightforward hand cal-
culation. The formula is

Formula for Cramér’s V

ϕ=
χ2

N df row column

(Formula 17.4)

where

χ2 = the obtained chi-square value
N = the total number of participants in the study
dfrow/column = the degrees of freedom for either the rows or the columns, which-
ever is smaller (For a goodness-of-fit test, simply use the df value.)

This procedure, in effect, generates a number that proportions the obtained chi-
square value to the size of the sample. Larger numbers reflect greater effect

χ2 =
846806400
132224400

χ2obt = 6 40

With α = .05 and df = 1, the critical value of χ2 is 3.84. The obtained value of χ2

exceeds the critical value (6.40 > 3.84); therefore, the null hypothesis that states
there is no association between helping and the attractiveness of the target per-
son is rejected.

How are the findings interpreted? With the aid of additional analyses, it was
reported that statistical evidence was found suggesting that men are more
likely to help an unknown female when she is attractive compared with unat-
tractive, χ2(1, N = 216) = 6.40, p < .05.
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sizes; however, what counts as a small, medium, or large effect changes as the
degrees of freedom change. In general, values that are .10 or lower are usually
considered small effects, and values that are .30 or higher are usually considered
large effects. Of course, Cramér’s V should only be found if the obtained chi-
square has resulted in a rejection of the null hypothesis.
For the psychiatric disorder and birth complications example, Cramér’s V

would be calculated as follows:

ϕ=
χ2

N df row column

ϕ=
16 77
84 1

ϕ= 0 2

ϕ= 0 45

This would be considered a large effect size.

17.7 Which Cells are Major Contributors to
a Significant Chi-Square Test?

In the chapters covering the analysis of variance, we learned that a significant F
ratio could be further analyzed with follow-up (sometimes called “post hoc”)
comparisons. The purpose of these analyses is to locate the source(s) of a sig-
nificant F ratio.Within the context of the chi-square analysis, a post hoc analysis
answers the question, “Which cells are major contributors to a significant chi-
square value?” Unlike follow-up tests that are used with parametric data, this
analysis does not contrast two cells to see if they differ from one another. Rather,
each cell is analyzed separately to determine which cells make a major contri-
bution to the χ2 value. To do this we must first calculate the residual for each
cell. This is determined by subtracting the expected frequency from the
observed frequency, fo – fe. These residuals can be standardized, in much the
same way z scores standardize raw scores, by dividing this difference by
the square root of the expected frequency (Haberman, 1973). Formula 17.5
mathematically represents this statistic.

Formula for the standardized residual

R=
fo− fe

fe
(Formula 17.5)
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An adjustment can be made to the measure that better takes into account the
overall size of the sample. The adjusted standardized residual divides the differ-
ence between the observed and expected frequencies by the standard error.
Many statistical software packages like SPSS generate this more refined meas-
ure. For simplicity purposes, only the standardized residual formula will be
presented here.
How largemust a cell residual be before it is considered amajor contributor to

the significant χ2? The conventional standard suggests an absolute value that
equals or exceeds 2.00 (i.e. R ≥ |2.00|) is to be considered a major contributor
to the significant chi-square test. Formula 17.5 should only be used after the null
hypothesis is rejected. Table 17.5 presents the standardized residuals for each
category of the schizophrenia and birth complications study. Although the
valence of R is irrelevant when determining the cell significance, it is important
for interpreting the meaning of any cell designated to be a major contributor. If
R is equal to or greater than +2.00, it means the number of observations in that
cell is more than would be expected by chance. If R is equal to or greater than
−2.00, it means the number of observations in the cell is lower than would be
expected by chance. In Table 17.5, note that two cells have R values greater
than |2.00|. Cell 1, Schizophrenic/Birth Complications, has a large positive
R (2.57). This means that there are more schizophrenics with a history of
birth complications than would be expected by chance. Cell 4, No Birth
Complications/Schizophrenic, has a large negative R (−2.13). This means that
there are fewer schizophrenics without a history of birth complications than
would be expected by chance. Since none of the other cells yield an R that equals
or exceeds |2.00|, these are the only two cells considered to have made a major
contribution to the significant chi-square finding.

Table 17.5 The standardized residuals for each category of the
hypothetical study on schizophrenia and birth complications (BC).a

Cell fo fe f e R

Cell 1 20 11.33 3.37 2.57

Cell 2 6 10.52 3.24 –1.40

Cell 3 8 12.14 3.48 –1.19

Cell 4 8 16.67 4.08 –2.13

Cell 5 20 15.48 3.93 1.15

Cell 6 22 17.86 4.23 0.98

a Cell 1: Schizophrenic/BC; Cell 2: depressed/BC; Cell 3: normal/BC; Cell 4:
schizophrenic/No BC; Cell 5: depressed/No BC; Cell 6: normal/No BC. Cells
with R ≥ |2.00| make a major contribution to the significant chi-square test.
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The analysis of the standardized residuals is a useful technique; it allows us to
make a more specific interpretation of a significant χ2. Standardized residuals
can also be used to analyze significant χ2 goodness-of-fit tests, like the two
examples presented previously in this chapter. The cell residuals are calculated
the same way, and the conventional standard for any cell to be considered a
major contributor is the same.

17.8 Using the Chi-Square Test with
Quantitative Variables

Although the chi-square test is usually performed using discrete variables (e.g.
citizen or foreigner; home owner or renter; single, married, divorced, or
widowed), it is possible to use the test with a quantitative variable that is treated
as a categorical variable. For example, participants may be administered a scale
measuring dominance. The scores may range from 0 to 30, but the participants
could be classified as either High Dominance or Low Dominance. In fact, the
chi-square test for independence can be used when both variables are contin-
uous. A researcher, for instance, may hypothesize a relationship between “need
for achievement” and “annual income.” In Table 17.6, participants are assigned
to one of three categories of “need for achievement” and one of four categories
of “annual income.”
If there is some reason to suspect that the variable underlying a measure is not

continuous, but rather a set of discrete categories, using a chi-square test is a
good idea. Unlike parametric tests, a chi-square test using scaled numbers con-
verted into categories does not assume the underlying scale to be interval
or ratio.

Table 17.6 A 3 × 4 contingency table.a

Annual Income ($1000)

Need for Achievement <40 41–60 61–80 >80

>40 39 44 57 85

21–40 45 40 53 62

<20 76 52 40 30

a Two quantitative variables are presented as discrete variables. Scores on a measure of need for
achievement are collapsed to form low, medium, and high categories. Income is represented as four
discrete categories. Cell values are observed frequency counts.
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17.9 Assumptions of the Chi-Square Test

One of the advantages of the chi-square test is that there are very few assump-
tions that need to be met to conduct the test:

1) As with any inferential test, the sample should be representative of the pop-
ulation to which we want to generalize our findings.

2) The data should be in the form of a frequency count. The chi-square analysis
does not analyze differences between means.

3) Each observation must be independent of every other observation. “Inde-
pendence” not only means no influence between the participants but also
that each participant is only represented once in the frequency counts.

4) Expected cell frequencies need to be of sufficient size; usually “5” is used as a
rule of thumb. Chi-square analyses with small observed frequencies and/or
small expected frequencies can underrepresent the Type I error rate when
rejecting null hypotheses.

17.10 How to Present Formally the Conclusions
for a Chi-Square Test

The basic information and formatting needed when presenting nonparametric
findings in professional writings are not much different than those needed for
themore typical analytical techniques of t’s, F’s, and r’s. However, there are a few
differences. A typical sentence structure for a rejected null hypothesis for a chi-
square goodness-of-fit test might take this general form: “A chi-square goodness-
of-fit test was performed to determine if the types of majors were equally pre-
ferred by undergraduate students. Statistical evidence was found suggesting
major preference was not equally preferred, χ2 (2,N = 108) = 6.22, p < .05.”A typ-
ical sentence structure for a rejected null hypothesis for a chi-square test of inde-
pendence might take this general form: “A chi-square test of independence was
calculated comparing biological sex and type of undergraduate major. Statistical
evidence suggesting a relationshipwas found, χ2 (2,N = 22) = 6.05, p< .05. Follow-
up analyses found evidence that biological males were disproportionately more
likely than biological females to major in the sciences (R = 2.75 and R = –3.25,
respectively).”Notice how the sample size has been included within the parenth-
eses that describe the basic features of the design. With other tests, the degrees of
freedom are sufficient to communicate the nature of the sample size. The degrees
of freedom for a chi-square, however, only reflect the number of cells in the design
and not the frequency count. For this reason, a count of the sample size is typically
included.
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A typical sentence for a null that is not rejected might take the general form:
“A chi-square test of independence was calculated comparing biological sex and
type of undergraduate major. No statistical evidence of an interaction was
found, χ2 (2, N = 22) = 3.05, n.s.”

Summary

The chi-square test is used to analyze the frequency counts of nominal data.
Tests that make assumptions and inferences about population parameters
are called parametric tests. The chi-square test does not make assumptions
about the shape of a population distribution and does not use means or standard
deviations to infer population parameters; therefore, it is called a nonparametric
test. A chi-square analysis tests the correspondence between a hypothesized dis-
tribution of frequency counts and an observed distribution of frequency counts.
The null hypothesis states that there is no difference between expected and
observed frequency distributions. The alternative hypothesis is a statement that
the expected and observed distributions are sufficiently different such that the
difference is unlikely to be due to sampling error.
The chi-square goodness-of-fit test is analogous to a one-way ANOVA with

two or more groups (categories) distributed along a single factor. The chi-
square test for independence is analogous to a two-way ANOVA with two or
more groups (categories) distributed along two different factors. A two-way
design that uses categorical data is called a contingency table. In a two-way
design, the chi-square analysis tests whether two variables are independent.
The null hypothesis states that there is no relationship between two variables,
but the alternative hypothesis states that the variables are related; that is, they
are not independent. This is analogous to the two-way ANOVA test for an inter-
action. Both chi-square tests generate an observed statistic that can be com-
pared with a critical chi-square value derived from a sampling distribution
reflecting that particular research design.
In situations where the null hypothesis can be rejected, a measure of effect

size, Cramér’sV, can be found. This value reflects the proportion of the obtained
chi-square value to the size of the sample. Furthermore, a residual analysis can
be used as a follow-up test to explore which cell or cells of the research design
are major contributors to the large chi-square value.
The assumptions of the chi-square test include the sample to be representa-

tive of the population of interest, the data to be in the form of a frequency count,
each observation to be independent of every other observation, and expected
cell frequencies to be of sufficient size.
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Using Microsoft® Excel and SPSS® to Calculate
a Chi-Square

Excel

There is no specific Excel function for the chi-square goodness-of-fit test.
However, Excel, just like a calculator, can be used to generate the necessary
values to perform the test, for example, fo – fe, (fo – fe)

2, and so on.
For ease of calculation for two-factor chi-squares (chi-square test for inde-

pendence), creating a Pivot Table can be of help.
General instructions for data entry into Excel can be found in Appendix C.

Data Entry
Enter the bivariate data into two adjacent columns, being sure to keep the data
from each participant together in the same row. Categorical data need not be
numerical. (See Figure 17.4 for an example.)

Biological sex Major

male arts

male sciences

female humanities Count of biological sex Column labels

male sciences Row labels Female Male Grand total

female arts Arts 4 1 5

male sciences Humanities 7 2 9

female humanities Sciences 2 6 8

female humanities Grand total 13 9 22

female arts

male humanities

female sciences

female arts

male sciences

female humanities

female humanities

male sciences

female arts

female sciences

female humanities

male sciences

male humanities

female humanities

Figure 17.4 A worked example of a chi-square test for independence analysis using
Microsoft Excel.
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Data Analysis
1) For Excel to run a chi-square test for independence, pivot tables must be

created.
2) Click in any cell that has data and then click the Insert tab and select Pivot

Table. The entire data range should become activated. Select a location for
the Pivot Table and click OK.

3) On the right-hand side of the monitor, we will see a Pivot Table Field List
displaying our two variables (Biological Sex, Major in our example). We will
place one variable (Biological Sex) in the Column Labels box and the other
variable (Major) in the Row Labels box (either one in either box is fine).
Either variable can be placed in the Values box. All variables can be
moved by dragging. The resulting values in the table are the observed
frequencies that can be used to calculate the chi-square statistic. (See
Figure 17.4 for an example.)

4) From this point the arithmetic features of Excel can be used to calculate
fe’s as well as the χ2obt .

SPSS: Chi-Square Goodness-of-fit Test

General instructions for inputting data into SPSS can be found in Appendix C.

Data Entry
SPSS will run a goodness-of-fit chi-square, but the frequency counts for each
category will need to be calculated ahead of time. Once this is done, create
two variables usingVariable View, one labeled “Category” and the other labeled
“Frequency.” Use a nominal scale to identify the various categories (1, 2, 3,…)
and label them. Label the category values under Values in the Variable View.
(See Figure 17.5 for an example.)
Go to Data and drop down toWeight Cases. Move the “Frequency” variable

into the Frequency Variable box. This will properly weight each category based
on the number of scores associated with it.

Data Analysis
1) Click Analyze on the tool bar, select Nonparametric Tests, then Legacy

Dialogues, and then Chi-square.

Category Frequency

1 

2 

3 

1 25

2 39

3 44

Figure 17.5 An example of entered data for a
chi-square goodness-of-fit test is SPSS.
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2) Move “Category” into the Test Variable List box.
3) Leave the default value under Expected Values if the null hypothesis pre-

dicts each category to be equal. (If the null hypothesis is more complex, click
Values and put in, in order of the category number, the percent expected for
each category numerical label.)

4) Click OK.
5) The first output box will present the observed frequency (Observed N),

expected frequency (Expected N), and the difference between them (Resid-
ual) for each category. The second box will present the overall chi-square
statistic (Chi-Square), the degrees of freedom (df), and the probability of
getting a chi-square of that value if the null hypothesis is true (Asymp.
Sig.). There is statistical evidence to reject the null hypothesis if this number
is ≤ .05. (See Figure 17.6 for an example.)

SPSS: Chi-Square Test for Independence

General instructions for inputting data into SPSS can be found in Appendix C.

Data Entry
SPSS will run a chi-square test for independence. First, we need to create the
two categorical variables in Variable View. We may want to label each numer-
ical value used under the Values tab while in Variable View. For example,

Chi-square test

Frequencies

Category

Observed
N Expected N Residual

Arts

Sciences

Humanities

Total

25 36.0 –11.0

39 36.0 3.0

44 36.0 8.0

108

Test statistics

Category

Chi-square

df

Asymp. sig.

5.389a

2

.068

a0 cells (.0%) have expected frequencies less than 5. The minimum expected 

cell frequency is 36.0.

Figure 17.6 Output tables from a worked example using SPSS to run a chi-square goodness-
of-fit test.
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“Biological_Sex”may be labeled 1 = male and 2 = female. See Figure 17.7 for an
example of properly inputted data.
Input the data properly being sure to remember that each row represents a

case; typically, that is a participant.

Data Analysis
1) ClickAnalyze on the tool bar, selectDescriptives Statistics, and then select

Crosstabs.
2) Select one of the two categorical variables and use the arrow key to locate it

in the Row(s) box. Select the other categorical variable, and use the arrow
key to locate it in the Column(s) box. Then click OK.

Biological_Sex Major

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

1 1

1 2

2 3

1 2

2 1

1 2

2 3

2 3

2 1

1 3

2 2

2 1

1 2

2 3

2 3

1 2

2 1

2 2

2 3

1 2

1 3

2 3

Figure 17.7 An example of entered data for a chi-square test for independence is SPSS.
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3) The second table (Crosstabulation) generated will present the observed fre-
quencies for each combination of categories between the two variables.

4) Go back to Analyze, thenDescriptive Statistics, and then Crosstabs. Then
click on Statistics. ClickChi-square. (If we want to generate simultaneously
an effect size measure like Cramér’s V, we can do that here as well. For
instance, we could click Phi and Cramer’s V.)

5) Click Continue to leave the Cells menu and then click OK to run the
analysis.

6) The third table of the output is entitled Chi-Square Tests. The first line
labeled “Pearson Chi-Square” is the test statistic. Along with that value,
we can find the df value (df) and the probability of getting a chi-square value
of that size if the null is true (Asym. Sig. (2-sided)). Just as with previous
inferential tests, we are looking for a significance value of .05 or less as sta-
tistical evidence to reject the null (assuming our alpha value is 5%). See
Figure 17.8 for a visual example of the SPSS chi-square table.

7) If a residual analysis is needed, the various residual options can be found
under the Cells tab on the Crosstabs menu.

Key Formulas

Formula for χ 2

χ2 =
fo− fe

2

fe
(Formula 17.1)

Formula for computing fe

fe =
fcfr
N

(Formula 17.2)

Chi-square test

Crosstabs

Chi-square tests

Value df

Asymp. 
sig. (2-

sided)

Pearson chi-square

Likelihood ratio

Linear-by-linear 

Association

N of valid cases

6.051a
2 .049

6.231 2 .044

.120 1 .729

22

a5 cells (83.3%) have expected count less than 5. The minimum expected count is 2.05.

Figure 17.8 Output tables from a worked example using SPSS to run a chi-square test for
independence.
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Chi-square formula for a 2 × 2 contingency table

χ2 =
N AD−BC

A+B C +D A+C B+D
(Formula 17.3)

Formula for Cramér’s V

ϕ=
χ2

N df row column

(Formula 17.4)

Formula for the standardized residual

R=
fo− fe

fe
(Formula 17.5)

Key Terms

Frequency count Expected frequencies
Categorical data Observed frequencies
Chi-Square test Chi-square distribution
Nonparametric test Test for independence
Parametric test Contingency table
Distribution-free tests Cramér’s V
Goodness-of-fit test

Questions and Exercises

1 What assumptions are not needed for a chi-square analysis?

2 Why do expected frequencies and observed frequencies always equal
each other?

3 What is the difference between a chi-square goodness-of-fit test and a chi-
square test for independence?

4 How are the degrees of freedom for chi-square tests understood differently
from degrees of freedom for most other inferential tests?

5 Why is there just one critical value for a chi-square test when the test is bidi-
rectional? (That is, the null can be wrong in more than one way – the
expected cell means can be too larger or too small.)
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6 A one-way ANOVA is to a two-way ANOVA as:
a A nonparametric test is to a parametric test.
b A parametric test is to a nonparametric test.
c A chi-square is to correlation.
d A goodness-of-fit chi-square is to a chi-square test for independence.

7 Which pairing is most similar? Why?
a Standardized residuals and omega-squared
b Cramér’s V and Fisher’s LSD
c Omega-squared and Cramér’s V
d Fisher’s LSD and r2

8 Which pairing is most similar? Why?
a Standardized residuals and Fisher’s LSD
b Cramer’s V and Tukey’s HSD
c Tukey’s HSD and r2

d r2 and standardized residuals

9 Three different drug treatments are used to control hypertension. At the
end of treatment, the investigator classifies patients as having either a
favorable or an unfavorable response to the medication. Set alpha at .05,
and conduct a chi-square test regarding the null hypothesis of no relation-
ship. If necessary, use the R statistic to determine which cells make a major
contribution to the χ2. Interpret the findings. If there is evidence of an
effect, what is the effect size?

Treatment
Response I II III

Favorable 70 160 168 398
Unfavorable 30 40 32 102

10 A psychologist hypothesized that biological males are more likely than
biological females to accumulate objects of trivial significance because
of a biological basis to acquire and possess. Both male and female stu-
dents were loaned No. 2 pencils with which to take a multiple-choice
exam. A box labeled “pencils” was positioned next to a table upon which
students were to place their answer sheets. The investigator counted the
number of males and females who returned the pencils. The hypothesis
was that males would be more likely to keep the object. Conduct a chi-
square test to analyze the data. If there is evidence of an effect, what is the
effect size?
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Kept pencil Returned pencil

Males 15 40

Females 38 17

11 Specify the correct df for each of these designs.
a 2 × 2
b 3 × 4
c 4 × 5
d 1 × 3

12 Supply the requested information for each of the following designs.
Assume α = .05.

Design χ 2obt df χ 2crit Reject H0?

a 2 × 2 4.5

b 3 × 3 9.0

c 1 × 5 17.22

d 2 × 4 5.55

13 Two students find themselves in a discussion about the ways in which
police decide to pull people over for traffic violations. They maintain that
police are more likely to pull someone over if there is some evidence that
the driver has beliefs that are offensive to the officer. They enlist the aid of
50 drivers. Twenty-five of them are asked to place the following sticker on
their car bumper: Stop Police Brutality! The other 25 drivers are given a
sticker that reads, Smile! Assume there is no difference in the way in which
the participants of the two groups drive. Over the next 6 months, the num-
ber of times the police stop the drivers of each group is recorded. Drivers
displaying the brutality sticker are stopped 18 times; drivers displaying the
smile sticker are stopped 5 times. No driver is stopped more than once.
a State the null and alternative hypotheses.
b Specify fo for each cell.
c Compute χ2 and test the null hypothesis. Set α = .05.
d Interpret the findings.
e If an effect is found, what is the effect size?

14 For each matrix, fill in the missing observed and marginal frequencies.
Next, compute the fe for each cell.
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a
30 ? ? 20 120 
? ? 40 ? 100 

? 80 60 40 N =?

b
7 ? 14 
? ? ? 

? 18 30

15 Here are two more. For each matrix, fill in the missing observed and mar-
ginal frequencies. Next, compute the fe for each cell.

a
27 ? 13 57
? ? ? ? 

52 30 ? N = 140

b
? ? 34
? 36 ? 

72 ? 132

16 Assume that all marginal frequencies are given for a 2 × 3 design. What are
the fewest number of cells that must have frequencies specified in order to
determine the rest of the cell frequencies?

17 If a research design employing a chi-square analysis has 3 rows and 4
degrees of freedom, how many columns must it have? Suppose it has 8
degrees of freedom. How many columns must it have?

18 A marketing psychologist is hired as a consultant to an association of
recreational vehicle dealers. The dealers would like to know if they
should seasonally alter their advertising focus. The psychologist collects
data on the number of RVs sold in each season of the year. Conduct a
chi-square test with α = .05 on the following observed frequencies. Per-
form follow-up tests if appropriate. Interpret the findings for the dealers.
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Spring Summer Fall Winter

160 190 170 130

19 Frank and Lester (1988) have found that young adults, ages 15–24 years
old, more often commit suicide on a Sunday. The following hypothet-
ical data are consistent with their findings. Conduct a chi-square
test on these data, and make a decision regarding the null
hypothesis.

Sun. Mon. Tues. Wed. Thurs. Fri. Sat.

56 29 17 22 25 15 33

20 Below are some data regarding a potential relationship between driving
conditions and automobile accidents. Run the appropriate chi-square test
to see if a relationship exists.

Accident No accident

Rain 29 35

No rain 31 48

21 Mothers frequently report that they had more difficulty delivering
their first child in comparison with subsequent children. Kaitz, Roken,
and Eidelman (1988) tested this common belief by obtaining data
from primiparous (first-time mothers) and multiparous (more than
one past delivery) mothers. Primiparous (n = 49) and multiparous
(n = 75) mothers were asked to rate their labor as Easy, Medium,
or Difficult. The following data are adapted from their study. Conduct
a chi-square analysis, and test the hypothesis that there is a difference
between primiparous and multiparous mothers for discomfort experi-
enced during delivery. Set alpha at .05. In addition, if needed, use a
residual analysis to identify cells that make a major contribution to
a significant χ2.

Questions and Exercises 671



Easy Medium Difficult

Primiparous Mothers 2 20 27

Multiparous Mothers 19 46 10

22 Kaitz et al. (1988) tested the hypothesis that primiparous mothers are less
successful at recognizing their newborn babies in comparison with multip-
arous mothers. After less than 5 hr of exposure to their newborns, both
primiparous and multiparous mothers were presented with seven photo-
graphs of babies, one of which was their own child. The investigators found
that 30% (8/27) of the primiparous mothers and 79% (34/43) of multipa-
rous mothers accurately identified their babies. The authors attribute this
difference to a “short-lived impairment of perceptual/cognitive skills asso-
ciated with their more stressful childbearing experience.” Conduct a chi-
square analysis on the following data. Can the null hypothesis of no rela-
tionship be rejected for this set of data?

Correct ID Incorrect ID

Primiparous 8 19 27 
Multiparous 34 9 43 

42 28 N = 70

23 We have learned that the df for a goodness-of-fit test is C – 1 and (R – 1)
(C – 1) for a two-way design. As the number of categories or cells of a
design increases, χ2crit increases. Look at the formula for χ2 and explain
why it makes sense for χ2crit to increase as the number of categories
increases.

24 Both the number of people getting tattoos and the reasons they get them
have changed dramatically in the last few decades. Suppose a researcher
employs the help of the employees of a tattoo parlor and has them record
the various reasons for getting a tattoo as stated by the recipients.
A content analysis organized the reasons into the following four categories:
a To memorialize a meaningful family event (e.g. marriage, birth of
child) ............................................................................................................... 1724

b To memorialize a meaningful nonfamily event (e.g. first-time skydiving,
visiting a foreign country) ............................................................. .......... 1031

c Conformity reasons (friends or family are doing it together) ............ 635
d Personal expression of an important idea (freedom, peace, etc.) ...... 879
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Does this data set lend itself to a chi-square test? (Ignore the fact that
the participants are not a random sample of all those who received a
tattoo.) Run an analysis testing the null that each category is equally
likely.

25 Is a younger mother more likely to give birth to a physically immature
baby? In this study, younger mothers (under 20 years of age) are com-
pared with older mothers (30–35 years of age). An immature baby is
defined as having a birth weight equal to or less than 2500 g. Every baby
is assigned to a category based on the age of the mother and whether the
baby is below or above the weight cutoff defining physical immaturity.
Set alpha at .05, and perform a chi-square analysis on the following hypo-
thetical data. Interpret the findings. If there is evidence of an effect, meas-
ure the size.

Birth weight

Age ≤ 2500 grams > 2500 grams

Under 20 45 20 65 
30–35 10 39 49 

55 59 114 

26 A researcher is interested in the association between diabetes and pro-
longed healing of wounds. The research question is, “Do diabetics show
prolonged healing?” Conduct a chi-square analysis on the following data.
Set alpha at .05.

Healing

Patient Normal Prolonged 

Diabetic 125 329 454 
Nondiabetic 245 111 356 

370 440 810 

27 A dermatologist is interested in comparing four different treatments for
dandruff. After six weeks of treatment, a colleague judges each patient
as either improved or not improved. Is there any reason to conclude that
the treatments have a differential effect on dandruff? Set alpha at .05 and
conduct a chi-square analysis. If there is reason, what is a measure of the
effect size?

Questions and Exercises 673



A 22 24 46 

B 19 17 36 

C 23 28 51 

D 17 22 39 

81 91 172 

Preparation No Improvement Satisfactory Improvement

28 Suppose we are interested in the relationship between the part of the coun-
try people live in and which of two sports they enjoy. We collect data on
sports participation from people around the country and obtain the follow-
ing results (see table below). Is there any evidence for a relationship
between part of the country and sports enjoyment? Set alpha at .05 and
conduct the appropriate chi-square analysis. If warranted, perform fol-
low-up tests and measure the effect size.

Part of the country Tennis Golf

Northeast 7 9

Southeast 6 18

Southwest 20 25

Midwest 15 20

29 A political scientist was interested in seeing if there was a relationship
between education level and position on gun rights. To simplify matters
participants were asked to identify themselves as either “pro-” gun owner-
ship or opposed to gun ownership (“con”). Several participants were sur-
veyed, and the following results were found (see table below). Please run
the appropriate test to see if the null hypothesis of no relationship between
education level and gun rights position can be rejected. Set alpha at .05. If
warranted, perform follow-up tests and measure the effect size.

Ed. level
Gun
rights Ed. level

Gun
rights Ed. level

Gun
rights

H.S. Pro Graduate Con H.S. Con

Bachelor’s Pro H.S. Pro H.S. Pro

H.S. Con H.S. Con Bachelor’s Pro

Bachelor’s Pro Bachelor’s Pro H.S. Con

Bachelor’s Pro Graduate Con Bachelor’s Pro
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Ed. level
Gun
rights Ed. level

Gun
rights Ed. level

Gun
rights

H.S. Con H.S. Con H.S. Con

H.S. Pro Bachelor’s Pro H.S. Pro

H.S. Pro H.S. Con Graduate Con

Bachelor’s Con Graduate Con Graduate Con

H.S. Pro H.S. Con H.S. Con

H.S. Pro H.S. Pro H.S. Pro

Graduate Con H.S. Con Bachelor’s Pro

Bachelor’s Con Bachelor’s Pro Bachelor’s Pro

Bachelor’s Pro Graduate Con Bachelor’s Con

Graduate Pro Bachelor’s Con Graduate Pro

H.S. Con H.S. Pro Graduate Con

Graduate Pro H.S. Pro Bachelor’s Pro

Graduate Con H.S. Pro H.S. Pro

H.S. Pro Graduate Con Graduate Con

Bachelor’s Pro Graduate Con Bachelor’s Pro

H.S. Con Bachelor’s Pro H.S. Pro

Bachelor’s Con Bachelor’s Pro H.S. Pro

(Continued)
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18

Other Nonparametric Tests

18.1 The Research Context

Popular inferential tests, such as the t test or the ANOVA, are known as par-
ametric tests because they test hypotheses about population parameters –
usually means. In addition, these tests rest on certain assumptions: scores in
the populations are normally distributed, population distributions have equal var-
iances, and the data ismeasured on either an interval or a ratio scale. Although the
t test and the ANOVA are robust tests (i.e. they can be used even when, for exam-
ple, the populations are not normally distributed), gross violations of the popu-
lation assumptions can invalidate parametric tests. In addition, some research
questions do not lend themselves to the use of interval or ratio scales; therefore,
a parametric test may not be applicable. In Chapter 17, for example, the chi-
square was presented as a test performed on frequency count data.
Statisticians have developed numerous hypothesis tests that do not make

assumptions about population parameters; these are called nonparametric tests.
They can be used when assumptions about population characteristics are vio-
lated and/or when the scale of measurement used to gather the raw data is nom-
inal or ordinal.
Many of the parametric tests previously discussed in this text have a nonpa-

rametric alternative. However, only four nonparametric tests will be covered in
this chapter.1 The Spearman rank correlation coefficient is used to measure the
strength of association between two variables when at least one variable is meas-
ured on an ordinal scale. The point-biserial correlation coefficient is used to
measure the strength of association between a variable measured with an
interval or ratio scale (a continuous measure) and a dichotomous variable
(an “either-or” variable). The Mann–Whitney U test is the nonparametric

1 For a detailed treatment of nonparametric tests, see Corder and Foreman (2014) or Siegel and
Castellan (1988).
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alternative to an independent-samples t test. It is performed using ordinal data.
The Wilcoxon signed-ranks test is the nonparametric counterpart to the
dependent-samples t test. It too is performed using ordinal data. As each test
is discussed, appropriate research examples for the test are given. In addition,
the methods of calculation and procedures for testing the null hypothesis are
presented.

18.2 The Use of Ranked Data in Research

There are two different reasons why a researcher may end up using ordinal data
and running a nonparametric test. In one situation, the researcher starts with
collecting ordinal data. For example, an investigator might ask if there is a rela-
tionship between popularity and intelligence of children. The data are collected
by asking a teacher to rank students from most to least popular and from most
to least intelligent. Here is another example, suppose a researcher wants to
know if there is a relationship between tennis players’ national rankings and
their heights. All of the players would be ranked according to height, and then
the two ranked variables would be correlated. In many situations, the use of an
ordinal scale has advantages. Recall from Chapter 2 that one of the assumptions
of an interval scale is that numerically equal distances on the scale represent
equal distances on the dimension underlying the scale. Imagine how we would
go about rating the talent of several football teams. If we used an interval scale, it
would be difficult to convince someone that the rating distance between any two
adjacent teams is the same. For example, the difference between the best team
and the second best team may be closer than the difference between the tenth-
and eleventh-place teams. Using an ordinal scale circumvents this problem;
rankings only make claims about the relative position of each event compared
with the others.
There is a second reason why a researcher may use ordinal data. Collected

data may be from an interval or ratio scale, but one or more of the population
assumptions needed to run a parametric test may not bemet. In these situations,
the scores can be converted into ranks, and a nonparametric test can be used
instead. To accomplish the conversion into ranks, we simply organize the orig-
inal scores in ascending or descending order and assigns ranks accordingly. The
original scores are then discarded, and an appropriate nonparametric analysis is
performed on the newly created ranked data.
Incidentally, ranking interval- or ratio-scaled data can help a researcher

address the problem of an outlier score. When numbers are converted into
ranks, the value assigned to an outlier score is just one unit higher or lower,
as the case may be, to the rest of the values in the data set. This technique brings
the outlying data point into close proximity with the rest of the data set.
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18.3 The Spearman Rank Correlation Coefficient

Chapter 15 explained that the Pearson formula, a statistic that measures the
degree of association between two variables, could be used to compute a cor-
relation. However, the data gathered in some research situations may not meet
the assumptions for the Pearson correlation, or the data may reflect a certain
type of nonlinearity described as monotonic (in these nonlinear relationships,
the nonlinearity does not reverse directions as it does in shapes such as or ).
In these situations, a Spearman rank correlation coefficient may be an appropriate
option.
To perform a Spearman correlational analysis, however, the data will first

need to be converted into ranks. Suppose a researcher hypothesizes a relation-
ship between “Need for Approval” and “Ingratiating behaviors.” In Table 18.1,
the Score columns are the continuous measures for the two variables. The Rank
columns show each score’s rank in the distribution. The analysis is unaffected by
whether a rank of 1 is assigned to the highest or lowest score. In this example, a
rank of 1 is assigned to the highest score, a rank of 2 to the next highest score,
and so on. Participant 1 scored an 8 on “Need for Approval,” which was the
highest score, and so a rank of 1 has been assigned to that value. Participant
7 scored a 6 on the measure of “Ingratiation,” and since a 6 is seven scores from
the top of the distribution, a rank of 7 has been assigned.
Figure 18.1a is the scatter plot for the continuous measures of “Need for

Approval” and “Ingratiation.” Since the correlation is extremely high, the points
of the scatter plot line up fairly well. However, observe how the line is curved
(nonlinear). In this situation, a conversion of the raw data into ranked data may
create greater linearity. After converting to ranks, the line becomes straighter,

Table 18.1 Converting continuous measures to ranks.

Participant

Need for Approval Ingratiation

Score Rank Score Rank

P1 8 1 11 1.5

P2 7 2.5 11 1.5

P3 7 2.5 10 3

P4 6 4 9 4

P5 5 5 8 5

P6 4 6 7 6

P7 3 7 6 7

P8 2 8 2 8
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Figure 18.1 Observe how the nonlinear scatter plot in (a) becomes linear when the
continuous measures have been changed to ranks in (b).
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showing a more linear relationship between X and Y (Figure 18.1b). If the rela-
tionship between X and Y displays a form of curvilinearity that reverses direc-
tion (nonmonotonic), for instance, looking like or , conversion into ranks will
not work. However, mildly curved plots often straighten out when ranked. If
ranking the scores is successful in making the data linear, we have a choice
of correlation formulas. We can use the Pearson formula presented in
Chapter 15 (but only if all other population assumptions are met), or we can
use a nonparametric formula: the Spearman rank correlation, symbolized
as rs. (Charles Spearman actually symbolized the coefficient as ρs. However,
since ρ has come to symbolize a population correlation, modern usage favors
rs for the Spearman rank correlation of a sample.) The Spearman formula is
a computationally simplified Pearson formula applied to rankings. As a result,
the essential features of a correlation coefficient still apply:

1) The correlation can assume any value between −1 and +1.
2) The sign of the correlation reflects the nature of the relationship.
3) r2s reflects the amount of shared variance between X and Y.
4) When testing the statistical significance of rs, the null hypothesis is usually

ρ = 0.

Formula for Spearman rank correlation, rs

rs = 1−
6ΣD2

np n2p−1
(Formula 18.1)

where

D2 = the squared difference between a pair of ranks
np = the number of paired scores

■ Question Applying Formula 18.1 to the ranked data in Table 18.1, what is
the correlation between Need for Approval and Ingratiation?

Solution

Participant
Need for Approval Ingratiation

D D2Rank Rank

P1 1 1.5 −0.5 0.25

P2 2.5 1.5 1 1

P3 2.5 3 −0.5 0.25

P4 4 4 0 0

(Continued)
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Participant
Need for Approval Ingratiation

D D2Rank Rank

P5 5 5 0 0

P6 6 6 0 0

P7 7 7 0 0

P8 8 8 0 0

ΣD= 0 ΣD2 = 1.5

ΣD2 = 1 5

np = 8

rs = 1−
6D2

np n2p−1

rs = 1−
6 1 5

8 82−1

rs = 1−
9

8 63

rs = 1−0 018

rs = + 0 98 ■

Tied Ranks

When converting continuous measures into ranks, we will frequently encoun-
ter two or more participants that have identicalX or Y scores.When the ranks of
two scores are tied, take the average of the two contiguous ranks. For example,
in Table 18.1, Participants 2 and 3 both scored a 7 on Need for Approval, which
happens to be the second highest score, but we cannot simply assign a rank of 2
to both participants. The customary method takes the average of the ranks 2 and
3 and assigns a 2.5 to each one. The next highest score in the distribution will be
assigned a rank of 4 (not 3). We should try to avoid tied ranks because ties have
the effect of inflating the correlation. However, if there are not toomany ties and
not toomany long ties (three-or-more-way ties), then the overestimation will be
acceptably small (approximately 0.02) (Welkowitz, Ewen, & Cohen, 1988).
There may be no way to avoid tied ranks when we are converting continuous
measures; the scores determine the ranks and we have no control over the
scores. Of course, in the studies in which the investigator collects the data as
ranked data, steps can be taken to avoid ties. The following section presents
an example in which data are ranked from the beginning of data collection.
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The Planned Use of Ranks

Imagine the following hypothetical theory and study. A social psychologist
believes that, in the course of a year, children in a classroom will form a dom-
inance hierarchy. Furthermore, the psychologist believes that the hierarchy is
formed based on popularity, with the most popular child ascending to the
top of the dominance hierarchy and the least popular child stuck at the bottom.
As a measure of popularity, the classroom teacher is asked to rank all of the

children from the most to least popular. To measure dominance, the children
are given the opportunity to play a new video game, but they must come to an
agreement about which of them will go first, which will go second, and so on.
The order in which the children play the game is used as the measure of “Dom-
inance.” Table 18.2 presents the rankings for every child on both variables.
A rank of 1 is assigned to the most dominant child, and a rank of 10 is assigned

Table 18.2 Using the Spearman rank formula to compute the correlation between
dominance and popularity.

Child Dominance Popularity D D2

Erin 1 1 0 0

Megan 7 8 −1 1

Caleb 6 9 −3 9

Christopher 8 5 3 9

Karis 3 2 1 1

Justine 4 3 1 1

Austin 5 4 1 1

Ella 10 6 4 16

Jake 9 7 2 4

Oren 2 10 −8 64

ΣD= 0 ΣD2 = 106

rs = 1−
6D2

np n2p−1

rs = 1−
6 106

10 100−1

rs = 1−
636
990

rs = 1 − 0.642
rs = + .36
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to the least dominant child. In like manner, a rank of 1 is assigned to the most
popular child, and a rank of 10 is assigned to the least popular child.
Follow each step of the calculations of rs in Table 18.2. The obtained rs of +.36

is consistent with the hypothesis that themore popular the child, the more likely
they will assume a dominant position in the class. Whether this relationship
between popularity and dominance would be found using other measures of
these variables would need to be tested in future research. However, before
making any conclusions about this correlation, a test of the null hypothesis will
need to be conducted. This is covered later in this section.

Another Example Using Planned Ranks

Another occasion in which participants are ranked from the beginning of the
study occurs when two judges provide rankings on one variable. For instance,
two psychiatrists might rank hospitalized patients along the dimension of
how disturbed the patients appear to be, with a rank of 1 given to the most dis-
turbed person, a rank of 2 assigned to the next most disturbed person, and so on.
Two gym teachers could rank students on athletic ability, with a 1 assigned to
the student who is viewed as the best athlete, a 2 given to the next best athlete,
and so on.
Do not be confused about interpreting the rs when two judges provide rank-

ings on one variable. The correlation reflects the strength of association of the
rankings of the two judges. Alternatively stated, the correlation indicates the
degree to which the judges agree as to how the participants should be ranked
on the variable of interest. If the correlation is high, we can be confident that
the judges are consistent in ranking the participants. If the correlation is low,
we can infer that the judges are using different criteria when making their rank-
ings; or perhaps, they are using the same criteria, but they do not have access to
the same information (e.g. maybe they have observed the participants in differ-
ent settings). Measuring the correlation between the judgements of different
evaluators, a concept referred to as inter-rater reliability, is an important com-
ponent to many social and behavioral science research studies.
Following is an example of a misinterpretation of rs for the rankings of two

judges. Suppose two school psychologists rank a group of children from the
most to the least friendly. The rs turns out to be +.45. We should not conclude
that there is a correlation between children’s friendliness and the judges’ rank-
ings. These are not the two things being measured for association. The correct
interpretation is that the judges tend to agree as to how the children should be
ranked with respect to friendliness. However, the fact that the correlation is only
+.45 suggests they show only a moderate degree of agreement. We should
expect rs to be rather high when two judges rank participants on one variable.
As the correlation drops below +.80, our concern about the judging process
should increase.
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Table 18.3 provides a hypothetical example of two judges ranking body-
builders competing for the title of Mr. All-Too-Wonderful. The obtained rs
of +.98 indicates that the judges are in strong agreement as to how to make their
judgments.

Some Problems with Using Ranks

Converting continuous measures into ranks (i.e. changing an interval or ratio
scale to an ordinal scale) is a procedure that can be resorted by a researcher
because the scatter plot reveals an unacceptable degree of nonlinearity. How-
ever, sometimes an investigator will choose to use rankings from the beginning
of a study. This practice is often due to the absence of a suitable continuous
measure. There is hesitancy among social and behavioral scientists to using
ranks; ranks are less sensitive measures than interval or ratio scales. The reason
for the insensitivity is the lack of uniformity between the ranks. For instance, the

Table 18.3 Using the Spearman rank formula to correlate rankings of two judges.

Bodybuilder Judge 1 Judge 2 D D2

Dickenson 1 1 0 0

Rexford 2 2 0 0

Bricken 10 9 1 1

Bundy 6 7 –1 1

Bower 8 8 0 0

Strobel 4 4 0 0

Couvion 7 6 1 1

Shelton 3 3 0 0

Gray 9 10 –1 1

Hamilton 5 5 0 0

∑D= 0 ∑D2 = 4

rs = 1−
6D2

np n2p−1

rs = 1−
6 4

10 100−1

rs = 1−
24
990

rs = 1 − 0.024

rs = + .98
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distance between the ranks of, say, 2 and 3 may be very different from the dis-
tance between the ranks of 7 and 8. In addition, a high rank may not necessarily
correspond to a large amount of the variable that is being ranked. For example,
we might rank five comedians on how funny we find them. In our estimation,
the comedian receiving the highest rank is funnier than the other four, but we
may find none of them to be very funny. Correspondingly, a low rank may not
mean there is only a small amount of the quality being measured. Using the
same example, we may find the lowest-ranked comedian to be very funny, just
not as funny as the other four.
Another disadvantage to using ranked data is the drop in power that occurs with

the diminished quantitative sensitivity. In other words, an inferential test using a
ranked version of a data set is less likely to reject the null hypothesis comparedwith
a data set using an interval or ratio scale. Whenever there is an opportunity to use
an interval or ratio scale that also meets all of the population assumptions of an
inferential test, it should be taken. The statistical power will be greater.

Using Spearman’s r to Test the Null Hypothesis

When using rs to test the null hypothesis, use Table A.9 in the Appendix. This
table specifies the critical values for the Spearman’s rs. Note that the critical value
(rcrit) is found by entering the left column using the number of pairs of scores (not
np − 2). We can then conduct a directional or nondirectional test of the null
hypothesis by using the appropriate column. The null hypothesis states that
the population correlation ρ is 0. A rejection of the null hypothesis is warranted
when the observed rs falls outside of ±rcrit found in Table A.9.
To demonstrate how to use the Spearman to test a null hypothesis, let us look at

the dominance and popularity data that is found in Table 18.2. The rs was found
to be +.36. Setting alpha at .05, the rcrit for a nondirectional test, with np = 10,
equals ±.648. The value of .36 does not fall outside of ±.648. Therefore, we should
not reject the null hypothesis that ρ = 0. This means that we do not have evidence
that popularity and dominance are related at the population level. Keep in mind
that inferential hypothesis testing takes place only when we are interested in
determining the characteristics of populations using sample data. To run an infer-
ential test between the judges’ rankings of bodybuilders would have little mean-
ing. This data, after all, is not a sample drawn from a population.

18.4 The Point-Biserial Correlation Coefficient

The point-biserial correlation analysis is used when one variable is continuous
and the second variable is dichotomous. Some examples of dichotomous variables
are student/nonstudent, married/single, theist/nontheist, and resident/alien.
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To use the point-biserial formula, the dichotomous variable should be
genuinely dichotomous and not merely artificially dichotomous. An example
of an artificial dichotomous variable would be to take the heights of research par-
ticipants and split them into two groups, tall people and short people. The point-
biserial correlation is not a good option for a variable that has an underlying
continuity.
To compute the point-biserial correlation coefficient, each participant is

assigned either a 0 or a 1 for the dichotomous variable. Assigning numbers
to dichotomous groups is called dummy coding. For example, if one variable
is biological sex, all males might be assigned a 0 and all females assigned a 1. We
could assign 3’s and 4’s if we would like, but researchers typically use either 0’s
and 1’s or 1’s and 2’s. The term biserial reflects the fact that there are two series
of persons being observed on variable Y: those who are assigned a 0 on X and
those assigned a 1 on X.
Suppose a researcher wants to examine the relationship between biological

sex and assertiveness, with assertiveness assessed using an interval scale.
For the X variable of biological sex, one series of participants (males) would
receive a 0, and the other series of participants (females) would receive a 1.
The Y variable is the continuous measure, “assertiveness.” The point-biserial
correlation would measure the strength of association between these two
variables.

Formula for point-biserial correlation, rpb

rpb =
MY1 −MY0

sy

n1n0
n n−1

(Formula 18.2)

where

My1 = the mean of the continuous measure for just those participants assigned
an X value of 1

My0 = the mean of the continuous measure for just those participants assigned
an X value of 0

sy = the standard deviation of all the scores on the continuous measure, i.e. irre-
spective of group designation

n1 = the number of participants assigned a 1 for the X variable
n0 = the number of participants assigned a 0 for the X variable
n = n1 + n0; total number of participants

■ Question A clinical psychologist is interested in the relationship between bio-
logical sex and the fear of making a long-term commitment to a member of the
opposite biological sex. A continuous measure of “fear of commitment” is given to
biological males and females. Using the data presented in Table 18.4, compute
the point-biserial correlation coefficient.
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Solution In Table 18.4, the numbers in the Biological Male and Biological
Female columns are scores on the Y, continuous measure (fear of commitment).
Note how the X, dichotomous variable (biological sex), has been dummy coded
as biological male = 0 and biological female = 1. ■

Interpreting the Point-Biserial Correlation Coefficient

Students sometimes have difficulty interpreting the meaning of a point-biserial
correlation coefficient, especially the direction of the relationship. As we exam-
ine the biological male and biological female columns in Table 18.4, remember
that the scores across from one another are not pairs of scores. If the data were
presented as pairs of scores, there would be two columns, one column with 0’s

Table 18.4 Calculating the point-biserial correlation
coefficient between sex and fear of commitment.

Biological Male: (0) Biological Female: (1)

P1 22 P8 13

P2 14 P9 16

P3 20 P10 11

P4 8 P11 12

P5 11 P12 4

P6 9 P13 3

P7 9 P14 6

rpb =
MY1 −MY0

sy

n1n2
n n−1

My0 = 13 29

My1 = 9 29
sy = 5.51
n0 = 7
n1 = 7

n = 14

rpb =
9 29−13 29

5 51
7 7

14 14−1

rpb =
−4 00
5 51

49
182

rpb = −0 73 0 269

rpb = − 0.73(0.52)
rpb = − .38
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and 1’s, and one columnwith each participant’s score on the continuousmeasure.
Organized as pairs of scores, the data in Table 18.4 would look like this:

P X Y
P1 0 22

P2 0 14

P3 0 20

P8 1 13

P9 1 16

P10 1 11

P14 1 6

We could, in fact, compute the correlation between a dichotomous and contin-
uous measure using the Pearson raw score formula presented in Chapter 15; the
resulting value would be the same. Indeed, just as the Spearman rank formula is
a simplified version of the Pearson formula applied to ranks, the point-biserial
formula is a version of the Pearson formula applied when one variable is
dichotomous.2

When interpreting the direction of the correlation, pay attention to which
group members received the lower of the two dummy codes and which received
the higher of the two codes. Recall that a positive correlation means that lower
numbers on the X variable are associated with lower numbers of the Y variable,
and, of course, higher numbers of theX variable are associated with higher num-
bers of the Y variable. The reverse is true for a negative correlation: lower num-
bers on one variable are associated with higher numbers on the second variable.
For the worked problem in Table 18.4, a negative correlation was obtained; bio-
logical males were assigned the lower number (0) and biological females the
higher number (1). Therefore, the negative correlation means that higher “fear
of commitment” scores are associated with biological males. Had the dummy
codes been reversed and biological females assigned a 0 and biological males
a 1, the correlation would have been +.38 instead of −.38. However, the inter-
pretation of the correlation would have remained the same.When reporting the
results of a point-biserial correlational analysis, be sure to include a specific
interpretation of the finding. Simply stating that there is a +.38 or −.38

2 As an exercise, use the Pearson raw score formula with the data in Table 18.4.
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correlation between biological sex and fear of commitment would confuse read-
ers since they would not necessarily know how the dummy codes were assigned.

Using the Point-Biserial Correlation Coefficient to Test
the Null Hypothesis

The point-biserial correlation coefficient can be used for testing the null
hypothesis by using the same table of critical values as the Pearson r
(Table A.7 in the Appendix). The degrees of freedom is n − 2, where n is the
total number of participants. If rpb falls outside of ±rcrit, then the null hypothesis
that ρ = 0 can be rejected. Test the correlation found between biological sex and
fear of commitment using a nondirectional test with an alpha level of .05. Entering
the appropriate column in Table A.7, note that the critical value for 12 df (14 − 2)
is .532. Since –.38 does not fall outside of ±.532, do not reject the null hypothesis.
In other words, we do not have statistical evidence that there is a relationship
between biological sex and fear of commitment.

■ Question A psychologist hypothesizes an association between Marital Status
and Need for Achievement. A questionnaire measuring “Need for Achievement”
is administered to married and single people. Higher scores indicate a greater
need. As we examine the following data set, notice that there are more single than
married people in the sample. This is perfectly fine (within reason); the point-
biserial formula can work with unequal numbers of participants in each group.
Married individuals are assigned a 0 and single individuals are assigned a 1.
Test the null hypothesis that ρ = 0, set α = .05, and interpret the correlation.

Marital Status Need for Achievement

0 3

0 7

1 12

1 16

1 24

0 11

1 15

0 10

0 11

1 18

1 22

0 9

1 19

1 17
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Solution

rpb =
MY1 −MY0

sy

n1n2
n n−1

My0 = 8 5

My1 = 17 9

sy = 5 89

n0 = 6

n1 = 8

n= 14

rpb =
17 9−8 5

5 89
8 6

14 14−1

rpb =
9 4
5 89

48
182

rpb = 1 60 0 264

rpb = 1 60 0 51

rpb = + 82

To test the null hypothesis, turn to Table A.7 in the Appendix, and find the crit-
ical value for an alpha of .05, with 12 df. The critical value is .532. The obtained
correlation of .82 falls outside of ±.532; therefore, we can reject the null hypoth-
esis that states ρ = 0. A positive correlation means that we have found evidence
that singles (who were dummy coded with a 1) have a greater need for achieve-
ment compared with married individuals. ■

18.5 The Mann–Whitney U Test

TheMann–WhitneyU test is the nonparametric alternative to the independent-
samples t test. Any research design that has two independent groups of partici-
pants is a candidate for the use of aMann–WhitneyU test. The decision to use a t
test or theMann–WhitneyU test is based on whether we believe we havemet the
statistical assumptions for a t test. If there is reason to suspect that the population
distributions depart radically from normality, the variances of the populations are
unequal, or the data is not measured on an interval or ratio scale, the Mann–
Whitney U test is preferred to the t test. Therefore, the most common pathway
to the Mann–Whitney U test is to collect data, discover that the statistical
assumptions for a t test have been violated, convert the raw scores into ranks,
and perform the Mann–Whitney U test on the ranked data.
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The Rationale Underlying the Mann–Whitney U Test

The experimental situation appropriate for the use of theMann–WhitneyU test
is one in which there are two independent groups of participants, with each par-
ticipant providing a score. Once the decision is made to use theMann–Whitney
U, the scores from both groups are combined, forming one large group. The
entire set of scores is listed from lowest to highest. Each score is then assigned
its corresponding rank: typically, the lowest is ranked 1, the next lowest is
ranked 2, and so on. However, just as with the Spearman, the ranking system
can be reversed. It will not change the outcome of the test. Next, the partici-
pants’ ranks are placed back into the original two groups of the design.
Now, suppose there is a treatment effect. How do we think the groups will be

distributed across the span of the ranks? If there is an effect, we should find
that one group will have manymore ranks at the lower end of the scale in com-
parison with the other group. Suppose there is no treatment effect. In this sit-
uation, the group members should look like they have been evenly dispersed
across the span of the ranks. Figure 18.2a illustrates a distribution of ranks

1 2 3 4 5 6 7 8 9 10

Ranks from Condition A
Ranks from Condition B

(a)

1 2 3 4 5 6 7 8 9 10

Ranks from Condition A
Ranks from Condition B

(b)

Figure 18.2 (a) More ranks of Condition A are shown at the lower end of the scale, and more
ranks from Condition B are at the higher end of the scale. This indicates the presence of a
treatment effect. (b) The ranks of Conditions A and B fail to show a systematic grouping in
either end of the scale. When there is no treatment effect, the ranks of Conditions A and B are
intermixed and evenly dispersed across the span of the ranks.
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when there is a treatment effect. Note that Condition A has greater represen-
tation in the lower ranks than Condition B. The group members are not evenly
dispersed across the span of the ranks. Figure 18.2b illustrates a case in which
there is no treatment effect. The ranks from one group do not systematically
fall into either end of the scale. The group members appear to be evenly dis-
persed across the span of the ranks. TheMann–WhitneyU test helps us deter-
mine the likelihood that a particular arrangement of ranks can be explained by
chance.

Calculating the Mann–Whitney U Without a Formula

Worked Example
As a means for demonstrating how to calculate the Mann–Whitney U, let us
evaluate a hypothetical program for increasing vocabulary. Ten participants
are randomly assigned to the experimental and control conditions (five partici-
pants in each group). After two days of training, all participants are tested on the
number of words they can define.

Step 1. The vocabulary scores for each participant are listed according to exper-
imental condition.

Condition A (treatment) 75, 4, 32, 140, 20

Condition B (control) 33, 49, 90, 100, 9

Step 2. Arrange all the scores from lowest to highest and rank them. Although
the scores are combined into one list, we need to keep track of which scores
come from which condition.

Score 4 9 20 32 33 49 75 90 100 140

Rank 1 2 3 4 5 6 7 8 9 10

Condition A B A A B B A B B A

Step 3.Now work only with the ranks and their respective group assignments.
For each participant (rank) from Condition A, count the number of
participants (ranks) from Condition B that are above that rank. The number
of ranks above a given rank will be referred to as points (Gravetter &
Wallnau, 2017).

Rank 1 2 3 4 5 6 7 8 9 10

Condition A B A A B B A B B A

Points for Condition A 5 4 4 2 0
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Step 4.Add all the points for Condition A: 5 + 4 + 4 + 2 + 0 = 15. Fifteen is theU
value for Condition A, symbolized as UA.

Step 5. Steps 3 and 4 are repeated for the ranks of Condition B.

Rank 1 2 3 4 5 6 7 8 9 10

Condition A B A A B B A B B A

Points for Condition B 4 2 2 1 1

UB = 4+ 2+ 2+ 1+ 1= 10

Step 6. Determine the Mann–Whitney U. The Mann–Whitney U value is the
smaller of UA and UB, in this case, 10. As a computational check, the
number of participants in Condition A, nA, multiplied by the number
of participants in Condition B, nB, should equal UA + UB. Therefore,
UA +UB = 15 + 10 = nAnB = 5(5) = 25.

Calculating the Mann–Whitney U with Formulas

The Mann–Whitney U value can be found another way, using formulas to
determine UA and UB. With this method, all participants are rank ordered in
the manner described in the preceding step list. For the participants in Condi-
tion A, ΣRA is computed (the sum of the ranks, not the sum of points). Then, the
sum of the ranks is computed for the participants in Condition B, ΣRB. The fol-
lowing are formulas forUA andUB. Remember that nA and nB refer to the num-
ber of participants in Conditions A and B, respectively.

Formula for computing UA

UA = nAnB +
nA nA + 1

2
−ΣRA (Formula 18.3)

Formula for computing UB

UB = nAnB +
nB nB + 1

2
−ΣRB (Formula 18.4)

Let us use the last worked problem to illustrate how these formulas are applied.

Rank 1 2 3 4 5 6 7 8 9 10

Condition A B A A B B A B B A

ΣRA = 1+ 3+ 4 + 7 + 10 = 25

nA = 5

nB = 5
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UA = nAnB +
nA nA + 1

2
−ΣRA

UA = 5 5 +
5 5 + 1

2
−2

UA = 25 +
5 6
2

−25

UA = 25 + 15−25

UA = 15

Note thatUA is 15, the same value computed using the points method. Now use
Formula 18.4 to determine UB:

ΣRB = 2+ 5+ 6 + 8 + 9 = 30

UB = nAnB +
nB nB + 1

2
−ΣRB

UB = 5 5 +
5 5 + 1

2
−30

UB = 25 +
5 6
2

−30

UB = 25 + 15−30

UB = 10

Again, note that the value of UB (10) is the same whether the point or formula
method is used. Recall that the Mann–Whitney U is the smaller of UA and UB:
U = 10.

Hypothesis Testing and the Mann–Whitney U

The Null and Alternative Hypotheses
If the null hypothesis is true, the two samples are taken from a single population.
Under this condition, the distribution of ranks for Conditions A and B should
not show a systematic difference. As noted previously, and illustrated in
Figure 18.2, the ranks of both conditions will be highly intermixed when the null
hypothesis is true. However, hypothesis testing is probabilistic. Therefore, it is
possible for the distribution of ranks to show a systematic ordering, even when
the null hypothesis is true. As with other inferential tests, sampling error can
lead us to commit a type I error by erroneously rejecting a true null hypothesis.
The null hypothesis is typically a statement about the equivalence of population
distributions:

H0 The population distribution of A= the population distribution of B
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The alternative hypothesis is a statement about the nonequivalence of the
population distributions:

H1 The population distribution of A≠ to the population distribution of B

Finding the Critical Value for U
The sampling distribution of U is based on the number of participants in each
group, nA and nB. Tables A.10 and A.11 in the Appendix contains the critical
values for various alpha levels and all combinations of nA and nB, provided
the largest sample size of either group does not exceed 20 (more on this point
later). Critical values are provided in lightface and boldface for directional and
nondirectional tests, respectively. A dash mark in the table indicates that no
decision is possible at the stated level of significance given those values of nA
and nB. For two-tailed tests, Table A.10 is used when alpha is set at .02 or
.01. Table A.11 is consulted when conducting a two-tailed test and alpha is
set at .10 or .05.

■ QuestionWhat is the critical value for a two-tailed test when α = .05, nA = 9,
and nB = 12?

Solution 26. ■

Comparing U with Ucrit

In all previously discussed significance tests, the null hypothesis is rejected when
the obtained statistic is equal to or great than (in terms of absolute value) the
critical score. The Mann–WhitneyU test is different. To reject the null hypoth-
esis, U must be equal to or smaller than the critical value. To help explain why
this is the case, consider the following example in which the distributions of
Conditions A and B depart maximally.

Rank 1 2 3 4 5 6 7 8 9 10 11

Condition A A A A A B B B B B B

Points 6 6 6 6 6 0 0 0 0 0 0

Recall that U is the smaller value of UA and UB. Since UB is 0, U = 0. This
shows that the strongest possible evidence for rejecting the null hypothesis
occurs when U = 0. The smaller the value of U, the more likely it is to support
the rejection of the null hypothesis.
Let us test the U we calculated from the vocabulary study. The critical value

for nA = 5, nB = 5, α = .05, and two-tailed test is 2. The U value is 10. Since 10 is
not smaller than 2, the null hypothesis is not rejected. We should interpret this
as failure to find statistical evidence suggesting the training program influenced
the strength of a participant’s vocabulary.
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Hypothesis Testing with a Large Sample Size
By inspecting Tables A.10 and A.11, we can see that theMann–WhitneyU table
does not provide critical values when either nA or nB is greater than 20. When
either sample size exceeds 20, the sampling distribution of U approximates a
normal distribution. In this instance, the standard normal curve can be used
to identify critical values. These values have become familiar to us: ±1.96 and
±2.58 for a nondirectional test when alpha is .05 or .01, respectively.When using
a large sample size, the U value is transformed to a z value, zU, which is com-
pared with the desired critical value of z. The old rule of comparison now
applies. If zU falls outside of ±zcrit, the null hypothesis can be rejected. Formula
18.5 is used to transform U to zU.

The U to zU transformation formula

zU =
U − nAnB 2

nAnB nA + nB + 1
12

(Formula 18.5)

Formula 18.5 would not be applied to the data from the vocabulary study
because neither group has more than 20 participants, but for the sake of illus-
tration, we will use this data to illustrate the workings of the transformation
formula:

zU =
10−5 5 2

5 5 5 + 5 + 1
12

zU =
−2 5

275 12

zU = −0 52

The zcrit value for α = .05, two-tailed test, is ±1.96. The zU of –0.52 does not fall
outside of ±1.96. Therefore, the null hypothesis is not rejected.

Ranking Tied Scores
When using the Mann–Whitney U test, resolving tied scores is handled in the
same manner as the Spearman rank correlation analysis. Briefly, tied scores are
resolved by taking the average of the ranks to which the scores need to be
assigned; in this way, each tied score is assigned the same averaged rank.
Several tied ranks within a condition do not present a problem for the Mann–

Whitney U test. However, when a rank from Condition A is tied with a rank
from Condition B, and the number of ties is large, the Mann–Whitney U test
becomes excessively conservative. A correction factor can be applied in these
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instances, but the procedure is rather complex. More information can be found
by consulting nonparametric statistics texts (e.g. Siegel & Castellan, 1988).

18.6 The Wilcoxon Signed-Ranks Test

The Wilcoxon signed-ranks test is the nonparametric alternative to the
dependent-samples t test. The research context is a repeated-measures design
in which one group of participants receives two treatments. The treatments can
be two experimental conditions, an experimental and control condition, or a
pretest and posttest. The Wilcoxon signed-ranks test assumes that the depend-
ent variable is a continuous measure, even though the analysis is performed on
ranks. As we might expect, no population assumptions are needed, and the null
hypothesis states that there is no treatment effect.

Calculating the Wilcoxon T

The Wilcoxon signed-ranks test is performed on the rankings of difference
scores. In a repeated-measures design, a difference score is a single participant’s
score in Condition B, subtracted from their score in ConditionA. The difference
scores are ranked, from smallest to largest, based on the absolute value of the
scores. In this way, a score of −72 is ranked higher (i.e. given a larger rank value)
than a score of 2. Next, the ranks of the positive-difference scores are placed in
one group, and the ranks of the negative-difference scores are placed in a second
group. The ranks of the positive-difference scores are summed, ΣRpos, and the
ranks of the negative-difference scores are summed, ΣRneg. Of the values of
ΣRpos and ΣRneg, the one that is smaller is the Wilcoxon statistic, T. To test
the null hypothesis, the T value is compared with a critical value found in
Table A.12 in the Appendix. The steps for calculating T are shown in the fol-
lowing worked example.

Worked Example
A cognitive psychologist would like to compare two techniques for enhancing
the recollection of nonsense syllables. In Condition A, participants are told to
study a list of syllables by repeating them over and over (repetition). In Con-
dition B, the same participants are told to examine a different list of nonsense
syllables and to try to associate them with a common word (association).
Half of the participants receive the repetition method first; the remaining half
receive the association method first. The dependent variable is the number of
nonsense syllables correctly recalled. Assume there is some reason to suspect
that the population assumptions for a paired-observations t test have been
violated and that the Wilcoxon signed-ranks test is the analysis of choice.
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Number correct

Participant

Condition

Difference RankA B

P1 32 27 +5 6

P2 40 44 −4 −5

P3 12 12 0 1.5

P4 2 16 −14 −10

P5 56 53 +3 4

P6 16 6 +10 8

P7 29 22 +7 7

P8 49 20 +29 11

P9 20 21 −1 −3

P10 15 15 0 −1.5

P11 13 2 +11 9

Step 1. Arrange the data in a table and compute a difference score for each
participant.

Step 2. Arrange the difference scores from smallest to largest, and rank these
scores based on their absolute values. Handle tied ranks in the usual manner;
take the average of the ranks. Notice that ranks associated with negative-
difference scores have a negative sign in front of them. This is simply to
remind us which ranks are assigned to the positive group and which ranks
are assigned to the negative group.

Step 3.Group all the ranks associated with a positive-difference score. Form
a second group of ranks that correspond to negative-difference scores. If
there is a tie between two participants with difference scores of 0, assign
one rank to the first group and the other rank to the second group. Note
that two participants received a difference score of 0, and both were
assigned a rank of 1.5; one is placed in group one and the other in group
two. If there is an odd number of ties, discard one of them, and divide the
remaining tied ranks equally among the groups. This method only applies
to ties based on difference scores of 0. If two positive-difference scores are
the same, their ranks are averaged, and both ranks are assigned to the pos-
itive group. The same rule holds for ties based on negative-difference
scores.

Step 4. Sum the ranks of each group. When adding, do not consider ranks
with negative signs as negative numbers. Again, the negative signs before
ranks are only there to aid us in arranging the ranks into their appropriate
groups.
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ΣRpos 1 5 + 4+ 6+ 7+ 8 + 9 + 11 = 46 5

ΣRneg 1 5 + 3 + 5 + 10 = 19 5

Step 5. The value T is the smaller of ΣRposand ΣRneg. Therefore, T = 19.5.

Hypothesis Testing and the Wilcoxon Signed-Ranks Test

The Null and Alternative Hypotheses
Similar to theMann–WhitneyU test, the null and alternative hypotheses for the
Wilcoxon signed-ranks test are statements regarding the equivalence and none-
quivalence of the population distributions:

H0 The population distribution of A= the population distribution of B

The alternative hypothesis is a statement about the nonequivalence of the pop-
ulation distributions:

H1 The population distribution of A≠ the population distribution of B

Finding the Critical Value for T and Deciding Whether to Reject
the Null Hypothesis
The critical values for the T statistic are found in Table A.12 of the Appendix.
Tcrit is found by locating the number in the left column that corresponds to the
number of participants in the study. Move to the column that specifies the
desired alpha level. The null hypothesis is rejected if T is less than or equal
to Tcrit.
For the worked example, it was found that T = 19.5. Since there were eleven

participants in the study, the critical value, assuming α = .05, is 10. The
obtained value of T is greater than Tcrit: 19.5 > 10. Therefore, do not reject
the null hypothesis. In conclusion, there was no statistical evidence found to
suggest differential effectiveness between the repetition and the association
techniques.

The Wilcoxon Signed-Ranks Test with Large Samples
Table A.12 in the Appendix provides critical values for the Wilcoxon T statistic
for sample sizes up to 50. When a sample size is greater than 50, T is trans-
formed to a z value. The zobt is compared with a critical value of z found using
the z table (Table A.1 of the Appendix). We have made extensive use of the
z table throughout this text. Recall that when the z table is used to determine
critical values, the zcrit that corresponds to α = .05 is ±1.96, when α = .01,
zcrit = ±2.58, and when α = .10, zcrit = ±1.645, for two-tailed tests. Formula
18.6 transforms the Wilcoxon T statistic into a z value.
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Formula for the Wilcoxon signed-ranks test for large sample sizes

zobt =
T − n n+ 1 4

n n+ 1 2n+ 1
24

(Formula 18.6)

where

n = the number of participants in the analysis

When using Formula 18.6, all participants that have a difference
score that is 0 are excluded from the analysis. This practice will not affect
zcrit, but the n value needed for calculation will be the number of parti-
cipants that are actually used in the analysis. When performing a nondi-
rectional test of the null hypothesis, if zobt falls outside of ±zcrit, the H0 is
rejected.
Let us run through the computational steps involved in Formula 18.6. Assume

T equals 17 and n = 60:

zobt =
17− 60 60 + 1 4

60 60 + 1 2 × 60 + 1
24

zobt =
17−3660 4

3660 121 24

zobt =
−898

442860 24

zobt =
−898

18452 50

zobt =
−898
135 84

zobt = −6 61

If alpha is set at .05, the critical value for z is ±1.96. The obtained value of z is
−6.61; it falls outside the critical value of ±1.96. Consequently, the null hypoth-
esis is rejected.
Box 18.1 reports an interesting study that examines how infants’ attention to

an adult’s speech is influenced by how closely the adult’s lip movements
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Box 18.1 Do Infants Notice the Difference Between Lip Movement and
Speech Sounds?

It is a common tactic, for those who are in the process of losing their hearing, to
rely increasingly on observing the lip movements of speakers to help in the pro-
cessing of auditory information. Actually, most everyone uses this tactic when
they find themselves in a situation where there is a high amount of ambient
noise. In fact, even under normal listing conditions, we naturally use lip move-
ments to help process speech. This process is so automatic that we are scarcely
aware of it. However, we need only to watch a dubbed foreign film to realize how
much we take for granted the congruence between lip movements and speech.

Developmental psychologists have found that our awareness of the syn-
chrony between speech sounds and lip movements is evident by the age of
6 months. Researchers are frequently interested in the earliest age a behavioral
skill emerges (e.g. Lewkowicz & Hansen-Tift, 2012). Dodd (1979) conducted one
of the first investigations in this area. In this study, 10- to 16-week-old babies
were found to be able to tell the difference between speakers who show syn-
chronous speech and lip movements and speakers who show asynchronous
speech and lip movements.

Study Method

Infants were placed in a soundproof room with a window through which they
could see an adult speaking to them through a microphone. In the Synchrony
condition, the sound of the adult’s voice was direct, a perfect congruence
between lip movements and auditory sound. In the Asynchrony condition,
the same infants viewed an adult speaking to themwith a 400-millisecond delay
between lip movements and speech sounds. The question was, “Are infants this
young able to tell the difference between synchronous and asynchronous
speech?” If infants are unable to tell the difference, irrespective of experimental
condition, they should attend to the speaker approximately the same amount
of time. On the other hand, if these infants are able to discriminate between the
two conditions, it should be reflected in the amount of time they spend looking
at the adult in each condition. Since the point of the study was to see if the
infants couldmake the discrimination, no prediction wasmade regarding which
condition would lead to a greater amount of attentional deployment. In fact,
one could speculate that the children would spend more time attending to
the synchronous adult because it is a familiar experience. Equally plausible,
however, is the hypothesis that children would attend more to the asynchro-
nous adult due to novelty. Clearly, this repeated-measures design requires a
nondirectional hypothesis test.

The dependent variable was the percentage of time the child spent looking at
the speaker.
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Data Analysis and Results

Although the percentage of time looking at the speaker is a reasonable way of
measuring attention, Dodd was not so confident in treating the dependent var-
iable as an interval or ratio scale of measurement. There was uncertainty, for
example, about whether the difference between attending 20 and 30% of
the time reflects the same amount of difference as attending 80 and 90% of
the time. Dodd had more confidence that the rankings of the time differences
in looking indicated an order of difference in attending. As a result, Dodd
decided to use a Wilcoxon signed-ranks test instead of a dependent-samples
t test. Since the calculated T of 5 is less than the Tcrit of 13, the null hypothesis
was rejected. Therefore, we should conclude that infants 10–16 weeks old are
able to tell the difference between speech and lip movements that are congru-
ent as opposed to incongruent.

Percentage of time attending

Participant Asynchrony Synchrony Difference Rank

P1 50.4 20.3 30.1 10

P2 87.0 17.0 70.0 12

P3 25.1 6.5 18.6 6

P4 28.5 25.0 3.5 3

P5 26.9 5.4 21.5 8

P6 36.6 29.2 7.4 5

P7 1.0 2.9 –1.9 –1

P8 43.8 6.6 37.2 11

P9 44.2 15.8 28.4 9

P10 10.4 8.3 2.1 2

P11 29.9 34.0 –4.1 –4

P12 27.7 8.0 19.7 7

ΣRpos = 10 + 12 + 6 + 3 + 8+ 5 + 11 + 9+ 2 + 7 = 73

ΣRneg = 1 + 4 = 5

α= 0 05

Tcrit = 13

T = 5
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correspond to their spoken words. The author uses a repeated-measures design
and applies the Wilcoxon signed-ranks test to the ranked data.

18.7 Using Nonparametric Tests

In comparison with parametric tests, nonparametric tests have certain advan-
tages. Nonparametric tests can and should be used when population assump-
tions for a parametric test are grossly violated. In addition, nonparametric
tests require only that data be scaled according to ranks (or, for chi-square,
is categorical). Nonetheless, despite these advantages, nonparametric tests
are used less often than parametric tests. Why?
First, nonparametric tests tend to be less powerful than parametric tests. The

probability of detecting a treatment effect is lower, all other things being equal.
In other words, there is a greater probability of making a Type II error when
using a nonparametric test on ordinal data than when using a parametric test
on interval or ratio data.
Second, when analyzing complex factorial designs, parametric tests, like two-

and three-way ANOVAs, generate much more information than any nonpara-
metric test.
Third, two-sample parametric tests analyze population differences between

means. Two population distributions can vary in a number of ways: central ten-
dency, variability, skewness, and so on. To test the null hypothesis that μ1 = μ2
requires that other aspects of the population distributions be similar. Since non-
parametric procedures do not require these assumptions, they are less specific
in what they tell us.
Fourth, statisticians remind us that parametric tests are relatively robust with

respect to the violation of population assumptions. Researchers are told that
they should become suspicious of the use of parametric analyses when there
are gross violations of population assumptions: population distributions that
depart radically from normality and violations of homogeneity of variances.
However, how gross do the violations have to be to justify using the less powerful
nonparametric tests? There are no clear-cut rules for when to transform a con-
tinuous measure-dependent variable into ranks. Given this lack of clarity,
researchers tend to lean heavily toward the application of parametric analyses.
Of course, when data are collected using an ordinal or nominal scale, a nonpa-
rametric test is the only option.
As we approach the end of this textbook, Box 18.2 presents a philosophical

reflection on the health and current state of the scientific endeavor.
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Box 18.2 Is the Scientific Method Broken? The Limitations of Science

Throughout this book we have periodically stopped to look more closely at
some commonly discussed problems in the world of science; in particular,
we have tried to understand better the current reproducibility crisis that is
afflicting many of the behavioral and social sciences. Let us finish this series
by stepping back to look a bit more philosophically at the scientific endeavor
as a whole. What can we hope to accomplish with the help of science, and what,
if anything, lies on the outside? This has sometimes been referred to as science’s
demarcation problem – drawing the line between what is science and what is
not science.

In Chapter 1, we were told that the scientific method addresses a limited set
of questions. Causal explanations, when methodologically warranted, are to be
understood in a limited way, not as complete, final explanations. Unfortunately,
not all claims made by scientists reflect this modesty. In other words, not all pro-
nouncements made by scientists are, in fact, statements of science. Some claims
made in the name of science are clearly outside this demarcation line. Perhaps
the human desire to win arguments tempts us to use periodically the justly
earned authority of science regarding topics within its domain to declare mat-
ter-of-factly something true that we merely want to be true sitting outside its
domain. These over-reaches, when exposed, can leave the general public,
who is listening in on the conversation, with the impression that science might
be broken. A lack of proper modesty by some popularizers of science and the
zealotry of others whose primary concern is advocacy for a particular political
position can severely damage science’s public reputation.

A related problem is the claim made by some that science is the only avenue
to truth. For instance, the famed philosopher of science, Bertrand Russell (1936/
1997), once famously wrote, “…what science cannot discover, mankind cannot
know.” This position has come to be known as “scientism.” This view, however,
does not withstand scrutiny. In fact, the statement itself is circular. After all, this
claim is not a statement of science, so, if it is true, by its own pronouncement, it
cannot be known to be true.

Of course, the scientific method does an excellent job of exploring the phys-
ical machinery of reality including social reality. However, it is powerless to
answer even simple existential questions like “why am I here?” and “what is
the meaning of life?” When discussing the demarcation problem, British biolo-
gist/theologian Alister McGrath (2015) refers to Frank Rhodes famous question
regarding a boiling kettle. Rhodes asks us to imagine that we find a kettle sitting
on a gas ring; and upon closer inspection, we see that the kettle is boiling. “Why
is the kettle boiling?”wemay ask. Well, one answer addressing themechanics of
the phenomenon would be that there is a heat transfer taking place between
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the underlying burner and the bottom of the copper kettle. This transfer then
continues on to the water inside the kettle. The additional energy excites the
liquid water molecules and eventually changes their physical state being
released into the air as steam. This explanation has been revealed to us over
the past few hundred years through careful scientific analysis. Rhodes, however,
introduces a second explanation. He says, “it is boiling because I want a cup of
tea.” Now, Rhodes asks, “Which answer is right?” He goes on to say, “[n]ow these
are different answers…But both are true, both are complementary and not
competitive. One answer is appropriate within a particular frame of reference,
the other within another frame of reference. There is a sense in which each is
incomplete without the other.” Indeed, the answers work together to give a
richer explanation of the phenomenon. One further observation might be that
we have been asking the metaphysical question of “why”much longer than we
have been asking themechanical question of “how.” Yet, the recent advances in
supplying the specific mechanical answers, while interesting and helpful in
many ways, have not served to bring us any closer to answering the metaphys-
ical question.

The scientific method, once given the time needed to work through human
foibles and limitations, ends up doing a very good job of describing the inter-
working parts of much of physical reality. However, even here, on the edges of
physical reality, we find limitations. For instance, no one understands what grav-
ity actually is. We know how to measure it, and we have learned in careful detail
how it works, but that is where our understanding stops. What exactly is it? We
also do not know what energy is; or time, space, life, and consciousness. Many
secondary questions related to these fundamental features can be asked and
seem to have been sufficiently answered by using careful scientific investiga-
tion. However, this gained information, as helpful as it is, only serves to deepen
the mystery around these basic features of our reality. It is interesting to note
that these fundamental questions have been around long before the scientific
method was established; in fact, they give every indication they will be peren-
nially tied to the human experience. The famed NASA astronomer Robert Jas-
trow (1992), when speaking of those who wish to give too much credibility to
science, once wrote, “For the scientist who has lived by his faith in the power of
reason, the story ends like a bad dream. He has scaled the mountain of igno-
rance; he is about to conquer the highest peak; as he pulls himself over the final
rock, he is greeted by a band of theologians who have been sitting there for
centuries.” Perhaps science is not broken after all; perhaps its’ boundaries just
need to be more properly considered.
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18.8 How to Present Formally the Conclusions for
Various Nonparametric Tests

The proper reporting of Spearman and point-biserial correlations is similar to the
reporting of Pearson correlations (see Section 15.6, for review). Simply identify
whichcorrelationhasbeen runprior to thepresentationof the findings.For exam-
ple, “ASpearman correlationwas used to analyze the relationship between Ingra-
tiation andNeed forApproval. The analysis found statistical evidence of a positive
correlation, r(8) = .98,p< .05.”This finding suggests thosewhomoreoften engage
in ingratiating behavior also have a higher need for approval.
The proper reporting of Mann–WhitneyU’s andWilcoxon T’s (or z’s) is similar

to the proper reporting of t tests. Identify the dependent variable and the two con-
ditionsonwhich thedependentvariablediffers. Ifmeasuresof centrality areneeded,
themedians should be used for nonparametric analyses.Make sure to use cautious
language (i.e. statistical evidence suggests) and then present the statistic symbol fol-
lowed by the observed value and then either “p < .05” or “n.s.,” depending on
whether ornot thenull hypothesis canbe rejected. For example, “AMann-Whitney
U analysis found evidence suggesting Treatment Bwas more effective than Treat-
ment A, U = 10, p < .05.” There is usually no need to report a critical U value.
The proper reporting of a failure to reject the null hypothesis from a nonpa-

rametric test can be presented in a similar way to previous inferential tests. For
example, “A Spearman correlational analysis did not find statistical evidence of
a relationship between Ingratiation and Need for Approval, r(8) = .32, n.s.”
Recall that Section 8.8, contains information about several other common

principles for reporting statistical findings. Please consult this portion of the
text for more general information about the proper reporting of statistical
findings.

Summary

Statisticians have developed an array of nonparametric inferential tests that
have become useful additions to the more standard parametric tests. This chap-
ter addressed four of these nonparametric tests.
The Spearman rank correlation is a simplified Pearson formula applied

to ordinal data. This analysis can be used when the scatter diagram of X
and Y shows a nonlinear but monotonic relationship. Converting
scores to ranks often “straightens out” the scatter plot, thus allowing
for the use of the Spearman rank correlation analysis. The Spearman rank
analysis can also be used when data are collected using an ordinal scale,
one example being the application of rs to judges’ rankings of some
variable.
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The point-biserial correlation is used when one variable is genuinely dichot-
omous and the second variable is continuous. Examples of dichotomous vari-
ables are employed/unemployed, resident/alien, and single/married. The null
hypothesis for both the Spearman and point-biserial correlation analyses is typ-
ically ρ = 0.
The Mann–Whitney U test is the nonparametric alternative to the independ-

ent-samples t test. When the population assumptions for using a t test are vio-
lated, the Mann–Whitney U test can be applied to data transformed to ranks.
The null hypothesis states that the population distributions are the same. The
alternative hypothesis states that the population distributions are not the same.
If the group members are evenly dispersed across the span of the ranks, the null
hypothesis cannot be rejected. As themembers of one group tend to cluster near
one end of the continuum, the null hypothesis can be rejected.
The Wilcoxon signed-ranks test is the nonparametric alternative to the

dependent-samples t test. The Wilcoxon test is performed on the ranks of dif-
ference scores. Similar to the Mann–Whitney U test, the null hypothesis states
that the population distribution of ranks is the same for both treatment
conditions.
Although nonparametric tests have their place in inferential statistics, the

decision to use a nonparametric test is not made lightly. Nonparametric tests
are not as powerful as their parametric counterparts. They should only be used
when data are collected using a nominal or ordinal scale or when the statistical
assumptions for using a parametric test are grossly violated.

Using Microsoft® Excel and SPSS® to Calculate Various
Nonparametrics

Excel

There are no specific Excel functions for the nonparametric tests covered in this
chapter. However, Excel, just like a handheld calculator, can be used to generate
the necessary values to perform each of the tests.
General instructions for data entry into Excel can be found in Appendix C.

SPSS

General instructions for inputting data into SPSS can be found in Appendix C.

Data Entry for Spearman and Point-Biserial Correlations
In SPSS, each row of the data file represents a participant. Since bivariate data is
used in calculating the Spearman or point-biserial r, create a series of variables
within Variable View corresponding to the variables measured. Then, go to
Data View, and input the data, being careful to keep the values from each
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participant within a given row. See Figure 18.3 for an example. Figure 18.3
shows three variables; the first is dichotomous, the second is ranked, and the
third is ambiguous. SPSS will convert this third variable into ranks if we select
the Spearman correlation to be run. In this data set, a Spearman would be used
to analyze “popularity rank” and “kindness,” and a point-biserial correlation
would be used to analyze “biological_sex” and “kindness.”

Data Analysis
1) Click Analyze on the tool bar, select Correlate, and then click Bivariate.
2) Use the arrow key to move the variables of interest into the Variables box.
3) The default correlation coefficient calculated is the Pearson; leave this box

checked if a point biserial is to be run, unclick this box, and click the

biological_sex popularity_rank kindness

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

1 11.0 4

2 6.0 6

1 16.0 7

1 5.0 3

2 7.5 6

1 7.5 8

2 1.0 2

2 20.0 2

2 13.0 6

1 16.0 9

2 17.0 5

1 18.5 7

2 18.5 1

2 8.0 5

1 11.0 7

2 14.0 4

1 11.0 6

2 22.0 9

1 3.0 5

1 21.0 7

2 9.0 6

1 15.0 8

Figure 18.3 An example of entered data for a Spearman and point-biserial correlation
using SPSS.
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Spearman box if a Spearman is to be run. Make a selection regarding the
critical r value to be calculated – one-tailed or two-tailed.

4) If descriptive statistics are of interest, open the Options box in the upper
right corner, and click the Means and standard deviations option.

5) Click Ok.
6) If descriptives were asked for, the first box will present the means, standard

deviations, and sample size of all selected variables. The next box is the cor-
relation grid box simply labeled Correlations (or Nonparametric Correla-
tions if the Spearman was run). Each variable is listed both down the left-side
column and across the top of the grid. (SPSS can run multiple correlations at
once.) Down the diagonal spine of the correlation grid will be the value 1,
representing the correlation between a variable and itself. The correlations
of interest can be found by locating the coordinate between one variable
on the left-hand column and the other across the top row. The table is
redundant showing each correlation from each perspective. Within each
correlation box can also be found the probability of getting a Spearman
or point-biserial r of that size if ρ = 0 [Sig. (2-tailed)] as well as a count
of the number of paired scores (N). If the significance value is equal to or
less than .05, there is statistical evidence to reject the null hypothesis. (See
Figure 18.4 for a worked example of both a Spearman [top] and a point-
biserial [bottom] analysis.)

Correlations

popularity_rank kindness

Spearman's rho popularity_rank Correlation coefficient 1.000 .276

Sig. (2-tailed) . .214

N 22 22

kindness Correlation coefficient .276 1.000

Sig. (2-tailed) .214 .

N 22 22

Correlations

kindness biological_sex

kindness Pearson correlation 1 –.399

Sig. (2-tailed) .066

N 22 22

biological_sex Pearson correlation –.399 1

Sig. (2-tailed) .066

N 22 22

Figure 18.4 Output tables from worked examples using SPSS to run a Spearman and point-
biserial correlation.
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Data Entry for Mann–Whitney U
In SPSS, each row of the data file represents a participant. Since both samples in
a Mann–Whitney U test have different participants, all of the dependent vari-
able data from both samples will need to be placed in one column. Within Var-
iable View, label this variable appropriately. However, also create a second
variable that will allow the user to identify which data go with which group.
A typical label for this variable might be “condition.” Then, go to Data View.
Input the sample data to the appropriate column, and use a nominal variable
in the “condition” column to distinguish the two samples (either “0” and “1”
or “1” and “2” are typical). (See Figure 18.5 for an example.)

popularity_rank condition

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

20.0 1

5.0 2

21.0 2

16.0 2

1.0 1

17.0 2

22.0 1

2.0 1

6.5 2

18.0 1

13.0 2

3.0 2

15.0 1

6.5 1

8.0 2

19.0 1

10.0 2

23.0 2

4.0 1

13.0 1

13.0 1

11.0 1

9.0 1

Figure 18.5 An example of entered data for
a Mann–Whitney U test using SPSS.
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Data Analysis
1) Click Analyze on the tool bar, select nonparametric tests, then legacy dia-

logs, and then 2 Independent Samples….
2) Highlight the dependent variable column label in the left box, and click the

arrow to move it into the Test Variable(s) box. Move the “condition” var-
iable to the Grouping Variable box.

3) Because there may be more than two conditions identified under our group-
ing variable, click Define Groups to identify which two groups we want to
compare. Place the nominal values used to distinguish the groups into the
two group boxes – one in each. Click Continue.

4) Click OK.
5) The output will generate two boxes. The first box will identify how many

scores were in the sample (N) as well as the mean rank and the sum of
the ranks. The second box will identify, among other things, the Mann–
Whitney U value (Mann–Whitney U) as well as the probability of getting
that value if the null hypothesis of identical populations is true (Asymp.
Sig. (2-tailed)). It does not show us Ucrit. As with previous inferential tests
run in SPSS, either we can find Ucrit ourselves, or we can look at the given
significance level to see if that value is equal to or lower than .05. If it is, we
can reject the null. If it is not, we need to fail to reject the null hypothesis. (See
Figure 18.6 for a worked example.)

Ranks

Condition N Mean rank Sum of ranks

popularity_rank 1 13 11.81 153.50

2 10 12.25 122.50

Total 23

Test statisticsa

popularity_rank

Mann-Whitney U 62.500

Wilcoxon W 153.500

Z –.155

Asymp. sig. (2-tailed) .877

Exact sig. [2*(1-tailed Sig.)] .879b

aGrouping variable: condition
bNot corrected for ties

Figure 18.6 Output tables from a worked example using SPSS to run a Mann–Whitney U test.
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Data Entry for Wilcoxon
In SPSS, each row of the data file represents a participant. Since each participant
is being measured twice, we will need two columns to hold the raw data. Within
Variable View, label the two column headings using terms that will distinguish
between the two conditions of the study (e.g. Pre/Post, Exp/Control, Cond1/
Cond2, etc.). Then, go to Data View. Input the sample data to the appropriate
column, being careful to keep the data from each participant within the same
row, as this will be essential for creating the proper difference score. (See
Figure 18.7 for a worked example.)

pretest posttest

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

4 5

7 8

3 3

8 8

9 9

3 3

4 4

8 9

7 8

6 7

3 3

9 9

3 4

2 2

8 8

9 9

10 9

5 6

6 8

7 7

3 4

7 8

. .

Figure 18.7 An example of entered data
for a Wilcoxon signed-ranks test
using SPSS.
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Data Analysis
1) Click Analyze on the tool bar, select Nonparametric Tests, then Legacy

Dialogs, and then click 2 Related Samples.
2) Highlight one variable, and use the right arrow key to move it into the Var-

iable1 box. Move the other variable to the Variable2 box in the same man-
ner. (Disregard the new row of boxes that are added underneath. These are
for running more than one dependent-samples t test at a time.) Leave the
default option (Wilcoxon) checked. (If descriptives are wanted, click
Options and then check Descriptives and then Continue.)

3) Click OK.
4) The output will generate two boxes. The first will identify the number of

observations (N), the mean ranks (Mean Rank), and the sum of the ranks
(Sum of Ranks) for the negative ranks, positive ranks, ties, and total. The
second box will generate the test statistic – in this case the Wilcoxon z.
As always, either we need to go and find the appropriate critical value, or
we need to look at the Asymp. Sig. (2-tailed) value to see how likely it is
to get a Wilcoxon z score of that size if the populations are identical. (See
Figure 18.8 for a worked example.)

Ranks

N Mean rank Sum of ranks

Posttest - pretest Negative ranks 1a 5.50 5.50

Positive ranks 10b 6.05 60.50

Ties 11c

Total 22

aposttest < pretest
bposttest > pretest
cposttest = pretest

Test statisticsa

Posttest -
pretest

Z –2.673b

Asymp. sig. (2-tailed) .008

aWilcoxon signed ranks test
bBased on negative ranks

Figure 18.8 Output tables from a worked example using SPSS to run a Wilcoxon signed-
ranks test.
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Key Formulas

Formula for Spearman rank correlation, rs

rs = 1−
6ΣD2

np n2p−1
(Formula 18.1)

Formula for point-biserial correlation, rpb

rpb =
MY1 −MY0

sy

n1n0
n n−1

(Formula 18.2)

Formula for computing UA

UA = nAnB +
nA nA + 1

2
−ΣRA (Formula 18.3)

Formula for computing UB

UB = nAnB +
nB nB + 1

2
−ΣRB (Formula 18.4)

The U to zU transformation formula

zU =
U − nAnB 2

nAnB nA + nB + 1
12

(Formula 18.5)

Formula for the Wilcoxon signed-ranks test for large sample sizes

zobt =
T − n n+ 1 4

n n+ 1 2n+ 1
24

(Formula 18.6)

Key Terms

Parametric tests Dummy coding
Spearman rank correlation Mann–Whitney U test
Point-biserial correlation Wilcoxon signed-ranks test
Dichotomous variable

Questions and Exercises

1 When we need to convert scaled data into ranks, how is it done?

2 How does the transformation of scaled data into ranked data address the
problem of outliers?
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3 Which of the following nonparametric tests should be used for a study that
aims at investigating the relationship between people’s running time, as
determined by their finishing position in a race, and their T-shirt size
(YL, S, M, L, XL, XXL).
a Spearman rank correlation
b Point-biserial correlation
c Mann–Whitney U test
d Wilcoxon signed-ranks test

4 Which of the following nonparametric tests would best be used to ana-
lyze the data from a study that aims at investigating a null hypothesis of
no population differences on memory recall between participants who
are taught to use the “peg-word” mnemonic device system and other
participants who are taught to use the “narrative” mnemonic device
system?
a Spearman rank correlation
b Point-biserial correlation
c Mann–Whitney U test
d Wilcoxon signed-ranks test

5 Which nonparametric test involves “tagging” scores from different samples
so that they can be returned to their samples after they have been converted
into ranks?

6 If given the luxury of choosing between a parametric and a nonparametric
analytical tool, which one should be chosen, and why?

7 The following represents a bivariate distribution, using continuous mea-
sures. Convert these scores to ranks. Assign a rank of 1 to the low-
est score.

X Y

3 7

2 2

4 4

9 12

8 8

4 2

8 For the data presented in Problem 7, assume that X represents an experi-
mental group and Y represents a control group. We plan to conduct a
Mann–Whitney U test. Convert the scores to ranks.
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9 For the data in Problem 7, assume that a repeated-measures design is used
and each row is data from a given participant. We plan to conduct a Wil-
coxon signed-ranks test. Convert each participant’s scores into a rank.

10 Convert the following scores into ranks. Assume they represent a bivariate
distribution, both variables using a continuous measure. For both vari-
ables, assign the highest score a value of 1.

X Y

77 45

54 45

96 83

12 37

73 93

76 14

56 52

96 85

68 62

15 19

11 Perform a Spearman rank correlation on the ranked data from Problem 10.
Can the null hypothesis be rejected if α = .05 for a two-tailed test? Would it
have changed the outcome if we assigned the lowest score a value of 1?

12 Convert the following scores into ranks. Assume they represent a bivariate
distribution, both variables using a continuous measure. For both vari-
ables, assign the lowest score a value of 1.

X Y

11 19

14 10

16 15

11 15

15 16

16 11

18 14

11 19

12 19

17 12
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13 Perform a Spearman rank correlation on the ranked data from Problem 12.
Can the null hypothesis be rejected if α = .05 for a two-tailed test?

14 Perform a point-biserial correlation on the following data.

Biological Males Biological Females

2 4

5 11

9 10

3 7

10 7

3 7

7 12

7 14

9

15 A researcher is interested in seeing if there is a relationship between
“Need for Affiliation” and “Fear of Criticism.” Questionnaires that
measure each trait are administered to eight participants. For the fol-
lowing data set:
a Draw the scatter plot of the continuous measures.
b Convert the scores to ranks.
c Draw the scatter plot based on ranks.
d Compute the Spearman rank correlation.
e State the null and alternative hypotheses.
f Use α = .05 to see if the null hypothesis can be rejected (two tailed).

Participant

Need for Affiliation Fear of Criticism

Score Rank Score Rank

P1 16 40

P2 14 35

P3 14 30

P4 12 18

P5 10 14

P6 8 13

P7 9 12

P8 4 4
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16 A social psychologist hypothesizes a relationship between Physical Attrac-
tiveness and Popularity. Ten high school students are ranked on each var-
iable. For the following ranks:
a Compute the Spearman rank correlation.
b State the null and alternative hypotheses.
c Use α = .05 to see if the null hypothesis can be rejected (two tailed).
d Interpret the findings.

Participant

Physical Attractiveness Popularity

Rank Rank

P1 1 1

P2 2 3

P3 5 2

P4 3 4

P5 4 5

P6 7 7

P7 9 6

P8 6 8

P9 8 9

P10 10 10

17 A sociologist is interested in the relationship between political affiliation
and attitudes toward military intervention in Central America. The meas-
ure of attitudes is continuous, with 1 meaning “no intervention” and
10 meaning “aggressive intervention.”
a Compute rpb.
b State the null and alternative hypotheses.
c Use α = .05 to see if the null hypothesis can be rejected (two tailed).
d Interpret the correlation.
e State how much of the variance in attitudes is due to political affiliation.

Democrat Republican

1 10

4 7

7 8

3 6

2 9

1 5

1 10
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18 A teacher developed a mathematical ability test and believes that the
answer to one particular question is correlated with the total score on
the test. The teacher assigns a 0 if the answer is correct and a 1 if the answer
is incorrect.
a Calculate rpb.
b State the null and alternative hypotheses.
c Use α = .05 to see if the null hypothesis can be rejected (two tailed).
d Interpret the correlation.

Participant Question Test Score

1 0 36

2 0 39

3 1 16

4 1 14

5 0 22

6 1 26

7 1 9

8 1 7

9 0 30

10 1 11

19 In a dog show, rankings are based on Body Shape and Posture. For the fol-
lowing results:
a Compute rs.
b State the null and alternative hypotheses.
c Use α = .05 to see if the null hypothesis can be rejected (two
tailed).

d Interpret the findings.

Dog Posture Body Shape

1 1 2

2 2 1

3 3 3

4 7 5.5

5 9 7

6 4 9

7 5 5.5

8 6 8

9 8 4
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20 Twelve medical students are ranked on their clinical and written examina-
tion performance over the past year.
a Calculate the Spearman rank correlation.
b State the null and alternative hypotheses.
c Use α = .05 to see if the null hypothesis can be rejected (two tailed).
d Interpret the findings.

Student Clinical Written

1 4 2

2 12 10

3 1 1

4 7 5

5 8 8

6 2 3

7 11 9

8 3 4

9 9 7

10 6 6

11 5 11

12 10 12

21 A child psychologist hypothesizes a relationship between when a child first
walks (months) and whether the child has an older sibling. For the follow-
ing data set:
a Calculate rpb.
b State the null and alternative hypotheses.
c Use α = .05 to see if the null hypothesis can be rejected (two tailed).
d Interpret the correlation.

Older Sibling (0) No Older Sibling (1)

10.9 11.6

11.2 13.7

11.4 15.2

12.4 10.9

10.3 16.0

10.0 15.8

12.0 12.8

11.9 10.8

13.2 14.7

11.4 15.0
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22 A psychologist hypothesizes a relationship between expressed gender and
attitudes toward state-mandated paid maternity leave. The range of values
measuring attitudes is from 1 – strongly opposed to 10 – strongly in favor.
Males = 0 and females = 1.
a Compute the appropriate correlation coefficient.
b State the null and alternative hypotheses.
c Use α = .05 to see if the null hypothesis can be rejected (two tailed).
d Interpret the correlation.

Participant Expressed Gender
Attitudes about Paid
Maternity Leave

1 0 3

2 0 6

3 1 9

4 0 4

5 1 1

6 1 10

7 1 8

8 0 3

9 1 5

10 0 9

23 Eight students are ranked by a faculty member based on their performance
in a Statistics class. A year later, the same students are ranked on the qual-
ity of their Senior Thesis.
a Compute rs.
b State the null and alternative hypotheses.
c Use α = .05 to see if the null hypothesis can be rejected (two tailed).
d State the amount of variance in the quality of the papers that can be

attributed to performance in the statistics class.

Statistics Senior Thesis

1 1

3 2

5 4

8 8

6 6

7 3

2 7

4 5
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24 A clinical psychology program has two training tracks: Behavioral Therapy
and Psychoanalysis. First-year graduate students are randomly assigned to
these tracks. A professor wonders if there is a difference between the tracks
in how well students learn basic interviewing skills. After one year of train-
ing, the professor ranks all the students as to how well they demonstrate
fundamental interviewing techniques. For the following data set, perform
the appropriate nonparametric test. Higher ranks indicate better inter-
viewing skills.
a State the null and alternative hypotheses.
b Compute the appropriate test statistic.
c Use α = .05 to see if the null hypothesis can be rejected (two tailed).
d Interpret the findings.

Behavioral Therapy Psychoanalysis

12 10

9 2

11 3

8 1

4 5

7 6

25 When conducting aMann–WhitneyU test when one of the sample sizes is
greater than 20, what should we do, and why?

26 Suppose we are about to perform a Wilcoxon signed-ranks test and we
notice that three participants out of 20 have a difference score of 0. What
should we do when it comes time to separate positive and negative ranks?

27 Assume that we are about to perform aMann–WhitneyU test. We look at
the ordering of ranks between the two groups and observe that the rank-
ings indicate the null hypothesis to be as wrong as it can possibly be. What
number will the smaller R be? What will U equal?

28 Perform a Mann–Whitney U test on the following ranked data. Even
though sample sizes are small, use the zU formula. Let α = .05.

RA RB

1 2

3 6

4 7

5 8

9 10
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29 A high school counselor wonders if the type of music played during lunch
hour influences the speed with which students eat. In one condition, soft,
new-age music is piped through the sound system. In a second condition,
Hip Hop is played. Assume that relevant aspects of the setting are con-
trolled (e.g. menu, portions, seating arrangements, etc.). Six students are
observed for 5 minutes, and the dependent variable is the average number
of bites per minute. Since this is a repeated-measures design, half of the
participants listen to the New Age music first, and half of the participants
listen to Hip Hop first. The dependent variable is measured during each
experimental condition. Perform a Wilcoxon signed-ranks test on the fol-
lowing data. Set alpha at .05.

Participant

Music

New Age Hip Hop

P1 2 6

P2 1 6

P3 3 2

P4 4 8

P5 3 6

P6 1 5

30 Assume that the data from Problem 29 are obtained using an independent-
groups design. Perform a Mann–Whitney U test, with α = .05.

31 For each of the following situations, specify which statistic we should
compute.
a Design: independent groups

Data: ordinal
b Design: repeated measures

Data: ordinal
c Design: correlational
Data: nonlinear relationship between X and Y

d Design: correlational
Data: X is dichotomous, Y is continuous

e Design: correlational
Data: X and Y are ordinal

32 Perform aWilcoxon signed-ranks test using the formula for large samples.
T = 14 and n = 55. Set alpha at .05 and test H0.
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Computer Work

33 (This problem is similar to the Chapter 9, Problem 33. However, different
data will be used.) We observe that people seem to be happier when they
are wearing a new article of clothing. To test this, we provide a small ran-
dom sample of our students with a new T-shirt and instruct them to wear
the shirts all day. At the end of the day, independent judges ranked the hap-
piness (or what social psychologists call “subjective well-being”) of each
participant. A control group of students is also judged in terms of happi-
ness, but without the experimental manipulation. The ratings are below.
Lower scores indicate greater happiness. Conduct a Mann–Whitney
U test. Use a two-tailed test and set α=.05.

Happiness

New T-shirt Control

8 9

10 6

19 22

7 11

1 23

4 24

5 12

3 14

13 2

20 15

21 18

16 17

34 A cardiologist is testing the effectiveness of Propranolol versus a Diuretic
for lowering systolic blood pressure. Seven participants are started on pro-
pranolol, and eight participants are started on a diuretic. After 90 days, all
participants switch to the other drug. The systolic blood pressure readings
for each participant are provided in the following table. (This data set could
be analyzed with a dependent-samples t test. However, for the sake of prac-
tice, use the corresponding nonparametric test.)
a State the null and alternative hypotheses.
b Compute the appropriate nonparametric test statistic.
c What is the critical value for α = .05 (two-tailed test)?
d Interpret the findings.
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Participant Propranolol Diuretic

P1 127 140

P2 116 130

P3 120 150

P4 132 132

P5 110 111

P6 125 120

P7 131 138

P8 129 148

P9 134 149

P10 119 118

P11 116 149

P12 119 121

P13 116 124

P14 144 152

P15 115 126

35 Using the data from Problem 22, assume that the design is an independent-
groups design. Perform a Mann–Whitney U test on the data. Set alpha
at .05.

36 A clinical psychologist who works with alcoholics is interested in the
effects of Antabuse (a substance that leads to nausea and illness when alco-
hol is ingested) versus Vitamin B1 in preventing relapse. Three adult volun-
teers take Antabuse for three months and then switch to vitamin B1 for
three months. Three other participants begin with the vitamin and then
switch to Antabuse. Total alcohol-free days (out of 91) for each participant
are listed below. Conduct a Wilcoxon signed-ranks test. Use a two-tailed
test to see if the null hypothesis can be rejected. Set α = .05.

Participant Antabuse Vitamin B1

P1 80 75

P2 65 57

P3 91 89

P4 52 50

P5 45 35

P6 81 62
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Part 7 Review

Nonparametric Tests

Review of Concepts Presented in Part 7

As with previous section reviews, the purpose here is to revisit both the
similar concepts that hold together the statistical tests presented in Chapters
17 and 18 and the concepts that distinguish them one from another. First, let
us look at the primary similarity holding all of these procedures together; all
of the tests are nonparametric. Nonparametric tests do not make assumptions
about population parameters and do not require descriptive statistics that derive
from interval- or ratio-scaled data, like means and standard deviations. These
nonparametric tests allow the researcher to investigate null hypotheses for fre-
quency count data as well as ordinal-scaled data. Furthermore, nonparametric
tests can be used to analyze interval or ratio data that do notmeet the population
assumptions required by parametric tests. Methodological assumptions of rep-
resentativeness and independent observations are still present, but if there are
gross violations of normality or homogeneity of variance, the standard paramet-
ric tests are invalid and nonparametric tests are used as a substitute. With the
added flexibility of nonparametrics, however, there is a trade-off. These tests
are typically less powerful than their corresponding parametric counterparts.
Nonetheless, if the data are not measured on an interval or ratio scale, or if a sta-
tistical assumption cannot be met, nonparametric procedures are a welcomed
analytical tool. As a result, nonparametrics are typically not a researchers “Plan
A” for analysis; however, they are a grateful “Plan B” to be used when needed.
Aswemight expect, there aremany differences between the six nonparametric

procedures presented in these final two chapters. A quick reviewmay be helpful.
The first distinction to be made is based on the type of data gathered. The two
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chi-square tests are used when frequency count data has been collected. In these
situations, participants are not measured in terms of “how much” but rather in
terms of “howmany” – howmany participants fit into this category versus other
categories. Thesemeasures are of the all-or-nothing kind. It may help to think of
a “taste-test” situation. Participants sample several, say, soft drinks and then
select the one they most prefer. The data being gathered is not how much the
participant likes each option but rather which one of the options is selected.
The two different chi-squares can be distinguished based on the design of the
study. If there is only one dimension or factor, the goodness-of-fit chi-square
is the test to be run. If, however, conditions vary across twodimensions or factors,
then the chi-square test for independence is the analytical tool needed.
The null hypothesis for a goodness-of-fit test depends on what “nothing” or

“no difference” means for a particular investigation. It may mean no difference
between the various conditions, it may mean no change from the last time the
data was collected, or it may be no difference from a theoretically derived set of
expected frequencies. This needs to be carefully determined as the expected fre-
quencies required for calculation of the chi-square statistic are derived from a
proper understanding of the null hypothesis. The null hypothesis for a chi-
square test for independence, however, is always the same – no relationship
between the two factors. In this test there are no predictions based on the rel-
ative frequency of counts across a given dimension or factor; rather the null
hypothesis states that there is no relationship between the two factors. (This
is similar to investigating an interaction effect in a two-way factorial design.)
The procedure for both chi-square tests is similar; compare the observed fre-
quency counts with the expected frequency counts derived from a null hypoth-
esis. The greater the cumulative disparity across the various conditions, the
more likely the null hypothesis is false.
Chapter 18 brings us to two additional correlation procedures to be added to

the Pearson r presented in Chapter 15. The Pearson r assumes both variables are
measured on an interval or ratio scale, the data are normally distributed, and the
two variables are not curvilinearly related. The Spearman rank correlation can
be used if either or both variables are measured ordinally – if there is a violation
of normality in the data or if there is a monotonic (i.e. does not reverse direction)
curvilinear relationship between the variables. The Spearman converts the raw
data into ranks and generates an r based on this ranked data. The point-biserial
correlation is used when one variable is continuous and the other variable is
dichotomous, that is, an either/or measure. Data from the continuous measure
are not altered, and the dichotomous data are dummy coded into a “1” and “0.”
When using this procedure, it is important to keep in mind which variable is
given the value of “1” and which is given the value of “0.” This will be needed
for proper interpretation of any finding.
The final two tests introduced in Chapter 18 are the nonparametric alterna-

tives to the independent- and dependent-samples t tests. The Mann–Whitney
U test is used when there are two independent groups being compared. The test
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requires the data from both groups to be compiled into one and then ranked
from lowest to highest. There are two ways to determine the U statistic. One
uses a point system based on how many values from the other group fall below
each given value, and the other is a rank-counting procedure based on this
organization of all of the scores in the study. A U is generated for each group.
If the two groups are well interspersed, the two U values will be fairly large and
roughly equal. If, however, the values from one group tend to fall toward one
end of the continuum and the values from the other group tend toward the
other end, the U values will be very different, and one of them will be quite
low. The null is rejected if the lowest U value falls below the critical U value
as determined by Table A.10 found in the appendix.
The Wilcoxon T is determined in a similar way, except the ranked scores

will be the difference scores in a dependent-samples research situation. In this
procedure, differences are found between each pair of scores – subtracting the
second value from the first. The valence of the difference score is temporarily
set aside, and the difference scores are ranked. Then, the rank values are sepa-
rated based on the valence of the difference score into two values, a sum of the
negative ranks and a sum of the positive ranks. If the null hypothesis of no
difference is true, then some of the differences will be positive and some will
be negative. The sum of the ranks for both groups will be rather similar, and
neither sum will be very small. If, however, the null hypothesis of no difference
is false, either the positive or the negative ranks will be much smaller than the
other. Once again, the smaller sum value of the ranks is used as the observed
value, and it is compared with a critical score found in Table A.11 of the
appendix. For large sample sizes, a z formula can be used to test the null
hypothesis for either an independent-samples or dependent-samples research
situation.
Now that we are at the end of the text, we can be presented with an

opportunity to test our ability to connect the appropriate statistical tool to
the appropriate research analysis situation. Understandably, the exercises at
the end of each particular chapter only require the use of the test(s) found
and studied within that chapter for solution. The questions and exercises at
the end of chapters are designed to get us familiar with using the tools imme-
diately just described. They are not designed to challenge our diagnostic skills
(i.e. knowing which test amongmany to use for a given situation). The following
review section, however, is designed to help us develop these diagnostic skills.
The exercises below will help us review the conceptual differences between

the various nonparametric tests explored in Chapters 17 and 18, as well as
the t tests, ANOVAs, and bivariate analyses introduced in the preceding chap-
ters. The hypothesis testing exercises will not identify which test is appropriate
for the described scenario. We will need to use the available information pre-
sented in the exercise to make that determination. (Note: Most of the
exercises below involving data can be solved either with or without the use
of statistical software.)
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Questions and Exercises

1 What is the difference between a parametric test and a nonparametric test?

2 Which type of test (parametric or nonparametric) is to be preferred
and why?

3 Match the appropriate statistical tool at the bottom with each of the follow-
ing descriptors. (Identify the statistical tool with the assigned number.)
a Categorical data across one factor
b Independent-group design (2 cells) with ordinal data
c Independent-group design (2 cells) with ratio data – all assumptions met
d Bivariate data, one variable being on an ordinal scale
e Categorical data across two factors
f Repeated-measures design (2 cells) – all assumptions are met
g Repeated-measures design (2 cells), but homogeneity of variance assump-

tion grossly violated
h Use of bivariate data to predict unknown value

1) Wilcoxon
2) Mann–Whitney U
3) Spearman correlation
4) Chi-square “test for independence”
5) Chi-square “goodness-of-fit” test
6) Regression
7) Pearson correlation
8) Independent-samples t test
9) Dependent-samples t test

10) Point-biserial correlation

4 Find a measure of relationship between eating behavior and books read per
year. Can the null hypothesis of no relationship be rejected?

Vegetarian Carnivore

14 23

17 27

18 20

11 35

9 16

14 15

5 7
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5 (This problem uses the data and research scenario from the Part 4 Review,
question #10.) A researcher is interested in the effect of emotion on concen-
tration. A two-sample study is designed in which anger is induced in one
sample by having a confederate provoke an argument in the lab waiting
room. The control group does not undergo this mood induction. Both sam-
ples are then tested on a computer stunt driving game, and the number of
times the participant runs the vehicle into an object (crashes) is counted.
Suppose there is reason to believe the assumption of normality is grossly
violated in the population data from which these samples are drawn. Please
choose the proper nonparametric test to see if the null of no difference can
be rejected. Use a two-tailed test and set α = .05. Compare this answer with
Part 4 Review, question #10.

Angry group Control group

6 6

9 5

13 8

11 6

5 9

10 7

6 A researcher believes that marital status is a determining factor in the kinds
of pets people have. Data regardingmarital status is collected from a number
of pet owners, with the following results (assume that each person has only
one pet). Can the null hypothesis of no relationship between marital status
and type of pet be rejected?

Dog Cat Bird Fish Snake

Married 47 25 5 10 2

Single 22 40 8 20 2

Divorced/widowed 18 43 14 15 1

7 A sleep researcher believes that people will experience a different number of
dreams depending on the temperature of the room in which they are sleep-
ing. Adult volunteers are asked to sleep for ten nights in an 80 F room and
for ten nights in a 65 F room. The temperature is alternated randomly to
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prevent habituation. The total number of dreams reported by each partic-
ipant is given below. The researcher believes the tendency to recall dreams is
terribly skewed, with most people hardly remembering any and only a few
people who claim to remember them frequently. For this reason, the sleep
researcher suggests using a nonparametric test. Please choose the proper
nonparametric test to see if the null of no difference can be rejected. Use
a two-tailed test and set α = .05.

Participant 80 F room 65 F room

P1 5 10

P2 7 7

P3 15 20

P4 12 18

P5 10 16

P6 8 8

8 A school psychologist would like to determine whether there are differences
in reading preferences among the students in a particular junior high school.
The number of each type of book checked out of the school library (in both
hardbound as well as electrical versions) is tallied over a six-month period.
Perform the appropriate test to see if the null hypothesis of no differences
between book type can be rejected.

Nonfiction Sports Romance Science fiction Classics

68 75 55 50 52

9 A researcher would like to examine the correlation between stress and read-
ing comprehension. The researcher randomly selects a sample of nine first-
year college students. Participants are asked to rate their current level of
stress on a 1–10 scale, with 1 = no stress and 10 = extreme stress. They
are then given a short story to read and a 15-item comprehension test upon
completion of the story. Stress levels and test scores are listed below. What
test should be used to measure the relationship and test the null hypothesis
of no relationship? Why that particular test? Make a decision regarding
the null.
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Stress level Test score

2 3

6 11

9 10

3 6

10 9

3 4

8 12

7 14

9 8

10 A biology professor theorizes that caffeinated sodas cause more burp-
ing than noncaffeinated sodas. A large sample of students are gathered
and randomly assigned to drink sodas with or without caffeine. The
professor then waits 10 minutes and classifies each student as having
either burped or not burped during that time period. What test should
be used?

11 Suppose the biology professor mentioned in the previous question decided
to count the number of burps each student generated. Would the test used
to analyze the data change? If so, what would be the appropriate test?

12 A university administrator looked at the number of senior students major-
ing in sociology and found 21 out of 24 to be biological females. Assuming
the student body at this university is roughly equal in terms of biological
sex, what test would the administrator use to see if this academic program
is overrepresented with biological females?

13 A team of social science researchers wants to know more about social
media usage. They are interested in which platforms university students
prefer, what type of students use them heavily, and for what social purposes
they are used.
a Think of a research situation that would employ a chi-square test for

independence.
b Think of a research situation that would employ an independent-

samples t test.
c Think of a research situation that would employ a Wilcoxon signed-
ranks test.
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14 In fantasy baseball, groups of pretend owners conduct a draft in which they
can “buy” baseball players to fill out their roster for an upcoming season.
These made-up teams are then compared based on the individual perfor-
mance of each team member of each team. At the end of the season, team
winners are declared based on the cumulative performance of the roster of
players. This practice has become quite popular – and many leagues of
friends have stayed together for 20 years or more. Because of some small
rule differences between the two leagues within professional baseball,
players drafted from National League teams tend to have better defensive
numbers, while players drafted from American League teams tend to have
better offensive numbers. This opens the door to an interesting question: Is
there an advantage to drafting players from one league or the other (all
other things being equal) in a fantasy league situation? One way to look
at this issue might be to see which made-up teams have won the fantasy
league in the past – teams with predominantly National League players
or teams with predominantly American League players. If we had access
to this data, describe a methodological situation that would employ the
following analytical tools.
a A chi-square goodness-of-fit test
b A point-biserial correlation
c A Spearman rank correlation

15 A social worker wants to see if there is a relationship between literacy and
marital status among indigent mothers in a given city. Access is gained to
what is believed to be a random sampling of these individuals and gains
information from each one regarding their literacy (illiterate or literate)
and their marital status (single, married, divorced/widowed). What
analytical tool should be used to see if there is a relationship?

16 Suppose the social worker from the previous question decides to measure
literacy by giving each participant a test that scores the degree of literacy
possessed by an individual; it is claimed to be a continuous measure.
Furthermore, suppose it is decided to simplify the marital status dimension
by simply noting if each person claims to have a significant other or not.
Now which analytical tool would be best to use?
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Appendix A

Statistical Tables

Mean Meanz

B
C

z

Table A.1 z Table.

(A) (B) (C) (A) (B) (C) (A) (B) (C)

z

Area
between
mean
and z

Area
beyond

z z

Area
between
mean
and z

Area
beyond

z z

Area
between
mean
and z

Area
beyond

z

.00 .0000 .5000 .10 .0398 .4602 .20 .0793 .4207

.01 .0040 .4960 .11 .0438 .4562 .21 .0832 .4168

.02 .0080 .4920 .12 .0478 .4522 .22 .0871 .4129

.03 .0120 .4880 .13 .0517 .4483 .23 .0910 .4090

.04 .0160 .4840 .14 .0557 .4443 .24 .0948 .4052

.05 .0199 .4801 .15 .0596 .4404 .25 .0987 .4013

.06 .0239 .4761 .16 .0636 .4364 .26 .1026 .3974

.07 .0279 .4721 .17 .0675 .4325 .27 .1064 .3936

.08 .0319 .4681 .18 .0714 .4286 .28 .1103 .3897

.09 .0359 .4641 .19 .0753 .4247 .29 .1141 .3859

(Continued)

735

Statistical Applications for the Behavioral and Social Sciences, Second Edition.
K. Paul Nesselroade, Jr. and Laurence G. Grimm.
© 2019 John Wiley & Sons, Inc. Published 2019 by John Wiley & Sons, Inc.
Companion website: http://www.wiley.com/go/Nesselroade/Statis_Apps_behavioral_sciences



Table A.1 (Continued)

(A) (B) (C) (A) (B) (C) (A) (B) (C)

z

Area
between
mean
and z

Area
beyond

z z

Area
between
mean
and z

Area
beyond

z z

Area
between
mean
and z

Area
beyond

z

.30 .1179 .3821 .66 .2454 .2546 1.02 .3461 .1539

.31 .1217 .3783 .67 .2486 .2514 1.03 .3485 .1515

.32 .1255 .3745 .68 .2517 .3686 1.04 .3508 .1492

.33 .1293 .3707 .69 .2549 .2451 1.05 .3531 .1469

.34 .1331 .3669 .70 .2580 .2420 1.06 .3554 .1446

.35 .1368 .3632 .71 .2611 .2389 1.07 .3577 .1423

.36 .1406 .3594 .72 .2642 .2358 1.08 .3599 .1401

.37 .1443 .3557 .73 .2673 .2327 1.09 .3621 .1379

.38 .1480 .3520 .74 .2704 .2296 1.10 .3643 .1357

.39 .1517 .3483 .75 .2734 .2266 1.11 .3665 .1335

.40 .1554 .3446 .76 .2764 .2236 1.12 .3686 .1314

.41 .1591 .3409 .77 .2794 .2206 1.13 .3708 .1292

.42 .1628 .3372 .78 .2823 .2177 1.14 .3729 .1271

.43 .1664 .3336 .79 .2852 .2148 1.15 .3749 .1251

.44 .1700 .3300 .80 .2881 .2119 1.16 .3770 .1230

.45 .1736 .3264 .81 .2910 .2090 1.17 .3790 .1210

.46 .1772 .3228 .82 .2939 .2061 1.18 .3810 .1190

.47 .1808 .3192 .83 .2967 .2033 1.19 .3830 .1170

.48 .1844 .3156 .84 .2995 .2005 1.20 .3849 .1151

.49 .1879 .3121 .85 .3023 .1977 1.21 .3869 .1131

.50 .1915 .3085 .86 .3051 .1949 1.22 .3888 .1112

.51 .1950 .3050 .87 .3078 .1922 1.23 .3907 .1093

.52 .1985 .3015 .88 .3106 .1894 1.24 .3925 .1075

.53 .2019 .2981 .89 .3133 .1867 1.25 .3944 .1056

.54 .2054 .2946 .90 .3159 .1841 1.26 .3962 .1038

.55 .2088 .2912 .91 .3186 .1814 1.27 .3980 .1020

.56 .2123 .2877 .92 .3212 .1788 1.28 .3997 .1003

.57 .2157 .2843 .93 .3238 .1762 1.29 .4015 .0985

.58 .2190 .2810 .94 .3264 .1736 1.30 .4032 .0968

.59 .2224 .2776 .95 .3289 .1711 1.31 .4049 .0951

.60 .2257 .2743 .96 .3315 .1685 1.32 .4066 .0934

.61 .2291 .2709 .97 .3340 .1660 1.33 .4082 .0918

.62 .2324 .2676 .98 .3365 .1635 1.34 .4099 .0901

.63 .2357 .2643 .99 .3389 .1611 1.35 .4115 .0885

.64 .2389 .2611 1.00 .3413 .1587 1.36 .4131 .0869

.65 .2422 .2578 1.01 .3438 .1562 1.37 .4147 .0853
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Table A.1 (Continued)

(A) (B) (C) (A) (B) (C) (A) (B) (C)

z

Area
between
mean
and z

Area
beyond

z z

Area
between
mean
and z

Area
beyond

z z

Area
between
mean
and z

Area
beyond

z

1.38 .4162 .0838 1.73 .4582 .0418 2.08 .4812 .0188

1.39 .4177 .0823 1.74 .4591 .0409 2.09 .4817 .0183

1.40 .4192 .0808 1.75 .4599 .0401 2.10 .4821 .0179

1.41 .4207 .0793 1.76 .4608 .0392 2.11 .4826 .0174

1.42 .4222 .0778 1.77 .4616 .0384 2.12 .4830 .0170

1.43 .4236 .0764 1.78 .4625 .0375 2.13 .4834 .0166

1.44 .4251 .0749 1.79 .4633 .0367 2.14 .4838 .0162

1.45 .4265 .0735 1.80 .4641 .0359 2.15 .4842 .0158

1.46 .4279 .0721 1.81 .4649 .0351 2.16 .4846 .0154

1.47 .4292 .0708 1.82 .4656 .0344 2.17 .4850 .0150

1.48 .4306 .0694 1.83 .4664 .0336 2.18 .4854 .0146

1.49 .4319 .0681 1.84 .4671 .0329 2.19 .4857 .0143

1.50 .4332 .0668 1.85 .4678 .0322 2.20 .4861 .0139

1.51 .4345 .0655 1.86 .4686 .0314 2.21 .4864 .0136

1.52 .4357 .0643 1.87 .4693 .0307 2.22 .4868 .0132

1.53 .4370 .0630 1.88 .4699 .0301 2.23 .4871 .0129

1.54 .4382 .0618 1.89 .4706 .0294 2.24 .4875 .0125

1.55 .4394 .0606 1.90 .4713 .0287 2.25 .4878 .0122

1.56 .4406 .0594 1.91 .4719 .0281 2.26 .4881 .0119

1.57 .4418 .0582 1.92 .4726 .0274 2.27 .4884 .0116

1.58 .4429 .0571 1.93 .4732 .0268 2.28 .4887 .0113

1.59 .4441 .0559 1.94 .4738 .0262 2.29 .4890 .0110

1.60 .4452 .0548 1.95 .4744 .0256 2.30 .4893 .0107

1.61 .4463 .0537 1.96 .4750 .0250 2.31 .4896 .0104

1.62 .4474 .0526 1.97 .4756 .0244 2.32 .4898 .0102

1.63 .4484 .0516 1.98 .4761 .0239 2.33 .4901 .0099

1.64 .4495 .0505 1.99 .4767 .0233 2.34 .4904 .0096

1.65 .4505 .0495 2.00 .4772 .0228 2.35 .4906 .0094

1.66 .4515 .0485 2.01 .4778 .0222 2.36 .4909 .0091

1.67 .4525 .0475 2.02 .4783 .0217 2.37 .4911 .0089

1.68 .4535 .0465 2.03 .4788 .0212 2.38 .4913 .0087

1.69 .4545 .0455 2.04 .4793 .0207 2.39 .4916 .0084

1.70 .4554 .0446 2.05 .4798 .0202 2.40 .4918 .0082

1.71 .4564 .0436 2.06 .4803 .0197 2.41 .4920 .0080

1.72 .4573 .0427 2.07 .4808 .0192 2.42 .4922 .0078
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Table A.1 (Continued)

(A) (B) (C) (A) (B) (C) (A) (B) (C)

z

Area
between
mean
and z

Area
beyond

z z

Area
between
mean
and z

Area
beyond

z z

Area
between
mean
and z

Area
beyond

z

2.43 .4925 .0075 2.73 .4968 .0032 3.03 .4988 .0012

2.44 .4927 .0073 2.74 .4969 .0031 3.04 .4988 .0012

2.45 .4929 .0071 2.75 .4970 .0030 3.05 .4989 .0011

2.46 .4931 .0069 2.76 .4971 .0029 3.06 .4989 .0011

2.47 .4932 .0068 2.77 .4972 .0028 3.07 .4989 .0011

2.48 .4934 .0066 2.78 .4973 .0027 3.08 .4990 .0010

2.49 .4936 .0064 2.79 .4974 .0026 3.09 .4990 .0010

2.50 .4938 .0062 2.80 .4974 .0026 3.10 .4990 .0010

2.51 .4940 .0060 2.81 .4975 .0025 3.11 .4991 .0009

2.52 .4941 .0059 2.82 .4976 .0024 3.12 .4991 .0009

2.53 .4943 .0057 2.83 .4977 .0023 3.13 .4991 .0009

2.54 .4945 .0055 2.84 .4977 .0023 3.14 .4992 .0008

2.55 .4946 .0054 2.85 .4978 .0022 3.15 .4992 .0008

2.56 .4948 .0052 2.86 .4979 .0021 3.16 .4992 .0008

2.57 .4949 .0051 2.87 .4979 .0021 3.17 .4992 .0008

2.58 .4951 .0049 2.88 .4980 .0020 3.18 .4993 .0007

2.59 .4952 .0048 2.89 .4981 .0019 3.19 .4993 .0007

2.60 .4953 .0047 2.90 .4981 .0019 3.20 .4993 .0007

2.61 .4955 .0045 2.91 .4982 .0018 3.21 .4993 .0007

2.62 .4956 .0044 2.92 .4982 .0018 3.22 .4994 .0006

2.63 .4957 .0043 2.93 .4983 .0017 3.23 .4994 .0006

2.64 .4959 .0041 2.94 .4984 .0016 3.24 .4994 .0006

2.65 .4960 .0040 2.95 .4984 .0016 3.30 .4995 .0005

2.66 .4961 .0039 2.96 .4985 .0015 3.40 .4997 .0003

2.67 .4962 .0038 2.97 .4985 .0015 3.50 .4998 .0002

2.68 .4963 .0037 2.98 .4986 .0014 3.60 .4998 .0002

2.69 .4964 .0036 2.99 .4986 .0014 3.70 .4999 .0001

2.70 .4965 .0035 3.00 .4987 .0013 3.80 .49993 .00007

2.71 .4966 .0034 3.01 .4987 .0013 3.90 .49995 .00005

2.72 .4967 .0033 3.02 .4987 .0013 4.00 .49997 .00003

Column A lists the z score values. Column B provides the proportion of area between the mean and
the z score value. Column C provides the proportion of area beyond the z score.
Note: Because the normal distribution is symmetrical, areas for negative z scores are the same as
those for positive z scores.



Table A.2 t Table.

α values for two-tailed test

.20 .10 .05 .02 .01 .001

α values for one-tailed test

df .10 .05 .025 .01 .005 .0005

1 3.078 6.314 12.706 31.821 63.657 636.619

2 1.886 2.920 4.303 6.965 9.925 31.598

3 1.638 2.353 3.182 4.541 5.841 12.924

4 1.533 2.132 2.776 3.747 4.604 8.610

5 1.476 2.015 2.571 3.365 4.032 6.869

6 1.440 1.943 2.447 3.143 3.707 5.959

7 1.415 1.895 2.365 2.998 3.499 5.408

8 1.397 1.860 2.306 2.896 3.355 5.041

9 1.383 1.833 2.262 2.821 3.250 4.781

10 1.372 1.812 2.228 2.764 3.169 4.587

11 1.363 1.796 2.201 2.718 3.106 4.437

12 1.356 1.782 2.179 2.681 3.055 4.318

13 1.350 1.771 2.160 2.650 3.012 4.221

14 1.345 1.761 2.145 2.624 2.977 4.140

15 1.341 1.753 2.131 2.602 2.947 4.073

16 1.337 1.746 2.120 2.583 2.921 4.015

17 1.333 1.740 2.110 2.567 2.898 3.965

18 1.330 1.734 2.101 2.552 2.878 3.922

19 1.328 1.729 2.093 2.539 2.861 3.883

20 1.325 1.725 2.086 2.528 2.845 3.850

21 1.323 1.721 2.080 2.518 2.831 3.819

22 1.321 1.717 2.074 2.508 2.819 3.792

23 1.319 1.714 2.069 2.500 2.807 3.767

24 1.318 1.711 2.064 2.492 2.797 3.745

25 1.316 1.708 2.060 2.485 2.787 3.725

26 1.315 1.706 2.056 2.479 2.779 3.707

27 1.314 1.703 2.052 2.473 2.771 3.690

28 1.313 1.701 2.048 2.467 2.763 3.674

29 1.311 1.699 2.045 2.462 2.756 3.659

30 1.310 1.697 2.042 2.457 2.750 3.646

40 1.303 1.684 2.021 2.423 2.704 3.551

60 1.296 1.671 2.000 2.390 2.660 3.460

120 1.289 1.658 1.980 2.358 2.617 3.373

∞ 1.282 1.645 1.960 2.326 2.576 3.291

Source: Table III of Fisher and Yates’: Statistical Tables for Biological, Agricultural and Medical
Research, published by Longman Group UK, London (previously published by Oliver & Boyd Ltd,
Edinburgh) and by permission of the authors and publishers.
To be significant the t obtained from the data must be equal to or larger than the value shown in
the table.



Table A.3 Power table (finding power).

One-tailed test (α) One-tailed test (α)

.05 .025 .01 .005 .05 .025 .01 .005

δ

Two-tailed test (α)

δ

Two-tailed test (α)

.10 .05 .02 .01 .10 .05 .02 .01

.0 .10* .05* .02 .01 2.5 .80 .71 .57 .47

.1 .10* .05* .02 .01 2.6 .83 .74 .61 .51

.2 .11* .05 .02 .01 2.7 .85 .77 .65 .55

.3 .12* .06 .03 .01 2.8 .88 .80 .68 .59

.4 .13* .07 .03 .01 2.9 .90 .83 .72 .63

.5 .14 .08 .03 .02 3.0 .91 .85 .75 .66

.6 .16 .09 .04 .02 3.1 .93 .87 .78 .70

.7 .18 .11 .05 .03 3.2 .94 .89 .81 .73

.8 .21 .13 .06 .04 3.3 .96 .91 .83 .77

.9 .23 .15 .08 .05 3.4 .96 .93 .86 .80

1.0 .26 .17 .09 .06 3.5 .97 .94 .88 .82

1.1 .30 .20 .11 .07 3.6 .97 .95 .90 .85

1.2 .33 .22 .13 .08 3.7 .98 .96 .92 .87

1.3 .37 .26 .15 .10 3.8 .98 .97 .93 .89

1.4 .40 .29 .18 .12 3.9 .99 .97 .94 .91

1.5 .44 .32 .20 .14 4.0 .99 .98 .95 .92

1.6 .48 .36 .23 .16 4.1 .99 .98 .96 .94

1.7 .52 .40 .27 .19 4.2 .99 .99 .97 .95

1.8 .56 .44 .30 .22 4.3 ** .99 .98 .96

1.9 .60 .48 .33 .25 4.4 .99 .98 .97

2.0 .64 .52 .37 .28 4.5 .99 .99 .97

2.1 .68 .56 .41 .32 4.6 ** .99 .98

2.2 .71 .59 .45 .35 4.7 .99 .98

2.3 .74 .63 .49 .39 4.8 .99 .99

2.4 .77 .67 .53 .43 4.9 .99 .99

5.0 ** .99

5.1 .99

5.2 **

* Values inaccurate for one-tailed test by more than .01.
** The power at and below this point is greater than .995.
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Table A.4 Power table (finding delta).

One-tailed test (α)

.05 .025 .01 .005

Power

Two-tailed test (α)

.10 .05 .02 .01

.25 .97 1.29 1.65 1.90

.50 1.64 1.96 2.33 2.58

.60 1.90 2.21 2.58 2.83

.67 2.08 2.39 2.76 3.01

.70 2.17 2.48 2.85 3.10

.75 2.32 2.63 3.00 3.25

.80 2.49 2.80 3.17 3.42

.85 2.68 3.00 3.36 3.61

.90 2.93 3.24 3.61 3.86

.95 3.29 3.60 3.97 4.22

.99 3.97 4.29 4.65 4.90

.999 4.37 5.05 5.42 5.67

Tables A.3 and A.4 from Introductory Statistics for the Behavioral Sciences, 3rd ed., by J. Welkowitz,
R Ewen and J. Cohen, Copyright © 1982 by Harcourt Brace Jovanovich, Inc., reprinted by permission
of the publisher.
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Table A.5 F table.

df: denominator

Degrees of freedom: numerator

1 2 3 4 5 6 7 8 9 10 11 12 14 16 20

1 161 200 216 225 230 234 237 239 241 242 243 244 245 246 248
4052 4999 5403 5625 5764 5859 5928 5981 6022 6056 6082 6106 6142 6169 6208

2 18.51 19.00 19.16 19.25 19.30 19.33 19.36 19.37 19.38 19.39 19.40 19.41 19.42 19.43 19.44
98.49 99.00 99.17 99.25 99.30 99.33 99.34 99.36 99.38 99.40 99.41 99.42 99.43 99.44 99.45

3 10.13 9.55 9.28 9.12 9.01 8.94 8.88 8.84 8.81 8.78 8.76 8.74 8.71 8.69 8.66
34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.34 27.23 27.13 27.05 26.92 26.83 26.69

4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.93 5.91 5.87 5.84 5.80
21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.66 14.54 14.45 14.37 14.24 14.15 14.02

5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.78 4.74 4.70 4.68 4.64 4.60 4.56
16.26 13.27 12.06 11.39 10.97 10.67 10.45 10.27 10.15 10.05 9.96 9.89 9.77 9.68 9.55

6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 4.03 4.00 3.96 3.92 3.87
13.74 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87 7.79 7.72 7.60 7.52 7.39

7 5.59 4.47 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.63 3.60 3.57 3.52 3.49 3.44
12.25 9.55 8.45 7.85 7.46 7.19 7.00 6.84 6.71 6.62 6.54 6.47 6.35 6.27 6.15

Critical
F



8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.34 3.31 3.28 3.23 3.20 3.15
11.26 8.65 7.59 7.01 6.63 6.37 6.19 6.03 5.91 5.82 5.74 5.67 5.56 5.48 5.36

9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.13 3.10 3.07 3.02 2.98 2.93
10.56 8.02 6.99 6.42 6.06 5.80 5.62 5.47 5.35 5.26 5.18 5.11 5.00 4.92 4.80

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.97 2.94 2.91 2.86 2.82 2.77
10.04 7.56 6.55 5.99 5.64 5.39 5.21 5.06 4.95 4.85 4.78 4.71 4.60 4.52 4.41

11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.86 2.82 2.79 2.74 2.70 2.65
9.65 7.20 6.22 5.67 5.32 5.07 4.88 4.74 4.63 4.54 4.46 4.40 4.29 4.21 4.10

12 4.75 3.88 3.49 3.26 3.11 3.00 2.92 2.85 2.80 2.76 2.72 2.69 2.64 2.60 2.54
9.33 6.93 5.95 5.41 5.06 4.82 4.65 4.50 4.39 4.30 4.22 4.16 4.05 3.98 3.86

13 4.67 3.80 3.41 3.18 3.02 2.92 2.84 2.77 2.72 2.67 2.63 2.60 2.55 2.51 2.46
9.07 6.70 5.74 5.20 4.86 4.62 4.44 4.30 4.19 4.10 4.02 3.96 3.85 3.78 3.67

14 4.60 3.74 3.34 3.11 2.96 2.85 2.77 2.70 2.65 2.60 2.56 2.53 2.48 2.44 2.39
8.86 6.51 5.56 5.03 4.69 4.46 4.28 4.14 4.03 3.94 3.86 3.80 3.70 3.62 3.51

15 4.54 3.68 3.29 3.06 2.90 2.79 2.70 2.64 2.59 2.55 2.51 2.48 2.43 2.39 2.33
8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89 3.80 3.73 3.67 3.56 3.48 3.36

16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.45 2.42 2.37 2.33 2.28
8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78 3.69 3.61 3.55 3.45 3.37 3.25

17 4.45 3.59 3.20 2.96 2.81 2.70 2.62 2.55 2.50 2.45 2.41 2.38 2.33 2.29 2.23
8.40 6.11 5.18 4.67 4.34 4.10 3.93 3.79 3.68 3.59 3.52 3.45 3.35 3.27 3.16

18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41 2.37 2.34 2.29 2.25 2.19
8.28 6.01 5.09 4.58 4.25 4.01 3.85 3.71 3.60 3.51 3.44 3.37 3.27 3.19 3.07

19 4.38 3.52 3.13 2.90 2.74 2.63 2.55 2.48 2.43 2.38 2.34 2.31 2.26 2.21 2.15
8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52 3.43 3.36 3.30 3.19 3.12 3.00

(Continued)



Table A.5 (Continued)

df: denominator

Degrees of freedom: numerator

1 2 3 4 5 6 7 8 9 10 11 12 14 16 20

20 4.35 3.49 3.10 2.87 2.71 2.60 2.52 2.45 2.40 2.35 2.31 2.28 2.23 2.18 2.12
8.10 5.85 4.94 4.43 4.10 3.87 3.71 3.56 3.45 3.37 3.30 3.23 3.13 3.05 2.94

21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 2.32 2.28 2.25 2.20 2.15 2.09
8.02 5.78 4.87 4.37 4.04 3.81 3.65 3.51 3.40 3.31 3.24 3.17 3.07 2.99 2.88

22 4.30 3.44 3.05 2.82 2.66 2.55 2.47 2.40 2.35 2.30 2.26 2.23 2.18 2.13 2.07
7.94 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35 3.26 3.18 3.12 3.02 2.94 2.83

23 4.28 3.42 3.03 2.80 2.64 2.53 2.45 2.38 2.32 2.28 2.24 2.20 2.14 2.10 2.04
7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.30 3.21 3.14 3.07 2.97 2.89 2.78

24 4.26 3.40 3.01 2.78 2.62 2.51 2.43 2.36 2.30 2.26 2.22 2.18 2.13 2.09 2.02
7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.25 3.17 3.09 3.03 2.93 2.85 2.74

25 4.24 3.38 2.99 2.76 2.60 2.49 2.41 2.34 2.28 2.24 2.20 2.16 2.11 2.06 2.00
7.77 5.57 4.68 4.18 3.86 3.63 3.46 3.32 3.21 3.13 3.05 2.99 2.89 2.81 2.70

26 4.22 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22 2.18 2.15 2.10 2.05 1.99
7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.17 3.09 3.02 2.96 2.86 2.77 2.66

27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.30 2.25 2.20 2.16 2.13 2.08 2.03 1.97
7.68 5.49 4.60 4.11 3.79 3.56 3.39 3.26 3.14 3.06 2.98 2.93 2.83 2.74 2.63

28 4.20 3.34 2.95 2.71 2.56 2.44 2.36 2.29 2.24 2.19 2.15 2.12 2.06 2.02 1.96
7.64 5.45 4.57 4.07 3.76 3.53 3.36 3.23 3.11 3.03 2.95 2.90 2.80 2.71 2.60

29 4.18 3.33 2.93 2.70 2.54 2.43 2.35 2.28 2.22 2.18 2.14 2.10 2.05 2.00 1.94
7.60 5.42 4.54 4.04 3.73 3.50 3.33 3.20 3.08 3.00 2.92 2.87 2.77 2.68 2.57

30 4.17 3.32 2.92 2.69 2.53 2.42 2.34 2.27 2.21 2.16 2.12 2.09 2.04 1.99 1.93
7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.06 2.98 2.90 2.84 2.74 2.66 2.55



32 4.15 3.30 2.90 2.67 2.51 2.40 2.32 2.25 2.19 2.14 2.10 2.07 2.02 1.97 1.91
7.50 5.34 4.46 3.97 3.66 3.42 3.25 3.12 3.01 2.94 2.86 2.80 2.70 2.62 2.51

34 4.13 3.28 2.88 2.65 2.49 2.38 2.30 2.23 2.17 2.12 2.08 2.05 2.00 1.95 1.89
7.44 5.29 4.42 3.93 3.61 3.38 3.21 3.08 2.97 2.89 2.82 2.76 2.66 2.58 2.47

36 4.11 3.26 2.86 2.63 2.48 2.36 2.28 2.21 2.15 2.10 2.06 2.03 1.98 1.93 1.87
7.39 5.25 4.38 3.89 3.58 3.35 3.18 3.04 2.94 2.86 2.78 2.72 2.62 2.54 2.43

38 4.10 3.25 2.85 2.62 2.46 2.35 2.26 2.19 2.14 2.09 2.05 2.02 1.96 1.92 1.85
7.35 5.21 4.34 3.86 3.54 3.32 3.15 3.02 2.91 2.82 2.75 2.69 2.59 2.51 2.40

40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.07 2.04 2.00 1.95 1.90 1.84
7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.88 2.80 2.73 2.66 2.56 2.49 2.37

42 4.07 3.22 2.83 2.59 2.44 2.32 2.24 2.17 2.11 2.06 2.02 1.99 1.94 1.89 1.82
7.27 5.15 4.29 3.80 3.49 3.26 3.10 2.96 2.86 2.77 2.70 2.64 2.54 2.46 2.35

44 4.06 3.21 2.82 2.58 2.43 2.31 2.23 2.16 2.10 2.05 2.01 1.98 1.92 1.88 1.81
7.24 5.12 4.26 3.78 3.46 3.24 3.07 2.94 2.84 2.75 2.68 2.62 2.52 2.44 2.32

46 4.05 3.20 2.81 2.57 2.42 2.30 2.22 2.14 2.09 2.04 2.00 1.97 1.91 1.87 1.80
7.21 5.10 4.24 3.76 3.44 3.22 3.05 2.92 2.82 2.73 2.66 2.60 2.50 2.42 2.30

48 4.04 3.19 2.80 2.56 2.41 2.30 2.21 2.14 2.08 2.03 1.99 1.96 1.90 1.86 1.79
7.19 5.08 4.22 3.74 3.42 3.20 3.04 2.90 2.80 2.71 2.64 2.58 2.48 2.40 2.28

50 4.03 3.18 2.79 2.56 2.40 2.29 2.20 2.13 2.07 2.02 1.98 1.95 1.90 1.85 1.78
7.17 5.06 4.20 3.72 3.41 3.18 3.02 2.88 2.78 2.70 2.62 2.56 2.46 2.39 2.26

55 4.02 3.17 2.78 2.54 2.38 2.27 2.18 2.11 2.05 2.00 1.97 1.93 1.88 1.83 1.76
7.12 5.01 4.16 3.68 3.37 3.15 2.98 2.85 2.75 2.66 2.59 2.53 2.43 2.35 2.23

60 4.00 3.15 2.76 2.52 2.37 2.25 2.17 2.10 2.04 1.99 1.95 1.92 1.86 1.81 1.75
7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 2.63 2.56 2.50 2.40 2.32 2.20
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Table A.5 (Continued)

df: denominator

Degrees of freedom: numerator

1 2 3 4 5 6 7 8 9 10 11 12 14 16 20

65 3.99 3.14 2.75 2.51 2.36 2.24 2.15 2.08 2.02 1.98 1.94 1.90 1.85 1.80 1.73
7.04 4.95 4.10 3.62 3.31 3.09 2.93 2.79 2.70 2.61 2.54 2.47 2.37 2.30 2.18

70 3.98 3.13 2.74 2.50 2.35 2.23 2.14 2.07 2.01 1.97 1.93 1.89 1.84 1.79 1.72
7.01 4.92 4.08 3.60 3.29 3.07 2.91 2.77 2.67 2.59 2.51 2.45 2.35 2.28 2.15

80 3.96 3.11 2.72 2.48 2.33 2.21 2.12 2.05 1.99 1.95 1.91 1.88 1.82 1.77 1.70
6.96 4.88 4.04 3.56 3.25 3.04 2.87 2.74 2.64 2.55 2.48 2.41 2.32 2.24 2.11

100 3.94 3.09 2.70 2.46 2.30 2.19 2.10 2.03 1.97 1.92 1.88 1.85 1.79 1.75 1.68
6.90 4.82 3.98 3.51 3.20 2.99 2.82 2.69 2.59 2.51 2.43 2.36 2.26 2.19 2.06

125 3.92 3.07 2.68 2.44 2.29 2.17 2.08 2.01 1.95 1.90 1.86 1.83 1.77 1.72 1.65
6.84 4.78 3.94 3.47 3.17 2.95 2.79 2.65 2.56 2.47 2.40 2.33 2.23 2.15 2.03

150 3.91 3.06 2.67 2.43 2.27 2.16 2.07 2.00 1.94 1.89 1.85 1.82 1.76 1.71 1.64
6.81 4.75 3.91 3.44 3.14 2.92 2.76 2.62 2.53 2.44 2.37 2.30 2.20 2.12 2.00

200 3.89 3.04 2.65 2.41 2.26 2.14 2.05 1.98 1.92 1.87 1.83 1.80 1.74 1.69 1.62
6.76 4.71 3.88 3.41 3.11 2.90 2.73 2.60 2.50 2.41 2.34 2.28 2.17 2.09 1.97

400 3.86 3.02 2.62 2.39 2.23 2.12 2.03 1.96 1.90 1.85 1.81 1.78 1.72 1.67 1.60
6.70 4.66 3.83 3.36 3.06 2.85 2.69 2.55 2.46 2.37 2.29 2.23 2.12 2.04 1.92

1000 3.85 3.00 2.61 2.38 2.22 2.10 2.02 1.95 1.89 1.84 1.80 1.76 1.70 1.65 1.58
6.66 4.62 3.80 3.34 3.04 2.82 2.66 2.53 2.43 2.34 2.26 2.20 2.09 2.01 1.89

∞ 3.84 2.99 2.60 2.37 2.21 2.09 2.01 1.94 1.88 1.83 1.79 1.75 1.69 1.64 1.57
6.64 4.60 3.78 3.32 3.02 2.80 2.64 2.51 2.41 2.32 2.24 2.18 2.07 1.99 1.87

Source: Reproduced by permission from Statistical Methods, 8th ed., by G. W. Snedecor and W. G. Cochran. © 1956 by The Iowa State University Press.
Table entries in lightface type are critical values for the .05 level of significance. Boldface type values are for the .01 level of significance.



Table A.6 The critical values for studentized range statistic (q), α = .05.

df: error term

k = number of treatments

2 3 4 5 6 7 8 9 10

5 3.64 4.60 5.22 5.67 6.03 6.33 6.58 6.80 6.99
5.70 6.98 7.80 8.42 8.91 9.32 9.67 9.97 10.24

6 3.46 4.34 4.90 5.30 5.63 5.90 6.12 6.32 6.49
5.24 6.33 7.03 7.56 7.97 8.32 8.61 8.87 9.10

7 3.34 4.16 4.68 5.06 5.36 5.61 5.82 6.00 6.16
4.95 5.92 6.54 7.01 7.37 7.68 7.94 8.17 8.37

8 3.26 4.04 4.53 4.89 5.17 5.40 5.60 5.77 5.92
4.75 5.64 6.20 6.63 6.96 7.24 7.47 7.68 7.86

9 3.20 3.95 4.41 4.76 5.02 5.24 5.43 5.59 5.74
4.56 5.43 5.96 6.35 6.66 6.91 7.13 7.33 7.51

10 3.15 3.88 4.33 4.65 4.91 5.12 5.30 5.46 5.60
4.48 5.27 5.77 6.14 6.43 6.67 6.88 7.05 7.21

11 3.11 3.82 4.26 4.57 4.82 5.03 5.20 5.35 5.49
4.39 5.15 5.62 5.97 6.25 6.48 6.67 6.84 6.99

12 3.08 3.77 4.20 4.51 4.75 4.95 5.12 5.27 5.39
4.32 5.05 5.50 5.84 6.10 6.32 6.51 6.67 6.81

13 3.06 3.73 4.15 4.45 4.69 4.88 5.05 5.19 5.32
4.26 4.96 5.40 5.73 5.98 6.19 6.37 6.53 6.67

14 3.03 3.70 4.11 4.41 4.64 4.83 4.99 5.13 5.25
4.21 4.89 5.32 5.63 5.88 6.08 6.26 6.41 6.54

15 3.01 3.67 4.08 4.37 4.59 4.78 4.94 5.08 5.20
4.17 4.84 5.25 5.56 5.80 5.99 6.16 6.31 6.44

16 3.00 3.65 4.05 4.33 4.56 4.74 4.90 5.03 5.15
4.13 4.79 5.19 5.49 5.72 5.92 6.08 6.22 6.35

17 2.98 3.63 4.02 4.30 4.52 4.70 4.86 4.99 5.11
4.10 4.74 5.14 5.43 5.66 5.85 6.01 6.15 6.27

18 2.97 3.61 4.00 4.28 4.49 4.67 4.82 4.96 5.07
4.07 4.70 5.09 5.38 5.60 5.79 5.94 6.08 6.20

19 2.96 3.59 3.98 4.25 4.47 4.65 4.79 4.92 5.04
4.05 4.67 5.05 5.33 5.55 5.73 5.89 6.02 6.14

20 2.95 3.58 3.96 4.23 4.44 4.62 4.77 4.90 5.01
4.02 4.64 5.02 5.29 5.51 5.69 5.84 5.97 6.09

(Continued)
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Table A.7 Pearson r table.

α levels for two-tailed test

.10 .05 .02 .01 .001

(df = np – 2)

α levels for one-tailed test

.05 .025 .01 .005 .0005

1 .98769 .99692 .999507 .999877 .9999988

2 .90000 .95000 .98000 .990000 .99900

3 .8054 .8783 .93433 .95873 .99116

4 .7293 .8114 .8822 .91720 .97406

5 .6694 .7545 .8329 .8745 .95074

6 .6215 .7067 .7887 .8343 .92493

7 .5822 .6664 .7498 .7977 .8982

8 .5494 .6319 .7155 .7646 .8721

Table A.6 (Continued)

df: error term

k = number of treatments

2 3 4 5 6 7 8 9 10

24 2.92 3.53 3.90 4.17 4.37 4.54 4.68 4.81 4.91
3.96 4.55 4.91 5.17 5.37 5.54 5.69 5.81 5.92

30 2.89 3.49 3.85 4.10 4.30 4.46 4.60 4.72 4.82
3.89 4.45 4.80 5.05 5.24 5.40 5.54 5.65 5.76

40 2.86 3.44 3.79 4.04 4.23 4.39 4.52 4.63 4.73
3.82 4.37 4.70 4.93 5.11 5.26 5.39 5.50 5.60

60 2.83 3.40 3.74 3.98 4.16 4.31 4.44 4.55 4.65
3.76 4.28 4.59 4.82 4.99 5.13 5.25 5.36 5.45

120 2.80 3.36 3.68 3.92 4.10 4.24 4.36 4.47 4.56
3.70 4.20 4.50 4.71 4.87 5.01 5.12 5.21 5.30

∞ 2.77 3.31 3.63 3.86 4.03 4.17 4.29 4.39 4.47
3.64 4.12 4.40 4.60 4.76 4.88 4.99 5.08 5.16

Table entries in lightface type are critical values for the .05 level of significance. Boldface type values
are for the .01 level of significance.
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Table A.7 (Continued)

α levels for two-tailed test

.10 .05 .02 .01 .001

(df = np – 2)

α levels for one-tailed test

.05 .025 .01 .005 .0005

9 .5214 .6021 .6851 .7348 .8371

10 .4973 .5760 .6581 .7079 .8233

11 .4762 .5529 .6339 .6835 .8010

12 .4575 .5324 .6120 .6614 .7800

13 .4409 .5139 .5923 .6411 .7603

14 .4259 .4973 .5742 .6226 .7420

15 .4124 .4821 .5577 .6055 .7246

16 .4000 .4683 .5425 .5897 .7084

17 .3887 .4555 .5285 .5751 .6932

18 .3783 .4438 .5155 .5614 .6787

19 .3687 .4329 .5034 .5487 .6652

20 .3598 .4227 .4921 .5368 .6524

25 .3233 .3809 .4451 .4869 .5974

30 .2960 .3494 .4093 .4487 .5541

35 .2746 .3246 .3810 .4182 .5189

40 .2573 .3044 .3578 .3932 .4896

45 .2428 .2875 .3384 .3721 .4648

50 .2306 .2732 .3218 .3541 .4433

60 .2108 .2500 .2948 .3248 .4078

70 .1954 .2319 .2737 .3017 .3799

80 .1829 .2172 .2565 .2830 .3568

90 .1726 .2050 .2422 .2673 .3375

100 .1638 .1946 .2301 .2540 .3211

Source: Table VII of Fisher and Yates’: Statistical Tables for Biological, Agricultural and Medical
Research published by Longman Group UK, London (previously published by Oliver and Boyd Ltd.,
Edinburgh) and by permission of the authors and publishers.
To be significant the r obtained from the data must be equal to or larger than the value shown in
the table.
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Table A.8 Chi-square table.

df

α Levels

.10 .05 .02 .01 .001

1 2.71 3.84 5.41 6.64 10.83

2 4.60 5.99 7.82 9.21 13.82

3 6.25 7.82 9.84 11.34 16.27

4 7.78 9.49 11.67 13.28 18.46

5 9.24 11.07 13.39 15.09 20.52

6 10.64 12.59 15.03 16.81 22.46

7 12.02 14.07 16.62 18.48 24.32

8 13.36 15.51 18.17 20.09 26.12

9 14.68 16.92 19.68 21.67 27.88

10 15.99 18.31 21.16 23.21 29.59

11 17.28 19.68 22.62 24.72 31.26

12 18.55 21.03 24.05 26.22 32.91

13 19.81 22.36 25.47 27.69 34.53

14 21.06 23.68 26.87 29.14 36.12

15 22.31 25.00 28.26 30.58 37.70

16 23.54 26.30 29.63 32.00 39.25

17 24.77 27.59 31.00 33.41 40.79

18 25.99 28.87 32.35 34.80 42.31

19 27.20 30.14 33.69 36.19 43.82

20 28.41 31.41 35.02 37.57 45.32

21 29.62 32.67 36.34 38.93 46.80

22 30.81 33.92 37.66 40.29 48.27

23 32.01 35.17 38.97 41.64 49.73

24 33.20 36.42 40.27 42.98 51.18

25 34.38 37.65 41.57 44.31 52.62

26 35.56 38.88 42.86 45.64 54.05

27 36.74 40.11 44.14 46.96 55.48

28 37.92 41.34 45.42 48.28 56.89

29 39.09 42.56 46.69 49.59 58.30

30 40.26 43.77 47.96 50.89 59.70

Source: Table IV of Fisher and Yates’: Statistical Tables for Biological Agricultural and Medical
Research, published by Longman Group UK, London (previously published by Oliver and Boyd Ltd.,
Edinburgh) and by permission of the authors and publishers.
To be significant the χ2 obtained from the data must be equal to or larger than the value shown in
the table.
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Table A.9 Spearman rs table.

Number of
pairs, np

Level of significance for a one-tailed test

.05 .025 .01 .005

Level of significance for a two-tailed test

.10 .05 .02 .01

5 .900 1.000 1.000

6 .829 .886 .943 1.000

7 .714 .786 .893 .929

8 .643 .738 .833 .881

9 .600 .700 .783 .833

10 .564 .648 .745 .794

11 .536 .618 .709 .755

12 .503 .587 .671 .727

13 .484 .560 .648 .703

14 .464 .538 .622 .675

15 .443 .521 .604 .654

16 .429 .503 .582 .635

17 .414 .485 .566 .615

18 .401 .472 .550 .600

19 .391 .460 .535 .584

20 .380 .447 .520 .570

21 .370 .435 .508 .556

22 .361 .425 .496 .544

23 .353 .415 .486 .532

24 .344 .406 .476 .521

25 .337 .398 .466 .511

26 .331 .390 .457 .501

27 .324 .382 .448 .491

28 .317 .375 .440 .483

29 .312 .368 .433 .475

30 .306 .362 .425 .467

32 .296 .350 .412 .452

(Continued)
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Table A.9 (Continued)

Number of
pairs, np

Level of significance for a one-tailed test

.05 .025 .01 .005

Level of significance for a two-tailed test

.10 .05 .02 .01

34 .287 .340 .399 .439

36 .279 .330 .388 .427

38 .271 .321 .378 .415

40 .264 .313 .368 .405

42 .257 .305 .359 .395

44 .251 .298 .351 .386

46 .246 .291 .343 .378

48 .240 .285 .336 .370

50 .235 .279 .329 .363

52 .231 .274 .323 .356

54 .226 .268 .317 .349

56 .222 .264 .311 .343

58 .218 .259 .306 .337

60 .214 .255 .300 .331

70 .198 .235 .278 .307

80 .185 .220 .260 .287

90 .174 .207 .245 .271

100 .165 .197 .233 .257

If obtained value of rs is equal to or greater than tabled value for the appropriate alpha, reject H0.
Glasser, G. J., &Winter, R. F. (1961). “Critical values of the coefficient of rank correlation for Testing
the hypothesis of independence,” Biometrika, 48, 444. Reprinted by permission of the Biometrika
Trustees.
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Table A.10 Mann–Whitney U table, critical values for a one-tailed test at α = .01 (roman type) and
α = .005 (boldface type) and for a two-tailed test at α =.02 (roman type) and α = .01 (boldface type).a

nB

nA

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 —b — — — — — — — — — — — — — — — — — — —

2 — — — — — — — — — — — — 0 0 0 0 0 0 1 1
— — — — — — 0 0

3 — — — — — — 0 0 1 1 1 2 2 2 3 3 4 4 4 5
— — 0 0 0 1 1 1 2 2 2 2 3 3

4 — — — — 0 1 1 2 3 3 4 5 5 6 7 7 8 9 9 10
— 0 0 1 1 2 2 3 3 4 5 5 6 6 7 8

5 — — — 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
— 0 1 1 2 3 4 5 6 7 7 8 9 10 11 12 13

6 — — — 1 2 3 4 6 7 8 9 11 12 13 15 16 18 19 20 22
0 1 2 3 4 5 6 7 9 10 11 12 13 15 16 17 18

7 — — 0 1 3 4 6 7 9 11 12 14 16 17 19 21 23 24 26 28
— 0 1 3 4 6 7 9 10 12 13 15 16 18 19 21 22 24

8 — — 0 2 4 6 7 9 11 13 15 17 20 22 24 26 28 30 32 34
— 1 2 4 6 7 9 11 13 15 17 18 20 22 24 26 28 30

9 — — 1 3 5 7 9 11 14 16 18 21 23 26 28 31 33 36 38 40
0 1 3 5 7 9 11 13 16 18 20 22 24 27 29 31 33 36

10 — — 1 3 6 8 11 13 16 19 22 24 27 30 33 36 38 41 44 47
0 2 4 6 9 11 13 16 18 21 24 26 29 31 34 37 39 42

11 — — 1 4 7 9 12 15 18 22 25 28 31 34 37 41 44 47 50 53
0 2 5 7 10 13 16 18 21 24 27 30 33 36 39 42 45 48

12 — — 2 5 8 11 14 17 21 24 28 31 35 38 42 46 49 53 56 60
1 3 6 9 12 15 18 21 24 27 31 34 37 41 44 47 51 54

13 — 0 2 5 9 12 16 20 23 27 31 35 39 43 47 51 55 59 63 67
— 1 3 7 10 13 17 20 24 27 31 34 38 42 45 49 53 56 60

14 — 0 2 6 10 13 17 22 26 30 34 38 43 47 51 56 60 65 69 73
— 1 4 7 11 15 18 22 26 30 34 38 42 46 50 54 58 63 67

15 — 0 3 7 11 15 19 24 28 33 37 42 47 51 56 61 66 70 75 80
— 2 5 8 12 16 20 24 29 33 37 42 46 51 55 60 64 69 73

16 — 0 3 7 12 16 21 26 31 36 41 46 51 56 61 66 71 76 82 87
— 2 5 9 13 18 22 27 31 36 41 45 50 55 60 65 70 74 79

17 — 0 4 8 13 18 23 28 33 38 44 49 55 60 66 71 77 82 88 93
— 2 6 10 15 19 24 29 34 39 44 49 54 60 65 70 75 81 86

18 — 0 4 9 14 19 24 30 36 41 47 53 59 65 70 76 82 88 94 100
— 2 6 11 16 21 26 31 37 42 47 53 58 64 70 75 81 87 92

19 — 1 4 9 15 20 26 32 38 44 50 56 63 69 75 82 88 94 101 107
0 3 7 12 17 22 28 33 39 45 51 56 63 69 74 81 87 93 99

20 — 1 5 10 16 22 28 34 40 47 53 60 67 73 80 87 93 100 107 114
0 3 8 13 18 24 30 36 42 48 54 60 67 73 79 86 92 99 105

a To be significant for any given nA, nB, the obtainedUmust be equal to or less than the value shown in table.
b Dashes in the body of the table indicate that no decision is possible at the stated level of significance.
Source: Table B.9a and B.9b are from Statistics: An Introduction, 3rd. ed., R Kirk © 1990 Holt, Rinehart and
Winston, Inc., reprinted by permission of the publisher.
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Table A.11 Mann–Whitney U table, critical values for a one-tailed test at α = .05 (roman type) and
α = .025 (boldface type) and for a two-tailed test at α = .10 (roman type) and α = .05 (boldface type).

nB

nA

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 — — — — — — — — — — — — — — — — — — 0 0
— —

2 — — — — 0 0 0 1 1 1 1 2 2 2 3 3 3 4 4 4
— — — 0 0 0 0 1 1 1 1 1 2 2 2 2

3 — — 0 0 1 2 2 3 3 4 5 5 6 7 7 8 9 9 10 11
— — — — 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8

4 — — 0 1 2 3 4 5 6 7 8 9 10 11 12 14 15 16 17 18
— — — 0 1 2 3 4 4 5 6 7 8 9 10 11 11 12 13 13

5 — 0 1 2 4 5 6 8 9 11 12 13 15 16 18 19 20 22 23 25
— — 0 1 2 3 5 6 7 8 9 11 12 13 14 15 17 18 19 20

6 — 0 2 3 5 7 8 10 12 14 16 17 19 21 23 25 26 28 30 32
— — 1 2 3 5 6 8 10 11 13 14 16 17 19 21 22 24 25 27

7 — 0 2 4 6 8 11 13 15 17 19 21 24 26 28 30 33 35 37 39
— — 1 3 5 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

8 — 1 3 5 8 10 13 15 18 20 23 26 28 31 33 36 39 41 44 47
— 0 2 4 6 8 10 13 15 17 19 22 24 26 29 31 34 36 38 41

9 — 1 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54
— 0 2 4 7 10 12 15 17 20 23 26 28 31 34 37 39 42 45 48

10 — 1 4 7 11 14 17 20 24 27 31 34 37 41 44 48 51 55 58 62
— 0 3 5 8 11 14 17 20 23 26 29 33 36 39 42 45 48 52 55

11 — 1 5 8 12 16 19 23 27 31 34 38 42 46 50 54 57 61 65 69
— 0 3 6 9 13 16 19 23 26 30 33 37 40 44 47 51 55 58 62

12 — 2 5 9 13 17 21 26 30 34 38 42 47 51 55 60 64 68 72 77
— 1 4 7 11 14 18 22 26 29 33 37 41 45 49 53 57 61 65 69

13 — 2 6 10 15 19 24 28 33 37 42 47 51 56 61 65 70 75 80 84
— 1 4 8 12 16 20 24 28 33 37 41 45 50 54 59 63 67 72 76

14 — 2 7 11 16 21 26 31 36 41 46 51 56 61 66 71 77 82 87 92
— 1 5 9 13 17 22 26 31 36 40 45 50 55 59 64 67 74 78 83

15 — 3 7 12 18 23 28 33 39 44 50 55 61 66 72 77 83 88 94 100
— 1 5 10 14 19 24 29 34 39 44 49 54 59 64 70 75 80 85 90

16 — 3 8 14 19 25 30 36 42 48 54 60 65 71 77 83 89 95 101 107
— 1 6 11 15 21 26 31 37 42 47 53 59 64 70 75 81 86 92 98

17 — 3 9 15 20 26 33 39 45 51 57 64 70 77 83 89 96 102 109 15
— 2 6 11 17 22 28 34 39 45 51 57 63 67 75 81 87 93 99 105

18 — 4 9 16 22 28 35 41 48 55 61 68 75 82 88 95 102 109 116 123
— 2 7 12 18 24 30 36 42 48 55 61 67 74 80 86 93 99 106 112

19 0 4 10 17 23 30 37 44 51 58 65 72 80 87 94 101 109 16 123 130
— 2 7 13 19 25 32 38 45 52 58 68 72 78 85 92 99 106 13 119

20 0 4 11 18 25 32 39 47 54 62 69 77 84 92 100 107 115 123 130 138
— 2 8 13 20 27 34 41 48 55 62 69 76 83 90 98 105 112 119 127
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Table A.12 Wilcoxon signed-ranks table.a

n

Level of significance for
a one-tailed test

n

Level of significance for
a one-tailed test

.05 .25 .01 .005 .05 .25 .01 .005

Level of significance for
a two-tailed test

Level of significance for
a two-tailed test

.10 .05 .02 .01 .10 .05 .02 .01

5 0 — — — 28 130 116 101 91

6 2 0 — — 29 140 126 110 100

7 3 2 0 — 30 151 137 120 109

8 5 3 1 0 31 163 147 130 118

9 8 5 3 1 32 175 159 140 128

10 10 8 5 3 33 187 170 151 138

11 13 10 7 5 34 200 182 162 148

12 17 13 9 7 35 213 195 173 159

13 21 17 12 9 36 227 208 185 171

14 25 21 15 12 37 241 221 198 182

15 30 25 19 15 38 256 235 211 194

16 35 29 23 19 39 271 249 224 207

17 41 34 27 23 40 286 264 238 220

18 47 40 32 27 41 302 279 252 233

19 53 46 37 32 42 319 294 266 247

20 60 52 43 37 43 336 310 281 261

21 67 58 49 42 44 353 327 296 276

22 75 65 55 48 45 371 343 312 291

23 83 73 62 54 46 389 361 328 307

24 91 81 69 61 47 407 378 345 322

25 100 89 76 68 48 426 396 362 339

26 110 98 84 75 49 446 415 379 355

27 119 107 92 83 50 466 434 397 373

Source: Statistics: An Introduction, 3rd. ed., R. Kirk, © 1990 Holt, Rinehart and Winston, Inc.,
reprinted by permission of the publisher.
aThe obtained T is significant at a given level if it is equal to or less than the value shown in the table.
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Appendix B

Answers to Questions and Exercises

Chapter 1

1 a Observation
b Hypothesis
c Theory
d Theory
e Observation
f Hypothesis

2 d It is the only one of the four definitions that reflects a concrete way of
measuring the concept for the purposes of a scientific study.

3 Here are some examples:
Description (1) How frequently are tiny homes being constructed, and is
that frequency changing? (2) How many different types of tiny homes
are there? (3) What is the ratio of different types of tiny homes? (4) What
are the defining features of a tiny home? (5) Is tiny home living best
understood as a temporary situation or as a lifestyle?

Correlation (1) Is there a relationship between tiny homeowners and various
socioeconomic variables? (2) Is there a relationship between parts of the
country and tiny home frequency? (3) Do tiny homeowners tend to have
similar political viewpoints? Understanding (1) Are tiny homes more
attractive as space is dedicated to specific functionality (e.g. bathroom,
bedroom, kitchen) or to general living space? (2) Are tiny homes more
attractive if they are mobile or anchored?

Comment: because the topic of interest is a major life decision (what kind of
home to buy), it is hard to manipulate and study it experimentally. Some
topics of study are limited because manipulation is either ethically
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dubious, logically impossible, or logistically impractical. For instance, one
interesting question would be to see if tiny house living changes one’s
political and social attitudes over time. A quasi-experimental idea might
entail measuring participant’s social and political attitudes prior to mov-
ing in to a tiny home and then some years later to measure change. This
difference could be compared with changes in participants who, over the
same period of time, are not living in a tiny home. This is only quasi-
experimental, however, because participants are not being randomly
assigned to the two conditions. They are choosing for themselves to either
live in a tiny home or not.

4 a Independent variable: Vitamin E or amount of Vitamin E. Dependent var-
iable: Time participants spent riding the bicycle. There are three levels of
the independent variable (20 units; 60 units; placebo).

b Independent variable: Educational programs. Dependent variable: There
are two dependent variables – comprehension and reading speed.

c Independent variable: Type of justification for behaving counter-
attitudinally (insufficient, $1; sufficient, $50). Dependent variable:
Amount of attitude change.

d Independent variable: Amount of natural light. Dependent variable:
Number of widgets made.

5 Examples of quantitative independent variables: (1) 0 gummy bears,
2 gummy bears, 4 gummy bears; (2) no verbal praise, some verbal praise,
a lot of verbal praise; (3) 10 minutes of screen time, 20 minutes of screen
time. (Studies can have different numbers of levels of the independent
variable.)

Examples of qualitative independent variables: (1) verbal praise, sugar snack,
salty snack; (2) verbal praise, physical affection; (3) gifted toy, screen
time, snack.

It would be important in many of these scenarios to “hold constant” the
amount of physical affection offered to the child. For example, in both
example “c’s,” the parent should either give no physical affection or give
the same amount of physical affection in all conditions. This holds this
variable constant and removes it from consideration if differences
between conditions are found.

6 a The letter on the can is confounded with the types of root beer. A&W
always has the letter A and Stewart’s always has the letter B. Is it the taste
that participants are responding to, or are they simply showing a prefer-
ence for the letter A over B? This is admittedly a “stretch,” but sometimes
differences can be traced to seemingly innocuous differences such as
this – see Box 1.1.
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b The abnormal behavior of the mice might be due to the loud blast of
noise alone and not because it is coupled with a difficult choice with
significant consequences.

c The presence of the radar units could have caused motorists to drive
more carefully. Without using the radar, it is possible that just reducing
the speed limit (even if motorists obey the new speed limit) would not
have an effect on traffic accidents.

d Participants are not randomly assigned to the two pain control condi-
tions. It is possible that those participants who select the headphones
are different in some way from those participants who select novocaine.
Perhaps the “headphones” participants are less anxious about having
work done on their teeth and therefore report less pain due to less initial
anxiety.

7 Yes. It is possible that hearing a fast heart rate causes participants’ actual
heart rates to rise and hearing a low heart rate causes participants’ heart
rates to lower. The experimental effect, therefore, might be due to the dif-
ference in actual heart rates. Therefore, the variable “belief” may be con-
founded with the true level of heart rate. The researcher should record
all participants’ heart rates during the course of the experiment to make
sure there is no change in actual heart rates as the various visual and audi-
tory stimuli are presented.

8 b

9 Since participants were not randomly assigned to the “title-page” vs. “no
title-page” conditions, it is possible that higher grades are associated with
“title-page” papers not because the professor is biased in favor of them, but
rather because the students with better writing skills in general have
simply learned to include them.

10 “a” is for sure. “b” is most likely, unless there is some way of assigning ID
numbers that would suggest that different types of students get different
types of numbers. “c” is probably not a good method – to many reasons
to think different types of students use different means of signing up.
“d” is probably not a good system either – color preference could be asso-
ciated with personality and temperament differences. “e” also has potential
problems – if we are mainly using collegiate freshman, the younger 18 year
olds are going to end up in one group, and the older 19 year olds will end up
in the other.

11 “a” is problematic in many ways – one being that not everyone is likely to
eat at the cafeteria; for instance, perhaps all students with extracurricular
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activities eat later in the evening after practice and rehearsal. “b” is prob-
ably a good method even though the alphabetical order is set – still it is
hard to argue that the resulting sample would not be representative of
the students as a whole. “c” is very problematic because participants are
selecting themselves – the resulting sample is very likely to misrepresent
the larger population in terms of extroversion, amount of free time, help-
fulness, etc. “d” is problematic because our classes will contain students
who are largely from our major and at our academic level (freshman,
sophomore, etc.). “e,” although awkward and time consuming, would prob-
ably be an excellent way to generate a random sample of the student
population.

12 a Experiment: First, select a method for inducing pain. Next, randomly
assign participants to at least two levels of pain induction that differ
in intensity (e.g. placing arms in buckets of water with different tem-
peratures – both cold, but one colder than the other). For the dependent
variable, select a known method for measuring anxiety, perhaps a self-
report anxiety questionnaire and/or psychophysiological recordings.
(As a check on the experimental manipulation, it would be a good idea
to ask for pain ratings from the participants to document that the groups
differ in their perception of pain regarding the two levels of the pain
stimulus.)
Correlational design: Have participants experience a painful stimulus.

Do not manipulate the level of pain. Measure each participant’s pain
perception and anxiety level.

b Experiment: Randomly assign participants to a “high frequency of exer-
cise” condition and a “low frequency of exercise” condition. After a pre-
determined length of time, say, three months, obtain a measure of
resting heart rate. It would be a good idea to document that the two
groups do not differ in resting heart rate before the exercise program
begins. In addition, we can use more than two experimental conditions.
We could also have a group that is not asked to exercise. (Of course, we
would have to document that this group actually exercises less than the
low frequency group.)
Correlational design: Randomly select a group of participants. Find

out how much participants exercise and measure their resting heart
rate. Note that participants are not randomly assigned to different exer-
cise conditions.

c Experiment: Need for achievement is a personality (participant) varia-
ble. There is no way to manipulate it and use it as an independent var-
iable in an experiment. However, it would be possible to think of it as the
dependent variable and see if the number of hours worked per week
leads to changes in need for achievement. Here we would randomly
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assign participants to different experimental conditions that differ in the
amount of hours participants are required to work. At the end of some
predetermined amount of time, the groups are compared on a measure
of need for achievement.
Correlational design: Take a random sample of participants, and have

them record the number of hours they work per week over a one-month
period. Also, measure each participant’s need for achievement.

d Experiment: Preschool children would be randomly assigned to attend
or not attend day care. Measure all children’s level of social skills when
they are in first grade. Obviously, there are real-world problems with
implementing this design. What if the parent of a child assigned not
to attend day care wants their child to attend day care, and vice versa.
Correlational design: Take a random sample of children, making sure

that the sample includes some children who will attend preschool and
some children who will not attend preschool. Measure their social skills
in first grade. Another approach is to take a random sample of first-
grade students, measure social skills, and identify which students
attended preschool and which did not.

Chapter 2

1 a The answer is “ratio” or “unknown”; it depends on the features of
the original scale. The change between numbers on an interval or ratio
scale is a ratio measure. A change from a 5 to a 7 (2 units) is half as large
as a change from a 5 to a 9 (4 units), regardless of where the zero is
anchored – assuming all intervals are conserved. If attitude was initially
measured on an ordinal scale, however, then changing from one value to
another cannot be meaningfully compared with other changes between
values.

b Nominal
c Ordinal
d Ratio
e Ratio (80 heartbeats per minute are twice as many as 40)
f Interval or ordinal. (Assuming that need for approval has no meaningful
zero point, it is definitely not a ratio scale. However, can we be sure that a
Likert-type scale has constant intervals?)

g Ratio
h Nominal
i Nominal
j Nominal
k Ordinal
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2 a Nominal scale examples include “pass/no pass” or “good student” and
“bad student.”
Ordinal scale examples include grade in a given class (A, B, C, D, F) or a

set of categories like great, good, so-so, poor, and terrible.
Interval scale examples are hard to think of – debatably GPA is an

interval measure since a “0” GPA is more easily thought of as a grouping
of very poor students as opposed to a single place on a scale. For instance,
one student may fail every class but barely, while another fails every
class dreadfully. Both get a “0” GPA. A student with a GPA of “1” is
not necessarily half of a student with a GPA of “2.” Furthermore, an argu-
ment can be made that the spacing between integers is conserved, at
least in terms of the number of academic points needed to move from
one notch on the scale up to another.
Ratio scale examples include the number correct on a given measure or

perhaps the number of degrees earned (1 degree is half of 2).
b Nominal scale examples include a “student–athlete/non-student–

athlete,” a self-reported “athlete/nonathlete,” and an independent judge
report of “athlete/nonathlete.”
Ordinal scale examples include a Likert scale question like “how ath-

letic are you?” (very, somewhat, not really, not at all), “what place did you
earn in the tournament?” (first, second…), or “what rank one has on a ten-
nis team?”
Interval scale examples are hard to think of – but one might include

Likert scale questions, depending upon how one argues the Likert scale
is to be interpreted.
Ratio scale examples include the number of trophies won, how far one

can throw a javelin, and how fast one can run a mile.
c Nominal scale examples include categorizations like “creative/not
creative.”
Ordinal scale examples include a ranking by independent judges of

creative products, a grade in a class involving creativity, and a Likert
scale question like “how creative are you?” (very, somewhat, so-so, not
very, not at all).
Interval scale examples are hard to think of – but one might include

Likert scale questions, depending upon how one argues the Likert scale
is to be interpreted.
Ratio scale examples include how many art awards a person has won

and the number of judges out of 10 who classify a person as “artistic.”
d Nominal scale examples include categorizations like “high amount” vs.

“low amount.”
Ordinal scale examples include Likert scale questions like “how much

food did you eat today?” (a lot, an average amount, a little) or an inde-
pendent judge rankings.
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Interval scale examples are hard to think of – but one might include
Likert scale questions, depending upon how one argues the Likert scale
is to be interpreted; weighing the plate might be considered interval if
one does not take out the weight of the plate itself.
Ratio scales examples include the weight of food (minus the plate), the

number of calories eaten, or even the difference between pre-meal weight
and after-meal weight.

e Nominal scale examples include categorizations like “large family” vs.
“small family.”
Ordinal scale examples include Likert scale questions like “how big is

your extended family?” (very, somewhat, so-so, not very, not at all) or
some family-sized ranking system or the size of the banquet hall that
needs to be reserved for a reunion (small, medium, large, extra large).
Interval scale examples are hard to think of – but one might include

Likert scale questions, depending upon how one argues the Likert scale
is to be interpreted.
Ratio scale examples include a total count of all extended family (once

properly defined) or the number of cousins one has.

3
Width LL Midpoint UL

a. 3 0.5 2 3.5

b. 6 4.5 7.5 10.5

c. 5 −8.5 −6 −3.5

d. 5 −2.5 0 2.5

e. 3 1.000 2.5 4.000

f. 26 24.5 37.5 50.5

4 and 5 Part a. Only the top and bottom four numbers of the distribution are
provided here (and also in part b).

LL X UL f cf

97.5 98 98.5 1 36

96.5 97 97.5 0 35

96.5 96 96.5 0 35

94.5 95 95.5 0 35

(Continued)
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(Continued)

LL X UL f cf

43.5 44 44.5 0 3

42.5 43 43.5 2 3

41.5 42 42.5 0 1

40.5 41 41.5 1 1

Part b.

LL X UL f cf

95.5 96–98 98.5 1 36

92.5 93–95 95.5 0 35

89.5 90–92 92.5 3 35

86.5 87–89 89.5 3 32

47.5 48–50 50.5 1 5

44.5 45–47 47.5 1 4

41.5 42–44 44.5 2 3

38.5 39–41 41.5 1 1

Part c.

LL X UL f cf

89.5 90–99 99.5 4 36

79.5 80–89 89.5 11 32

69.5 70–79 79.5 9 21

59.5 60–69 69.5 5 12

49.5 50–59 59.5 2 7

39.5 40–49 49.5 5 5

Part d.

LL X UL f cf

79.5 80–99 99.5 15 36

59.5 60–79 79.5 14 21

39.5 40–59 59.5 7 7
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6 Refer to graph.
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7 Refer to graph.
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8 Here are two examples: pounds of garbage per week for a given family (it
makes sense to think that most weeks would produce garbage amounts
that are roughly similar to most other weeks – with some weeks being a
bit less and some weeks being a bit more) and the total inches of snowfall
for a given northern American city (it makes sense to think that most years
produce a total snowfall that is very similar tomost other years –with some
years being a bit less and some being a bit more).

9 Here are two examples: GPA’s at a given university (it makes sense to sug-
gest that most GPA’s will cluster around 3.25 or 3.3 with some being
greater, but many more will trail off down the scale to about a 1.75 or
1.5 – of course at some point, students are put on academic probation
or not allowed to return to school – so this distribution might have an arti-
ficial bottom point) and free-throw percentages of professional basketball
players (it makes sense to think that most professionals have a high rate of
success for these uncontested shots, but some do struggle – and since the
ceiling of 100% cannot be exceeded, the dispersion is much more likely to
stretch out toward the lower percentages).

10 Here are two examples: yards rushed by an NFL running back (it makes
sense that most rushing attempts produce just a few yards gained, some-
times even the loss of a few years; but there will be a good number of rushes
that will amount to significant yardage gains) and completion times for a
triathlon (it makes sense to suggest that there will be a few winners with
shorter times, but then a bulk of competitors will finish soon thereafter;
however, there will be people straggling in for hours after the bulk of run-
ners have finished).

11 Here is a picture of a graph drawn in Excel that faithfully represents the
relationship between the cereal types in terms of sugar per serving.
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And here is a graph drawn in Excel that truncates the Y axis
without labeling it, potentially leaving the viewer with a false under-
standing of the relationship between the cereal types in terms of sugar
per serving.
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12 For space purposes, a simple frequency distribution is not provided.
Here is a grouped frequency distribution –with a column for cumulative

frequency.

LL X UL f cum f

89.5 90–99 99.5 3 120

79.5 80–89 89.5 10 117

69.5 70–79 79.5 18 107

59.5 60–69 69.5 14 89

49.5 50–59 59.5 6 75

39.5 40–49 49.5 11 69

29.5 30–39 39.5 13 58

19.5 20–29 29.5 18 45

9.5 10–19 19.5 27 27
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Here is a frequency polygon of the data – using an i = 10.
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Frequency polygon; i = 10

Here is a histogram of the data – using an i = 10.

Histogram; i = 10
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Chapter 3

1 It must be symmetrical.

2 Themeanwill stillbe15.The formula fora samplemean, thoughusingdifferent
symbols, is functionally equivalent to the formula for a population mean.

3 a 2
b −1
c −10
d 0
e −11
f −0.5
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4 a −2
b 2
c 9
d −0.5
e −29
f 2.5

5
a. M = 6 Median = 6 Mode = 8

b. M = 4.86 Median = 4 Mode = 4

c. M = 8.71 Median = 9 Mode = 10

d. M = 3.86 Median = 4 Mode = 1 and 4

e. M = 5.67 Median = 6.5 Mode = 8

f. M = 8.22 Median = 9 Mode = 5

For “f,” remember to rearrange the numbers from lowest to highest.

6 a
Distribution A

Σ(X −M)
Distribution B
Σ(X −M)

X −M x X −M x

3 − 6 −3 2 − 4.86 −2.86

3 − 6 −3 4 − 4.86 −0.86

4 − 6 −2 4 − 4.86 −0.86

5 − 6 −1 4 − 4.86 −0.86

6 − 6 0 6 − 4.86 +1.14

8 − 6 +2 7 − 4.86 +2.14

8 − 6 +2 7 − 4.86 +2.14

8 − 6 +2 Σx = −0.02 (will be 0

9 − 6 +3 without rounding error)

Σx = 0

b
Distribution A
Σ(X − Median)

Distribution B
Σ(X − Median)

X −Median X −Median

3 − 6 = −3 2 − 4 = −2

3 − 6 = −3 4 – 4 = 0

4 − 6 = −2 4 − 4 = 0

5 − 6 = −1 4 − 4 = 0
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(Continued)

Distribution A
Σ(X − Median)

Distribution B
Σ(X − Median)

X −Median X −Median

6 − 6 = 0 6 − 4 = +2

8 − 6 = +2 7 − 4 = +3

8 − 6 = +2 7 − 4 = +3

8 − 6 = +2 Σ(X − Median) = +6

9 − 6 = +3

Σ(X − Median) = 0

c
Distribution A
Σ(X −Mode)

Distribution B
Σ(X −Mode)

X −Mode X −Mode

3 − 8 = −5 2 − 4 = −2

3 − 8 = −5 4 − 4 = 0

4 − 8 = −4 4 – 4 = 0

5 − 8 = −3 4 – 4 = 0

6 − 8 = −2 6 − 4 = +2

8 – 8 = 0 7 − 4 = +3

8 – 8 = 0 7 − 4 = +3

8 – 8 = 0 Σ(X −Mode) = +6

9 − 8 = +1

Σ(X −Mode) = −18

The preceding exercise illustrates that Σ(X −M) equals 0. The Σ(X −Median)
or Σ(X −Mode) will only equal 0 if the distribution is perfectly symmetrical
or by pure coincidence. Neither distribution A nor B is normal. The fact
that Σ(X −Median) = 0 for distribution A is coincidental.

7 a M = 8.65
b Mode = 9

8 a M = 16.29
b Mode = 15 and 16

9 Median = 6.5 + 0.5 = 7
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10 Grand Mean = 4318/30 = 143.93

11 Grand Mean = 102/17 = 6

12 a Positively skewed
b Negatively skewed
c Symmetrical, unimodal
d Symmetrical, bimodal
e Negatively skewed
f Positively skewed

13 Each one needs to think of their own examples, but here are a couple to
point us in the right direction. (1) Height measurements for a basketball
team composed of only guards and centers. (The shorter guards would
all be clustered around a smaller height measure, and the taller centers
would all be clustered around a larger number.) (2) The running times
for Olympians running the 100-m dash. (The men’s times would be clus-
tered around just under 10 seconds, while the women’s times would be
clustered around 11 seconds.)

14 M =
552 + 551 + 448

107
= 14 50

15 a M = 104.80
b Median = 101
c Yes, it is also 101

16 The mean has the biggest difficulty with extreme scores. Because the mean
takes into account the distance from each score to the middle, extreme
scores, especially for small data sets, can generate a number that seems
to be far away from the bulk of the scores.

17 The median. Neither an ordinal scale nor the concept of the median makes
any assumptions about the uniformity of the intervals between values.

18 The mode. Whenever the data are in the form of how many (i.e. a nominal
scale) rather than how much (i.e. an interval or ratio scale), the mode is the
only appropriate measure of central tendency.

19 101. If the mean of the original distribution is 100, the sum of the 10 scores
must be 1000. If one of those numbers goes from 80 to 90, the new sum
must be 1010. There are still a total of 10 numbers, so the new mean
is now 101.
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20 11.3 If the mean of the original distribution is 12, the nine scores center
on 12. This means the nine scores added together must equal 108. If
we add 5 to that number and then divide it by 10 (since our n is now
9 + 1), the new mean will be 11.3

21 43. The first set of 17 numbers must sum to 425, since the mean is 25.
If the new distribution of 18 numbers now has a mean of 26, then the
new sum of the scores is 468. The difference between the two sums is
43, which means the value of the new number is 43.

22 27. The first set of 6 scores must sum to 150, since the mean is 25. If one
score is removed, we now have 5 scores summing to 135, which means the
value of the new mean is 27.

23 Fifty-two minutes is the best guess. As sample size increases, sample
statistics better approximate population statistics. The sample including
500 people is most likely the most accurate.

24 M = 109.73; median = 100.50; mode = 100
The following histogram reveals a positively skewed distribution,

which is consistent with the fact that the mean is greater than the
median. (Note: Some computer printouts represent histograms as bar
graphs in that adjacent bars do not share a common border, which is
the case for the next two graphs.)
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25 μ = 28.12; median = 32; mode = 35
The histogram shows this distribution to be negatively skewed,

consistent with the fact that the mean is smaller than the median.
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Chapter 4

1 Cannot say which would have the larger variance, but n = 60 would likely
give a more accurate estimate of the population variance. A sample size
of 60 would likely have the larger range.

2 The variance cannot be estimated based on the size of M.

3 a M = 103.50
b s = 5.24

4 a Range = 8 − 1 = 7
b s2 = 4.27
c s = 2.07

5 a IQR = 111 − 81 = 30
b SIQR = (111 − 81)/2 = 15

6 a 3
b 12.8
c 2.58
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7 d

8 All scores are 50. There is no deviation off that mean value.

9 a σ
b s
c σ
d s

10 The denominator in the sample formula has a correction factor (n − 1).
This is to make the resulting number and unbiased estimate of the popu-
lation variance. Otherwise, a sample variance would be a biased estimate of
the population variance; it would most likely be too small. Reducing the
numerator by one helps correct this problem.

11 σ = 4.83 and σ2 = 23.35

12 s2A = 7.125 s2B = 5.90

13 No. The 68-95-99.7 rule assumes a normal distribution.

14 Affected by extreme scores.

15 The standard deviation is the easiest to interpret because it is in the original
units of the measured variable.

16 σ = 2.66

17 According to the 68-95-99.7 rule, values 40–60 would encapsulate the
middle 68% of scores, 30–70 would encapsulate the middle 95% of scores,
and 20–80 would encapsulate the middle 99.7% of scores.

18 According to the 68-95-99.7 rule, values 48–52 would encapsulate the
middle 68% of scores, 46–54 would encapsulate the middle 95%, and
44–56 would encapsulate the middle 99.7%.

19 According to the 68-95-99.7 rule, the standard deviation must be 12 (the
middle 68% are contained within plus and minus 12 points off the mean).
This means the variance of this distribution must be 144.

20 A distribution with a variance of 100 has a standard deviation of 10 (the
square root of the variance). According to the 68-95-99.7 rule, the values
120 and 160 must be plus and two standard deviations away from the
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mean, respectively. If the standard deviation is 10, that means the distribu-
tion must have a mean of 140.

21 a 15
b 250
c 30
d 500

22 M = 14.50 s2 = 1.60

23
Experimental (biofeedback) Control

a. Pre: s = 12.95 Pre: s = 9.11

b. Post: s = 10.89 Post: s = 11.19

24
Technique A Technique B

a. MPre = 3.50 MPre = 3.00

b. s2Pre = 1 67 s2Pre = 0 67

c. sPre = 1.29 sPre = 0.82

d. MPost = 5.50 MPost = 3.5

e. s2Post = 1 67 s2Post = 1 67

f. sPost = 1.29 sPost = 1.29

25
X + 10 X − 10 X(10) X/10

μ = 60 μ = 40 μ = 500 μ = 5

σ2 = 25 σ2 = 25 σ2 = 2500 σ2 = 0.25

26 The coach would need to transform the data by dividing each value
recorded by three, thereby turning feet measurements into yards.

27 25 minutes. As sample size increases, sample statistics better approximate
population statistics. The sample including 500 people is most likely the
most accurate.
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28 Range = 15 IQR = 6 SIQR = 3

29 Range = 40 IQR = 19.75 SIQR = 9.88

30 M = 7.07 s2 = 17.61 s = 4.20 Range = 14

31 M = 96.52 s2 = 138.56 s = 11.77 Range = 39

32 M = 0.1675 s2 = 0.0017 s = 0.0415 Range = 0.1343

33 M = 965.24 s2 = 13 856.20 s = 117.71 Range = 390

34 M = 2 895.72 s2 = 41 568.6 s = 203.88 Range = 1170

35 M = 321.75 s2 = 1539.58 s = 39.24 Range = 130

Chapter 5

1
a PR=

23 + 0 5 12
49

100 = 0 59 100 = 59

b PR=
42 + 0 5 4

49
100 = 0 90 100 = 90

c PR=
13 + 0 5 10

49
100 = 0 37 100 = 37

d PR=
6+ 0 5 7

49
100 = 0 19 100 = 19

2 A z score represents the number of standard deviations a raw score is away
from the mean.

3 A positive z score means the corresponding raw score is larger than the
mean, while a negative z score means the corresponding raw score is smaller
than the mean.

4 Answers will vary. Variables that may be normally distributed include the
number of slices of pizza eaten in a month by university students, the body
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weight of biological male students, the level of extroversion of all
students, etc.

5 Answers will vary. Variables that might not be normally distributed
include the miles away from home for university students (positively
distributed), the driving speed of cars on an interstate relative to the speed
limit (positively distributed), the number of credits taken per semester by
university students (negatively distributed), the number of miles on car
odometers (positively distributed), etc.

6 μ = 7.67 σ = 2.56

X z

4 –1.43

5 –1.04

7 –0.26

9 +0.52

10 +0.91

11 +1.30

7 z =
11−14

4
=
−3
4

= = −0 75

8 X = 25 + 0.36(3) = 25 + 1.08 = 26.08

9 z =
140−130

13
=
10
13

= 0 77 Answer: 0.22 or 22%

10 z =
27−34

3
= −2 33 Answer: 0.99%

11 0.025 + 0.025 = 2.5% + 2.5% = 5%

12 0.40 + 0.40 = 40% + 40% = 80%

13 a z = −2.0
b z = –0.30
c z = +0.47
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d z = +1.48
e z = –1.20
f z = +0.54
g z = +0.09
h z = –0.19
i z = +0.80

14 0.3849 + 0.2123 = 0.5972

15 0.3051 + 0.1141 = 0.4192

16 0.1587 + 0.1587 = 0.3174 = 31.74%

17 (z’s = ±1) Answer: 0.3413 + 0.3413 = 0.6826

18 z’s = ±1.28 (from table)
X = 70 ± 1.28(7) = 61 and 79
79 = best students and <61 worst students

19 μ = 5.67 σ = 2.36

X z

2 –1.56

4 –0.71

5 –0.28

6 +0.14

8 +0.99

9 +1.41

20 We can find the percentile rank by converting to z scores and using
the z table.

a. z = −1.25 PR = 10.56

b. z = +1.25 PR = 98.78

c. z = 0 PR = 50

d. z = +0.50 PR = 69.15

e. z = −0.25 PR = 40.13
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21
a. z = 1.645 (from table) X = 78 + 1.645(7) = 90 (rounded)

b. z = 0.84 (from table) X = 78 + 0.84(7) = 84 (rounded)

c. z = −0.52 (from table) X = 78 + (–0.52)(7) = 74 (rounded)

d. z = −0.13 (from table) X = 78 + (–0.13)(7) = 74 (rounded)

22 a 11.51%
b 50% + 14.06% = 64.06%
c 28.77%
d 21.48%
e 13.57%
f 50% + 33.65% = 83.65%
g 44.83%

23
a z =

38−56
5

= −3 6 Answer: 0.02%

b z = ±0.39
X’s = 56 ± (0.39)(5) = 54.05 and 57.95, so “C” category is roughly 54–58.

c z = 1.28
X = 56 + 1.28(5) = 62.4. The “A” category is (rounding) 62 and up.

24 a z = 0.84 (from table)
b No, we need a mean and standard deviation.

25 A z score is the number of standard deviations between a raw score and the
mean. If a raw score that is 10 points below the mean corresponds to a z
score of −2.50, the standard deviation must be 4. –2.5(4) = −10.

26 If a raw score that is 5 points above the mean corresponds to a z score of
2.00, the standard deviation must be 2.5. 2(2.5) = 5.

27 If a raw score of 51 corresponds to a z score of −1.00, then 51 is one stand-
ard deviation below the mean; therefore, the mean must be 65. X = μ + (zσ)
or 51 = 65 + (–1∗15).

28 If a raw score of 31 corresponds to a z score of 2.00, then 31 is two standard
deviations above the mean; therefore, the mean must be 21. X =M + (zs) or
31 = 21 + (2∗5).

29 A z score is the number of standard deviations between a raw score and the
mean. If the mean is 60 and a raw score of 61 corresponds to a z of 0.20,
then the standard deviation must be 5. X = μ + zσ or 61 = 60 + (0.2∗5).
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30 If the mean is 75 and a raw score of 60 corresponds to a z of −2.00, then the
standard deviation must be 7.5. X = M + zs or 60 = 75 + (–2∗7.5).

31 If a raw score of 35 corresponds to a z score of −1.00 (which means it is one
standard deviation below the mean) and a raw score of 40 corresponds to a
z score of −0.50 (which means it is one-half of a standard deviation below
themean), then smust be two times the distance between 35 and 40, that is,
10. And if 35 is 1 s below the mean and 40 is 0.50 s below,M = 45. (Hint: if
we are having trouble, draw it out.)

32 If a raw score of 72 corresponds to a z score of 0.20 (which means it is
0.2 standard deviation above the mean) and a raw score of 84 corresponds
to a z score of 0.80 (which means it is 0.8 standard deviations above the
mean), the distance between 72 and 84must be 0.6 σ away from each other.
Therefore, σ = 12/0.6 = 20. Further, this means μ = 68. (Hint: if we are
having trouble, draw it out.)

33 If a raw score of 16 corresponds to a z score of −2.00 (which means it is two
standard deviation below the mean) and a raw score of 23.5 corresponds to
a z score of 3.00 (which means it is three standard deviations above the
mean), then the distance between the scores must be 5 s away from each
other. Therefore, s = 7.5/5 = 1.5. Further, this means M = 19. (Hint: if we
are having trouble, draw it out.)

34 If a raw score of 77 corresponds to a z score of 2.50 (which means it is
2.5 standard deviation above the mean) and a raw score of 41 corresponds
to a z score of −5.00 (which means it is 5 standard deviations below the
mean), the distance between 77 and 41must be 7.5 σ away from each other.
Therefore, σ = 36/7.5 = 4.8. Further, this means μ = 65. (Hint: if we are
having trouble, draw it out.)

35 Bottom 20% corresponds to a z score of −0.84; X = μ + zσ or
X = 25 000 + (–0.84∗6 000) = 19 960.

Bottom 40% corresponds to a z score of −0.25; X = 25 000 +
(–0.25∗6 000) = 23 500.

Bottom 60% corresponds to a z score of 0.25; X = 25 000 +
(0.25∗6 000) = 26 500.

Bottom 80% corresponds to a z score of 0.84; X = 25 000 +
(0.84∗6 000) = 30 040.

The highest value cannot be determined since theoretically the corre-
sponding z score would be infinite. (Recall that normal distributions
are asymptotic.)
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36 The top 15% corresponds to a z score of 1.04; X = μ + zσ or
X = 45 + (1.04∗11) = 56.44 pounds of garbage.

The bottom 28% corresponds to a z score of −0.58; X = 45 +
(–0.58∗11) = 38.62 pounds of garbage.

37 X = M + zs so, X = 25 + (–1.75∗4) = 18; the z table suggests that 95.99% of
the raw scores will be greater than 18. (50 + 45.99 = 95.99%)

38 X = μ + zσ so, X = 99 + (1.33∗9) = 111; the z table suggests that 9.18% of
the raw scores will be greater than 111.

39 There are several ways to find this area under the curve. Here is one:
The raw score of 170 corresponds to a z score of 1.33; 9.18% of the area

under the curve is beyond a raw score of 170, including area we do not
want to include. The raw score of 175 corresponds to a z score of 1.67;
there is 4.75% of the area under the curve beyond that point. We can sub-
tract 4.75% from 9.18%, which leaves us with 4.43% between a raw score
of 170 and 175.

40 There are several ways to find this area under the curve. Here is one:
The raw score of 0.7 corresponds to a z score of −2.00; 2.28% of the area

under the curve is below a raw score of 0.7, including area we do not want
to include. The raw score of 0.6 corresponds to a z score of −2.67; there
is 0.38% of the area under the curve below that point. We can subtract
0.38% from 2.28%, which leaves us with 1.90% between a raw score of
0.6 and 0.7.

41 Andrew’s 54 completed passes from a distribution centered on 44 with a
standard deviation of 6 produce a z score of 1.67. Lisa’s 48 completed
passes from a distribution centered on 38 with a standard deviation of 7
produce a z score of 1.43. Andrew’s passing performance was stronger than
Lisa’s relative to their respective teams.

42 Sarah’s 20 minutes deciding what to wear from a distribution centered on
15 with a standard deviation of 4 produces a z score of 1.25. Justine’s
90 minutes on social media from a distribution centered on 65 with a
standard deviation of 20 produces a z score of 1.25. Relative to their respec-
tive activities, the time wasted by each person is the same.

43 PR=
42 + 0 5 16

76
100 = 66
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44

X0 40 = 13 5 +
126 0 40 −46

27
4 = 14 rounded

X0 50 = 13 5 +
126 0 50 −46

27
4 = 16 rounded

X0 65 = 17 5 +
126 0 65 −73

23
4 = 19 rounded

X0 90 = 25 5 +
126 0 90 −109

13
4 = 27 rounded

45 μ = 20.28; σ2 = 43.17; σ = 6.57
z scores based on the population standard deviation are in table below.

−1.26 −0.80 2.08 0.41 1.78 −1.26 0.26 0.11 −0.19 0.72 −0.95 −1.41 −1.26

−1.41 −1.56 −0.95 −0.80 −1.10 −1.26 −0.65 −0.35 0.11 1.32 1.78 1.62 1.47

0.56 1.47 1.32 1.17 0.87 0.11 −0.19 −0.50 −0.65 −0.80 −1.41 −1.56 −0.50

1.78 1.47 1.32 1.32 1.17 1.02 0.11 −0.95 0.11 −0.35 −0.65 −0.65 −1.41

−0.04 0.41 −0.95 −0.80 −0.50 −1.41 0.11 1.78 −0.04 −0.04 0.72 −0.80 −0.50

−0.95 −0.80 0.41 0.87 1.47 0.56 −0.19 0.41 0.26 0.11 0.56 −0.50 −0.80

46 M = 11.15; s2 = 30.68; s = 5.54
z scores based on the sample standard deviation are in table below.

−0.21 −1.11 −1.83 1.42 0.33 −0.93 −0.03 0.15 −0.39 0.69 1.06 1.06 −0.93

−1.29 0.87 1.42 −0.57 0.33 −0.03 −0.75 1.24 0.87 −0.75 −0.93 0.87 −1.65

−0.75 −0.75 −0.03 −0.57 −1.29 −0.03 1.24 −0.21 0.51 1.60 0.69 −1.29 1.42

−0.39 −1.47 −0.57 0.87 −1.11 −0.75 −1.83 1.42 1.60 1.24 0.15 −0.39 −1.29

−0.39 −0.03 −1.11 0.69 −1.11 1.06 1.06 −0.39 1.24 −1.83 −0.57 1.24 −0.93

0.87 −0.93 0.15 −0.93 −0.93 1.24 1.42 −0.03 1.24 −0.39 1.42 1.06 −0.03

47 M = 234.47; s2 = 13 094.30; s = 114.43
z scores are in table below.

−1.07 −0.52 0.96 −0.97 0.81 1.55 −0.98 −0.15 1.61 −0.96 −0.76 1.54 −1.07

−1.07 −1.11 −0.78 −0.96 −0.45 −0.72 −0.95 −0.41 0.14 −0.05 1.29 1.02 0.75

0.07 0.65 3.45 0.42 0.30 −0.16 −0.36 −0.33 −0.60 −0.71 −1.01 −1.12 −0.54

0.78 −0.91 0.39 1.70 −0.93 0.37 1.63 −1.05 −0.15 −0.44 −1.04 −0.59 1.54

2.50 −0.10 −0.76 −0.69 −0.94 −0.47 0.14 0.076 0.40 0.14 −0.08 −0.43 −0.68

−0.62 −0.71 0.04 0.28 0.60 0.52 −0.34 −0.01 −0.05 3.38 0.07 −0.33 −0.69
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48 μ = 3.94; σ2 = 4.84; σ = 2.20
z scores based on the population standard deviation are in table below.

0.12 2.07 −0.24 −0.74 −0.34 −0.79 −0.79 −0.52 1.35 −0.65 −1.15 2.35 −0.79

0.76 2.35 −0.70 0.26 1.07 −1.24 −0.15 2.66 −0.65 −0.47 −0.34 −0.06 −0.38

−0.70 −0.43 −0.47 −0.52 −0.61 −0.47 0.44 −1.02 0.30 1.62 −1.24 1.39 −0.11

−0.34 −0.38 −0.47 −0.47 −0.52 −0.56 −0.65 −0.70 −0.74 2.21 −0.15 1.21 0.26

−0.88 −0.74 −0.24 0.71 1.71 1.89 −0.61 −0.34 −0.88 −0.84 −0.65 0.71 1.26

1.57 −1.11 −0.74 −0.61 −0.38 −0.70 1.80 −0.74 −0.79 −0.47 −0.70 0.35 1.62

Chapter 6

1 b

2 a 13/52 or ¼ or 0.25 or 25%
b 1/10 or 0.1 or 10%
c 16/32 or ½ or 0.5 or 50%
d 1/50 or 0.02 or 2% (assuming all states are equally likely to be drawn)
e Impossible to determine without knowing more information

3 a No, some countries allow dual citizenship.
b No
c Yes
d No
e No
f Yes
g Yes
h Yes
i Uncertain(!)

4
a

40
100

= 0 40 or 40%

b
60
100

= 0 60 or 60%

c 0.40 + 0.60 = 1.00 or 100%
d (0.40)(0.40) = 0.16 or 16%
e (0.60)(0.60) = 0.36 or 36%

5 a Dependent (getting one number necessarily changes the likelihood of
getting another).

b Independent (the numbers selected the previous week do not change the
likelihood of the numbers selected the subsequent week).
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c Dependent (once one 5 card is selected, the probability of drawing
another next decreases).

d Independent (the first drawing does not change the likelihood of getting
a 6 on the second drawing).

6 a 0.3
b 0.4
c 0.7
d 0.6 (mutually exclusive – so 0.3 + 0.3)
e 0.55 (not mutually exclusive – so 0.3 + 0.35 − 0.1)
f 0.1 (uncertain relationship – so P(Red|X) P(X) = 10/35 (0.35))
g 0.29 (conditional – so 0.1/0.35)
h 0.33 (conditional – so 0.1/0.3)
i No
j P(red)P(X) does not equal P(Red|X)P(X).

7 a 0.35
b 0.4
c 0.65 (mutually exclusive – so 0.25 + 0.4)
d 0 (mutually exclusive – so 0.35 + 0.25 + 0.4)
e 0.75 (not mutually exclusive – so 0.25 + 0.6 − 0.1)
f 0.65
g 1 (mutually exclusive – so 0.6 + 0.4)
h 0.3 (uncertain relationship – so P(Yellow|X) P(X) = 0.5 (0.6))
i 0 (uncertain relationship – so P(Yellow|Red) P(Red) = 0 (0.6))
j 0.375 or 0.38 (conditional – so P(Red and Y)/P(Y) = 0.15/0.4)
k 0.6 (conditional – so P(Y and Red)/P(Red) = 0.15/0.25)
l No, because P(X) P(Green) ≠ P(X|Green) P(Green); change probabilities
to make P(X) = P(X|Green).

m No, because P(Yellow) P(Y) ≠ P(Yellow|Y) P(Y); change probabilities to
make P(Yellow) = P(Yellow|Y).

8 a 0.8 or 80%
b 0.4 (not mutually exclusive – so 0.2 + 0.3 − 0.1)
c 0.33 (conditional – so 0.1/0.3)
d 0.5 (conditional – so 0.1/0.2)
e Close, but no
f P(Red) P(X) ≠ P(Red|X) P(X); to make them independent we must make
P(Red) = P(Red|X).

9 a 0.3
b 0.5
c 0.7 (mutually exclusive – so 0.3 + 0.4)
d 0.7 (not mutually exclusive – so 0.3 + 0.5 − 0.1)

Appendix B Answers to Questions and Exercises 785



e 0.7
f 1 (mutually exclusive – so 0.5 + 0.5)
g 0.25 (uncertain relationship – so P(Yellow|X) P(X) = (0.5) (0.5))
h 0 (dependency – so P(Yellow|Red) P(Red) = (0) (0.3))
i 0.3 (conditional – so P(Yellow and Y)/P(Y) = (0.15)/(0.5))
j 0.38 (conditional – so P(Y and Yellow)/P(Yellow) = (0.15)/(0.4))
k Yes, because P(Green) P(X) = P(Green|X) P(X).
l No, because P(Yellow) P(Y) ≠ P(Yellow|Y) P(Y); need to make
P(Yellow) = P(Yellow|Y).

10 Bayes’ theorem 0.05(0.1)/[0.05(0.1) + 0.025(0.9)] = 0.005/[0.005 + 0.0225] =
0.182 or 0.18 or 18%

11 Bayes’ theorem 0.54(0.18)/[0.54(0.18) + 0.11(0.82)] = 0.0972/[0.0972 +
0.0902] = 0.5187 or 0.52 or 52%

12 Bayes’ theorem 0.44(0.57)/[0.44(0.57) + 0.36(0.43)] = 0.2508/[0.2508 +
0.1548] = 0.618 or 0.62 or 62%

13 Bayes’ theorem 0.25(0.4)/[0.25(0.4) + 0.15(0.6)] = 0.1/[0.1 + 0.09] = 0.526
or 0.53 or 53%

14 0.22, basic probability formula (number of favorable events divided by total
number of events; 8/36). There are two ways to get an 11 (5 and 6; 6 and 5)
and 6ways to get a seven (1 and 6; 2 and 5; 3 and 4; 4 and 3; 2 and 5; 1 and 6).

Chapter 7

1 Choose a population of scores. Decide on a sample size, n. Take a random
sample of size n. Compute the mean and replace the scores back into the
population. Repeat the sampling procedure, always using the same sample
size, until all possible samples have been drawn. Plot the relative frequency
distribution of the means.

2 The variability of the sampling distribution is determined by the population
standard deviation and the size of the samples drawn. The relationship is
σM = σ n. As σ increases, σM increases. As σ decreases, σM decreases.

3 Point estimation estimates a parameter as a single value. Interval estimation
establishes a range of values within which the population parameter is
expected to lie.
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4 Estimation is an inferential procedure that uses data from a sample to infer
the value of a population parameter. Hypothesis testing is a set of inferen-
tial procedures that uses data from samples to establish the credibility of a
hypothesis about population parameters.

5 It is inversely related. The standard error of the mean decreases as the sam-
ple size (n) increases and vice versa. This is because a larger sample is less
likely to include extreme scores that would combine to produce an
extreme mean. The relationship is σM = σ n.

6 Single-sample designs use one sample to test a hypothesis about the mean
of a population. Two-sample research uses two samples to test a hypoth-
esis about the difference between two populationmeans. These designs are
experimental research methods that attempt to identify causal relations
among variables. The correlational method does not attempt to exert an
influence on a measured response. It cannot identify causal relations
among variables; instead, it is aimed at identifying the strength of associ-
ation between variables.

7 A research hypothesis is a formal statement or expectation about the
outcome of a study, often specifying the expectation of a relationship
between an independent and dependent variable. A statistical hypothesis
is a numerical statement about the outcome of a study. The null and alter-
native hypotheses are statistical hypotheses.

8 The null hypothesis states that there is no effect of the independent vari-
able on the dependent variable (no relationship between variables). The
alternative hypothesis states that there is an experimental effect (a relation-
ship between variables).

9 An example of a single-sample research project should specify an exact
numerical value for the null hypothesis. The alternative hypothesis is that
the population mean does not equal that numerical value. An example of a
two-sample research project should specify an expected difference
between two conditions representing two different populations (e.g. drug
vs. placebo).

10 μM = 100; σM = 10 9= 3 33. Its shape is normal because it comes from a
normally distributed population.

11 a H0: μA = μB; H1: μA ≠ μB
b If the two sample means are very similar.
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c Failure to reject the null means that we are uncertain about whether one
drug works better than another. (It does not mean that we are certain or
even fairly certain that there is no difference between the drugs.)

d If the sample mean for Drug A was markedly larger than the Drug
B sample mean.

e If the sample mean for Drug B was markedly larger than the Drug
A sample mean.

12 a H0: μ = 3 hours; H1: μ ≠ 3 hours
b Finding a sample mean that was very similar to three hours.
c Finding a sample mean that was much less than three hours.
d Finding a sample mean that was much greater than three hours.

13 There is no relationship between a sample mean value and the standard
error. The standard error is influenced by the standard deviation of the
population of raw scores and by the sample size, σM = σ n.

14 Standard error formula is σM = σ n, so σM = 10 20 = 2 24.

15 Standard error formula is σM = σ n, so σM = 0 5 100 = 0 05.

16 Well, μ = μM, so μM = 20. The rest of the information is not necessary.

17 a A sample mean is an unbiased estimate of the population mean, so
M = 17 ≈ μ. A sample standard deviation is an unbiased estimate of a
population standard deviation, so s = 2 ≈ σ.

b Well, sM = s n= 2 20 = 0 45.

18 a The research hypothesis would be that squirrels that eat the genetically
modified nuts would grow to become larger squirrels.

b The null hypothesis would be that μmodified diet = μnormal diet =
17 ounces.

c The alternative hypothesis would be that μmodified diet ≠ μnormal diet =
17 ounces.

d Finding a sample mean that is significantly larger than 17 ounces.
e Finding a sample mean that is significantly smaller than 17 ounces.
f Finding a sample mean that is very close to 17 ounces.

19 Since there is no way to know which scores were randomly selected, there
is no way to give accurate sample means. However, for n’s of 5, 10, 15, and
20, the standard errors are 4.80, 3.40, 2.77, and 2.40, respectively. As the
sample size increases, the standard error decreases. Moreover, as the
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sample size increases, the degree of error between the sample means and
the population mean should decrease.

Chapter 8

1 Depending on the particular sample drawn, we might show a treatment
effect by chance – due to extreme scores being included in the sample
but not because of an experimental treatment. We cannot know for sure
that an effect was not due to chance since we are always dealing with prob-
abilities. However, we can control the level of certainty with which we can
claim to have an experimental effect by the level at which we set alpha.

2 No answer offered. The research hypothesis should be stated in terms of
concepts and relationships – without the use of numbers but with a clear
direction (more, less, stronger, weaker, etc.); the statistical hypotheses
should formulate the idea into a null and alternative hypothesis (including
both directions).

3 a H0: μ = 8; H1: μ ≠ 8
b H0: μ = 12; H1: μ ≠ 12
c H0: μ = 20; H1: μ ≠ 20

4 We should use the t distribution when the population standard deviation is
unknown.

5 The researcher should use the z test. The ability to determine the actual
standard error should always be preferred to estimating it by using a sam-
ple standard deviation.

6 The relative consequences of a Type I vs. a Type II error. If a Type I error is
not a particular concern, the researcher may move alpha to .10 (or 10%) to
help avoid making a Type II error. If a Type I error is a major concern, the
researcher may move alpha to .01 (or 1%) or even less.

7 Type I error

8 Type II error

9 Type II error

10 Type I error
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11 We can actually set the precise risk rate for Type I errors (usually .05); we
can merely increase or decrease the likelihood of making a Type II error.

12 Cohen’s d = mean difference/σ = 0.5.

13 Cohen’s d = mean difference/σ = 3/4 = 0.75.

14 Cohen’s d = mean difference/σ. So if 0.4 = 12/σ, then σ = 30.

15 Cohen’s d = mean difference/σ. So if 0.2 = mean difference/20, then the
mean difference must = 4. If the known population mean is 100, then
the publisher must be claiming that students who use the new textbook
will average 104.

16 a Use the z distribution since σ is known.
b H0: μ = 60; H1: μ ≠ 60
c zcrit = ±1.96

d zobt =
65−60

5 50
=

65−60

5 7 07
= 7 04

e Reject the null hypothesis.
f Type I
g Yes. Statistical evidence suggests that typing speed is enhanced when

using the newly designed keyboard.
h Effect size (Cohen’s d) = 5/5 = 1.

17 a Use the z distribution since σ is known.
b H0: μ = 100; H1: μ ≠ 100
c zcrit = ±1.96

d zobt =
110−100

15 100
= 6 67

e Reject the null hypothesis.
f Type I
g Yes. Statistical evidence suggests that children of parents with a college

education have IQ’s that are higher than the average IQ.
h Effect size (Cohen’s d) = 10/15 = 0.67

18 a Use the t distribution since σ is unknown.
b H0: μ = 90; H1: μ ≠ 90
c tcrit = ±2.021 (df = 40)

d tobt =
110−90

30 41
= 4 27
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e Reject the null hypothesis.
f Type I
g Statistical evidence suggests that the administration of this hormone

produces golden retrievers that are heavier than the average weight of
retrievers.

h Effect size (Cohen’s d) = 20/30 = 0.67

19 a The single-sample z test; we know sigma.
b H0: μ = 7.5; H1: μ ≠ 7.5
c Skewness does not concern us in this situation; the sample size is so
large that we are robust to the assumption of normality.

d Use the Internet to find tcrit = ±1.97 (sometimes large df ’s are hard to
find, even on the Internet; however, a close look at the table shows that
the difference between, say, 199 and 200 df is negligible.)

e tobt =
7 2−7 5

2 4 200
=
−0 3
0 17

= −1 76

f No, fail to reject.
g Type II
h There is no statistical evidence to suggest that students at this university

sleep different amounts than university students in general.
i Not applicable – the null was not rejected.

20 a The t distribution, because we do not know σ.
b H0: μ = 50; H1: μ ≠ 50
c ±2.093

d tobt =
M−μ

s n
=

63−50

17 20
=

13
3 80

= 3 42

e Yes
f Type I
g Statistical evidence suggests that people who work at home are more

satisfied with their job than workers in general.
h The estimate of the effect size (Cohen’s d) = mean difference/

s = 13/17 = 0.76.

21 The random selection of participants may result in sampling error. The
procedures of hypothesis testing help determine the likelihood that sam-
pling error accounts for the experimental results (i.e. the difference
between the sample mean and the null mean).

22 a Use the t distribution since σ is unknown.
b H0: μ = 72.40; H1: μ ≠ 72.40
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c tcrit = ±2.306 (df = 8)

d tobt =
77−72 4

3 1 9
= 4 47

e Reject the null hypothesis.
f Type I
g Statistical evidence suggests that biological males overestimate their life

expectancy.
h The estimate of the effect size (Cohen’s d) = mean difference/

s = 4.6/3.1 = 1.48.

23 a t(7) = 4.52, p < .05
b t(7) = 3.08, p < .05
c tcrit = ±2.365 (df = 7)
d Statistical evidence suggests that the mean height for physically stressed

biological males (M = 69.25) is greater than the average height for bio-
logical males, t(7) = 4.52, p < .05. Statistical evidence suggests that
biological females who have been physically stressed (M = 61.88) also
are taller than the average biological female, t(7) = 3.08, p < .05.

24 tobt =
20−16

2 8 8
= 4 04

tcrit = ±2.365 (df = 7)
Statistical evidence suggests that the mean number of publications

among the faculty members of this particular sociology department is
higher than the national average, t(7) = 4.04, p < .05.

25 LL= 24 50−1 31 = 23 19

UL= 24 50 + 1 31 = 25 81

26 LL= 4 3−0 52 = 3 68

UL= 4 2 + 0 52 = 4 72

27 LL= 56 000−1 087 49 = 54 912 51

UL= 56 000 + 1 087 49 = 57 087 49

28 Statistical evidence suggests that students who participated in the program
now smoke significantly fewer cigarettes (M = 10.34) than the average
number of cigarettes consumed by students who smoke, t(49) = – 4.17,
p < .05.
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29 There is no statistical evidence that the average number of days to process
a claim is different from 15, t(39) = −0.83, n.s.

30 If we can use 24.5 minutes as a population mean for lateness prior to the
addition of extra trains, statistical evidence suggests that the addition of
extra trains during rush hour reduced the amount of time the train is late,
t(29) = −5.18, p < .05.

Chapter 9

1 a

2 Sample; population

3 c

4 d

5 d

6 Sampling error

7 No. However, 1 and 2 are typically used, but researchers are free to use
other subscripts as well, for instance, μcontrol and μexp or μdrug and μplacebo
or even letters such as μA and μB.

8 b

9 Representativeness of the two populations would need to be achieved –
those drivers who do not have voice recognition on their cell phones as well
as those who do. Independent observations would probably not be a prob-
lem. The data gathered in terms of number of accidents, time to react to a
stimulus, or whatever was being measured would need to be on an interval
or ratio scale. Normality might be a concern unless the sample sizes were
quite large. An analysis on the sample variances might be done to make
sure they are somewhat similar.

10 A pooled standard deviation is simply the square root of the pooled
variance. (The pooled variance is the weighted average of the two sample
variances.) If the pooled standard deviation is needed, simply take the
square root of the pooled variance. If the pooled variance is needed, simply
square the pooled standard deviation.
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11
Critical values Decision

a. ±2.160 Fail to reject

b. ±2.663 (online table) Reject

c. ±1.746 Reject

d. ±2.064 Fail to reject

12 a H0: μ1 = μ2; H1: μ1 ≠ μ2
b The appropriate inferential test is the independent-samples t test.

No siblings Siblings

M1 = 7.33 M2 = 3.17

s1 = 2.16 s2 = 2.14

n1 = 6 n2 = 6

Using the computational formula,

tobt =
7 33−3 17

346− 44 2 6 + 83− 19 2 6 6 + 6−2 1 6 + 1 6

tobt = 3.33
c tcrit = ±2.228 (df = 10)
d Reject the null hypothesis.
e First, we need to find pooled standard deviation (square root of the pooled

variance). s2p =
2 162 5 + 2 142 5

6 + 6−2
=

23 22+ 22 9
10

= 4 61 = 2 15.

The estimate effect size (Cohen’s d) = estimated mean difference/
estimated s = 4.16/2.15 = 1.93.

f Type I
g Statistical evidence suggests that two-year-olds with siblings have less

fear than two-year-olds with no siblings, t(10) = 3.33, p < .05.

13 a H0: μ1 = μ2; H1: μ1 ≠ μ2
b The appropriate inferential test is the independent-samples t test.

tobt =
4 2−2 2

0 5 9 + 0 7 9 10 + 10−2 1 10 + 1 10

tobt = 5.71
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c tcrit = ±2.101 (df = 18)
d Reject the null hypothesis.
e First, we need to find pooled standard deviation (square root of

the pooled variance). s2p =
0 5 9 + 0 7 9
10 + 10−2

=
4 5+ 6 3

18
= 0 6 =

0 77. The estimate effect size (Cohen’s d) = estimated mean difference/
estimated s = 2/0.77 = 2.60.

f Type I
g Statistical evidence suggests that among biological males, a high level of

anxiety leads to greater attraction toward biological females than a low
level of anxiety, t(18) = 5.71, p < .05.

14
a tobt =

4 2−2 2

5 2 9 + 5 4 9 10+ 10−2 1 10 + 1 10
tobt = 1.94

b With tcrit = ±2.101, the tobt of 1.94 does not lead to rejection of the null
hypothesis.
Increasing the variability of scores has increased the size of the denom-

inator of the t ratio and reduced the size of tobt.

15
a tobt =

4 2−2 2

5 2 29 + 5 4 29 30 + 30−2 1 30 + 1 30
tobt = 3.51

b With tcrit = ±2.002 (use an online t table to find tcrit), the tobt of 3.51 leads
to a rejection of the null hypothesis.

c Increasing the sample size decreases tcrit and more importantly
increases tobt by shrinking the estimate of the standard error (the
denominator).

16 The standard deviation of the sampling distribution of differences between
the means is the standard error of the difference.

17 As the sample size increases, df increases, and tcrit decreases correspond-
ingly. As the sample size increases, the t distribution approaches the stand-
ard normal curve, which means the tails pull in toward zero. Consequently,
the values that mark the outermost 5% are closer to 0. This increases the
chance for a research situation in which a false null will produce a tobs that
will fall in the rejection region.

18 As question 4 shows, increasing the sample size will decrease the size of the
denominator of the t ratio by decreasing the estimate of the standard error
of the difference and result in a larger tobt. In other words, a difference of a
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given amount between means is made to look much more substantial if
the error term associated with the inferential test is small. Obviously,
large tobs values increase the chances of rejecting the null hypothesis.

19 a H0: μ1 = μ2; H1: μ1 ≠ μ2
b The appropriate inferential test is the independent-samples t test.

Males Females

M1 = 15.60 M2 = 9.0

s1 = 4.16 s2 = 3.61

n1 = 5 n2 = 5

Using the computational formula,

tobt =
15 6−9 0

1286−1216 8 + 457−405 5 + 5−2 1 5 + 1 5

tobt = 2.68
c tcrit = ±2.306 (with df = 8)
d Yes, reject the null.
e First, we need to find pooled standard deviation (square root of the pooled

variance). s2p =
4 162 4 +3 612 4

5 + 5−2
=

69 22+52 13
8

= 15 17 = 3 89.

The estimate effect size (Cohen’s d) = estimated mean difference/esti-
mated s = 6.6/3.89 = 1.70.

f Type I
g Statistical evidence suggests that biological male college students report

more anger reactions than biological female college students, t(8) = 2.68,
p < .05.

20 a H0: μ1 = μ2; H1: μ1 ≠ μ2
b The appropriate inferential test is the independent-samples t test.

Teachers Principals

M1 = 41.33 M2 = 32.50

s1 = 5.43 s2 = 6.19

n1 = 6 n2 = 6

Using the computational formula,

tobt =
41 33−32 50

10398−10250 67 + 6529−6337 50 6 + 6−2 1 6 + 1 6
tobt = 2.60
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c tcrit = ±2.228 (df = 10)
d Yes
e First, we need to find pooled standard deviation (square root of the

pooled variance). s2p =
5 432 5 + 6 192 5

6 + 6−2
=

147 42 + 191 58
10

=

33 9 = 5 82. The estimate effect size (Cohen’s d) = estimated mean
difference/estimated s = 8.83/5.82 = 1.52.

f Type I
g Statistical evidence suggests that teachers experience more burnout

than principals, t(10) = 2.60, p < .05.

21 a H0: μ1 = μ2; H1: μ1 ≠ μ2
b The appropriate inferential test is the independent-samples t test.

Lonely Not Lonely

M1 = 5.00 M2 = 7.40

s1 = 1.58 s2 = 1.52

n1 = 5 n2 = 5

Using the computational formula,

tobt =
5−7 4

135−125 + 283−273 8 5 + 5−2 1 5 + 1 5
tobt = –2.45

c tcrit = 2.306 (with df = 8)
d Reject the null hypothesis.
e First, we need to find pooled standard deviation (square root

of the pooled variance). s2p =
1 582 4 + 1 522 4

5 + 5−2
=

9 99 + 9 24
8

=

2 4 = 1 55. The estimate effect size (Cohen’s d) = estimated mean
difference/estimated s = −2.4/1.55 = −1.54 or just 1.54 (recall that neg-
ative effect sizes do not need to be reported as negatives).

f Type I
g Statistical evidence suggests that lonely biological males are rated as

less attractive than biological males who are not lonely, t(8) = −2.45,
p < .05.

22 a H0: μ1 = μ2; H1: μ1 ≠ μ2
b The appropriate inferential test is the independent-samples t test.
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Buffalo Creek Kopperston

M1 = 43.83 M2 = 37.50

s1 = 4.67 s2 = 1.87

n1 = 6 n2 = 6

Using the computational formula,

tobt =
43 83−37 50

11637−11528 17 + 8455−8437 50 6 + 6−2 1 6 + 1 6

tobt = 3.06
c tcrit = ±2.228 (df = 8)
d Reject the null hypothesis.
e First, we need to find pooled standard deviation (square root of the

pooled variance). s2p =
4 672 5 + 1 872 5

6 + 6−2
=

109 04 + 17 48
10

=

12 65 = 3 56. The estimate effect size (Cohen’s d) = estimated mean
difference/estimated s = 6.33/3.56 = −1.78.

f Type I
g Statistical evidence suggests that residents of Buffalo Creek experience

higher trait anxiety than residents of Kopperston, t(10) = 3.06, p < .05.
h Recall that one of the assumptions of the t test is that the population

variances are equal. In this case, s21 = 21.81 and s22 = 3.50.Wemight won-
der if perhaps the assumption of homogeneity of variances is violated
here. Methods for testing whether two variances are significantly differ-
ent and are discussed in more advanced statistics books.

23 a Males:

tobt =
23−16

61 47 9 + 41 34 14 10 + 15−2 1 10 + 1 15

tobt = 2.42
tcrit = ±2.069 (with df = 23)
Statistical evidence suggests that first-born biological males are more
narcissistic than later-born biological males, t(23) = 2.42, p < .05.

b Females:

tobt =
17−12

42 51 18 + 43 16 27 19 + 28−2 1 19 + 1 28

tobt = 2.55
tcrit = ±2.01 (used Internet source to find complete t table)
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Statistical evidence suggests that first-born biological females are more
narcissistic than later-born biological females, t(45) = 2.55, p < .05.

24 Here is the data according to Formula 9.8:
For biological males:

LL= 23−16 −2 069 2 89 = 7−5 98 = 1 02

UL= 23−16 + 2 069 2 89 = 7 + 5 98 = 12 98

For biological females:

LL= 17−12 −2 021 1 96 = 5−3 96 = 1 04

UL= 17−12 + 2 021 1 96 = 5 + 3 96 = 8 96

25 a H0: μ1 = μ2; H1: μ1 ≠ μ2
b The appropriate inferential test is the independent-samples t test:

tobt =
41−47 2

42 15−1 + 52 14−1
15 + 14−2

1
15

+
1
14

=
−6 2

224 + 325
27

0 14

=
−6 2

20 33 0 14

t =
−6 2
1 69

tobt = −3 68

c tcrit = ±2.052 (with df = 27)
d Reject the null hypothesis.
e First, we need to find pooled standard deviation (square root of the pooled

variance). s2p =
42 14 + 52 13

15 + 14−2
=

224+ 325
27

= 20 33 = 4 51. The

estimate effect size (Cohen’s d) = estimated mean difference/estimated
s = −6.2/4.51 = −1.37 or just 1.37 (recall that negative effect sizes do
not need to be reported as negatives).

f Type I
g Statistical evidence suggests that people with 5 or more negative life

experiences in the last five years have higher measures of subjective
well-being than participants with 2 or fewer negative experiences,
t(27) = −3.68, p < .05.
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26 Here is the data according to Formula 9.8:

LL= 41−47 2 −2 052 1 69 = −9 67

UL= 41−47 2 + 2 052 1 69 = −2 73

The negative values mean an increase from the mean for the “2 or less
group” to the mean for the “5 or more group.” (If the order of the means
had been switched – subtracting “2 or less” from “5 or more” – the mean
difference would be positive.) So, dropping the negative values, it looks as if
the subjective well-being score increases somewhere between 2.73 units
and 9.67 units for those who have had 5 or more negative life experiences
in the past five years (compared with those who have had 2 or less).

27 a H0: μ1 = μ2; H1: μ1 ≠ μ2

b tobt =
17 0−13 5

2
= 1 75

c tcrit = ±2.002 (used online table)
d No, fail to reject the null.
e There is no statistical evidence suggesting that children who receive

training in starting conversations spend a different amount of time
interacting with peers than those who do not, t(58) = 1.75, n.s.

28 a H0: μ1 > μ2; H1: μ1 ≤ μ2 (where 1 is the experimental group and 2 is the
control group).

b (Same as Problem 14b) tobt = 1.75
c tcrit = 1.672 (used online table). Now, using a one-tailed test, the null
hypothesis would be rejected. Conclusion: Statistical evidence suggests
that children who receive training in starting conversations spend more
time interacting with peers than children who do not, t(58) = 1.75,
p < .05.

d No. There is no compelling reason for using a one-tailed test. Indeed, a
finding in the opposite direction (that children who receive training
engage in less peer interaction) would certainly be theoretically, if not
practically, important to know.

29 No answer is provided here; however, it would have to be based on prac-
tical as opposed to theoretical grounds.

30 a H0: μ1 = μ2; H1: μ1 ≠ μ2
b The appropriate inferential test is the independent-samples t test:

tobt =
80−69

106 09 15−1 + 156 25 15−1
15 + 15−2

1
15

+
1
15
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=
11

1485 26 + 2187 5
28

0 13

=
11

131 17 0 13

=
11

17 49

tobt = 2 63

c tcrit = ±2.048 (with df = 28)
d Reject the null hypothesis.
e First, we need to find pooled standard deviation (square root of the pooled

variance). s2p =
106 09 14 + 156 25 14

15 + 15−2
=

1485 26+ 2187 5
28

=

131 171 45. The estimate effect size (Cohen’s d) = estimated mean
difference/estimated s = 11/11.45 = 0.96.

f Type I
g Statistical evidence suggests that students who study in one place per-

form better than students who rotate their study location, t(28) = 2.63,
p < .05.

h A potential confound might be that not only was the variable of single
vs. various locations manipulated but also the variable of quiet vs. noisy.
The degree of ambient noise present when studyingmight compete with
the number of locations as an explanation for the statistical difference.

31 Representativeness.

32 Homogeneity of variance.

33 tobt = 2.06, tcrit for 22 degrees of freedom = ±2.07 for a two-tailed test.
There is no evidence to suggest that a new t-shirt generates more happi-
ness (subjective well-being) in students, t(22) = 2.06, n.s. The assumption
of interval or ratio data may have been violated. Many researchers feel that
Likert scale data is ordinal. Perhaps another way of measuring subjective
well-being should be considered – or a different inferential test should be
run (see Chapter 18).

34 t(48) = 1.85, n.s.; tcrit = 2.011 (used online table) for a two-tailed test. For a
one-tailed test, tcrit = 1.677. Therefore, the null hypothesis would be
rejected.
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35 Statistical evidence suggests that participants in the low-arousal condition
show greater approach behavior than participants in the high-arousal
condition, t(58) = 2.77, p < .05.

36 tobt = 2.01, tcrit for 58 degrees of freedom = ±2.01. Reject the null hypothesis
of no difference. Statistical evidence suggests that highly creative people
are more likely to be dishonest on this reporting task than low creative
people, t(58) = 2.01, p < .05.

Chapter 10

1 b

2 a

3 Because the dependent-samples t test uses the difference score between a
participant’s two responses.

4 Responses will vary. The critical issue is that the conditions and/or materials
used are split such that half of the participants experience one first and then
the other, while the other half experience them in the opposite order.

5 Responses will vary. The critical issue is that a variable not measured in the
actual study needs to be controlled by premeasurement and then matching.

6 b

7 sD is the symbol for the standard deviation of the difference scores; sD is
the symbol for the estimate of the standard error of the differences
between means. The first is a measure of dispersion for the sample of dif-
ference scores found from the actual data gathered; the second is an esti-
mate of dispersion for the theoretical sampling distribution used by the
dependent-samples t test. They are not the same, although sD is used to cal-
culate sD.

8 Almost all null hypotheses specify no difference between the two conditions;
therefore, μx − μy equals 0 and can be dropped in the numerator of Formula
10.3. If the null is configured to result in a difference between μx and μy, then
Formula 10.3 must be used.

9 a
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10 d

11 a

12 b

13 a H0: μbearded = μnon-bearded; H1: μbearded ≠ μnon-bearded
b Mx = 7.63; My = 5.63; ΣD = 16; ΣD2 = 62

tobt =
7 63−5 63

0 73
=

2 0
0 73

= 2 74

c df = np − 1 = 7; tcrit = ±2.365
d Yes, reject.
e Mean difference = 2.0; standard deviation of the difference scores = 2.07.

The estimate effect size (Cohen’s d) = estimated mean difference/
estimated s = 2/2.07 = 0.97.

f Type I
g Statistical evidence suggests that bearded men are perceived to be more

masculine than nonbearded men, t(7) = 2.74, p < .05.
h The assumption of interval or ratio data may have been violated. Many

researchers feel that Likert scale data is ordinal. Perhaps another way of
measuring masculinity should be considered – or a different inferential
test should be run (see Chapter 18).

14 Here is the data according to Formula 10.6:

LL= 7 62−5 62 −2 365 2 07 8 = 2−1 73 = 0 27

UL= 7 62−5 62 + 2 365 2 07 8 = 2+ 1 73 = 3 73

15 a H0: μsex = μno sex; H1: μsex ≠ μno sex

b Mx = 5.0; My = 2.83; ΣD = 13; ΣD2 = 35

tobt =
5 0−2 83

0 48
=
2 17
0 48

= 4 52

c df = np − 1 = 5; tcrit = ±2.571
d Yes, reject.
e Mean difference = 2.17; standard deviation of the difference

scores = 1.17. The estimate effect size (Cohen’s d) = estimated mean
difference/estimated s = 2.17/1.17 = 1.85.

f Type I
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g Statistical evidence suggests that people are more likely to purchase
liquor products that use sexual symbolism in their advertising than
those not using sexual symbolism, t(5) = 4.52, p < .05.

16 a H0: μGouda = μSwiss; H1: μGouda ≠ μSwiss
b Mx = 7.0; My = 5.60; ΣD = 7; ΣD2 = 35

tobt =
7 0−5 60

1 12
=
1 40
1 12

= 1 25

c df = np − 1 = 4; tcrit = ±2.776
d No, fail to reject.
e No need for an effect size analysis – the null was not rejected.
f Type II
g There is no statistical evidence that college students have a preference

between Gouda and Swiss cheese, t(4) = 1.25, n.s.
h The assumption of interval or ratio data may have been violated. Many

researchers feel that Likert scale data is ordinal. Perhaps another way of
measuring cheese preference should be considered – or a different
inferential test should be run (see Chapter 18).

i The researcher should counterbalance exposure to the cheeses.

17 Here is the data according to Formula 10.6:

LL= 7 0−5 60 −2 776
2 51

5
= 1 4−3 11 = −1 71

UL= 7 0−5 60 + 2 776
2 51

5
= 1 4 + 3 11 = 4 51

18 The dependent-samples t test increases the power of an experiment. That
is, the probability of correctly rejecting a false null hypothesis is increased
as a result of reducing the variability due to individual differences. This
makes the t test denominator smaller, thereby making the resulting tobt lar-
ger and more likely to fall into a rejection region.

19 a H0: μx = μy; H1: μx ≠ μy (X = Pre; Y = Post)
b Mx = 92.50; My = 45.0; ΣD = 190; ΣD2 = 12 500

tobt =
92 50−45 0

17 015
= 2 79

c df = np − 1 = 3; tcrit = ±3.182
d No, fail to reject.
e No need for an effect size analysis – the null was not rejected.
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f Type II
g There is no statistical evidence that the new drug for insomnia decreases

the amount of time needed to fall asleep, t(3) = 2.79, n.s.

20 a H0: μstory = μmusic; H1: μstory ≠ μmusic

b Mstory = 8.43; Mmusic = 6.57; ΣD = 13; ΣD2 = 85

tobt =
8 43−6 57

1 204
= 1 54

c df = np − 1 = 6; tcrit = ±2.447
d No, fail to reject.
e No need for an effect size analysis – the null was not rejected.
f Type II
g No statistical evidence was found to suggest that a difference exists

between being read a story and listening to music as sleep inducers
for preschoolers, t(6) = 1.54, n.s.

21 There are two. The most obvious difference is the assumption regarding
independent observations. In repeated-measures designs, obviously not
ALL observations are independent of each other – each person is contri-
buting multiple scores. However, it is important that scores WITHIN a
given condition are all independent of each other. Secondly, the assump-
tion of normality is slightly different. Instead of saying that both popula-
tions of raw scores are normally distributed, in a dependent-samples t
test situation, the assumption of normality refers to the distribution of dif-
ference scores.

22 Statistical evidence suggests that students write papers of higher quality
when using the PC computer instead of the Mac, t(19) = 3.05, p < .05.

23 There is no statistical evidence to suggest that vision is differentially
affected by lens color, t(15) = 0.17, n.s.

24 Statistical evidence suggests that participants experience more back
pain when sleeping on a soft mattress compared with a firm mattress,
t(11) = −5.52, p < 0.01.

25 There is statistical evidence to suggest that customers prefer the free music
streaming feature more than the free basic TV feature, t(14) = 2.29, p < .05.
There may be a problem with the assumption of interval and/or ratio scal-
ing. Many researchers feel Likert scale data should be best understood as
ordinal.
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26 There was no statistical evidence found to suggest that seating behavior
(same seat vs. switching seats) influences student performance on psychol-
ogy quizzes, t(18) = 1.95, n.s.

Chapter 11

1 d

2 The lenses of a microscope are also described to vary due to power. Just as
low-powered lenses may not see small objects (germs) that high-powered
lenses can see, so studies with low power may not be able to detect small
treatment effect sizes as well as those studies with high power.

3 b

4 Nothing. The Type I error rate is determined by the selected alpha value.
Power considerations do not influence the Type I error rate.

5 Power is inversely related to the Type II error rate. As power increases, the
Type II error rate decreases.

6 The hypothesized treatment effect size is determined by dividing the differ-
ence between the null mean and the hypothesized mean by the standard

error. It can be represented mathematically as follows: γ =
μalt −μ0

σ
.

7 The size of the treatment effect influences power directly. As it increases, so
does power.

8
a γ =

345−300
70

= 0 64

b γ =
345−300

20
= 2 25

c γ =
310−300

20
= 0 50

d γ =
310−300

50
= 0 20

9 The researcher may attempt to increase the size of the treatment effect by
extending the length of sleep deprivation from three hours to something
more than three hours. Theoretically, it would be presumed that the rela-
tionship between sleep deprivation and cognitive functioning is such that
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increased sleep deprivation decreases cognitive functionality. The only
other option would be to try to decrease the standard deviation. It is
not clear how a researcher could do that.

10 The sample size influences power directly. As it increases, so does power.

11
a n=

2 8
0 64

2

= 19

b n=
2 8
2 25

2

= 2

c n=
2 8
0 5

2

= 31

d n=
2 8
0 2

2

= 196

12
a γ =

120−130
15

= −0 67 δ = −0.67 10 = −2.12 Power = 0.56

b γ = − 0.67 δ= −0 67 40 = −4 24 Power = 0.99

c γ =
52−50
10

= 0 20 δ= 0 20 15 = 0 77 Power = 0.13

d γ = 0.20 δ= 0 20 100 = 2 00 Power = 0.52

e γ =
30−25

7
= 0 71 δ= 0 71 30 = 3 89 Power = 0.97

13 The value of δ, for a desired power of 0.80 with α = 0.05 and two-tailed
test, = 2.8

a n=
2 8
0 67

2

= 17 47, about 17 participants.

c n=
2 8
0 2

2

= 196, 196 participants.

e n=
2 8
0 71

2

= 15 55, about 16 participants.

14 b Sampling error. The variability of raw scores for any measure cannot
usually be influenced without altering the sampling method (e.g. only
accepting participants into the study whose score falls into a prescribed
range based on a premeasure).

15 Increasing alpha increases power by increasing the rejection region of the
hypothesis test. Decreasing alpha correspondingly decreases power by
decreasing the rejection region.
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16 Compared with a two-tailed test, a one-tailed test increases alpha for pre-
dicted end of the sampling distribution. This, in effect, is like increas-
ing alpha.

17 It could be hypothesized that smokers experience more stress than non-
smokers. Assume that we ran an experiment using 150 participants,
one-tailed test, α = 0.05, searched for amedium effect size (0.25), and found
no significant difference between groups.We could argue that the power of
our test was 0.91, a 91% chance of correctly rejecting H0 if it were false
(given the stated effect size). We could further argue that although there
might be a small difference between smokers’ and nonsmokers’ stress,
the effect is trivial and not worth instituting a stress-reduction treatment
program.

Part 4. Review of z Tests, t Tests, and Power Analyses

1 A power analysis. Although power analyses can be run after data has been
gathered or after a pilot study has been run, it can also be performed before
any data has been gathered.

2 a tcrit = ±2.093
b tcrit = ±1.746
c zcrit = ±2.33
d tcrit = ±1.895
e tcrit = ±2.626
f tcrit = ±3.335
g tcrit = ±2.776
h tcrit = either 1.86 or −1.86, depending on the predicted direction.
i zcrit = ±1.96
j tcrit = ±1.699
k tcrit = ±2.771
l tcrit = ±9.925

3 a H0: μ = 2.6; H1: μ ≠ 2.6
b The single-sample t test. There is one sample being compared with a

given population mean and σ is not given.
c tobt = −6.36
d df = 17, so tcrit = ±2.11
e Yes
f The estimate of the effect size (Cohen’s d) = mean difference/
s = 1.08/0.72 = 1.5.

g Not applicable – null was rejected.
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h Type I
i There is statistical evidence to suggest that children in this rural area do
not play with friends as much as children in general, t(17) = −6.36, p < .05.

4 a H0: μ85 = μ65 ; H1: μ85 ≠ μ65
b The dependent-samples t test. There are two measures from one sample

– it is a repeated-measures design.
c tobt = −2.75
d df = 4, so tcrit = ±2.78
e No
f Not applicable – failing to reject the null.
g δ = 1; Table A.3 says the power is 0.17 or 17%.
h Type II
i There is no statistical evidence to suggest that people experience a differ-
ent number of dreams depending upon the temperature of the room in
which they are sleeping, t(4) = 2.75, n.s.

5 a H0: μ = 110; H1: μ ≠ 110
b The single-sample z test. There is one sample being compared with a

given population mean and σ is given (15).
c zobt = 5/4.33 = 1.15
d zcrit = ±1.96
e No
f Not applicable – failing to reject the null.
g δ = 1.7; Table A.3 says the power is 0.40 or 40%.
h Type II
i [Writing up a z test finding is not presented in the textbook, primarily
because z tests are rarely found in the scientific literature. However,
the following is an appropriate sentence.] There is no statistical evidence
to suggest that this class of statistics students is more intelligent than
most of the psychologist’s previous classes, z = 1.15, n.s.

6 a H0: μ = 50; H1: μ ≠ 50
b The single-sample t test. There is one sample being compared with a

given population mean and σ is not given.
c tobt = −3.61
d df = 14, so tcrit = ±2.15
e Yes
f The estimate of the effect size (Cohen’s d) = mean difference/s = 4/
4.29 = 0.93.

g Not applicable – null was rejected.
h Type I
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i There is statistical evidence to suggest that people who experienced 4 or
more moves prior to the age of 12 have lower subjective well-being scores
than others, t(14) = −3.61, p < .05.

7 a H0: μSteroid = μG.S.; H1: μSteroid ≠ μG.S.
b The independent-samples t test. There are two measures from two

different and independent samples.
c tobt = 2.30
d df = 14; tcrit = ±2.15
e Yes
f First, we need to find pooled standard deviation (square root of the

pooled variance). s2p =
1 852 7 + 2 272 7

8 + 8−2
=

23 95 + 36 07
14

=

4 28= 2 07. The estimate effect size (Cohen’s d) = estimated mean dif-
ference/estimated s = 2.38/2.07 = 1.14.

g Not applicable – null was rejected.
h Type I
i There is statistical evidence to suggest that the use of this synthetic
anabolic steroid leads to greater weight gain than the growth stimulant,
t(14) = 2.30, p < .05.

8 a H0: μSteroid = μG.S.; H1: μSteroid ≠ μG.S.
b The dependent-samples t test. There are twomeasures fromone sample–

it is a repeated-measures design.
c tobt = 2.73
d df = 7; tcrit = 2.365
e Yes
f The estimate effect size (Cohen’s d) = estimated mean difference/esti-
mated s = 2.38/2.45 = 0.97.

g Not applicable – null was rejected.
h Type I
i There is statistical evidence suggesting that the anabolic steroid leads to
more weight gain than the growth stimulant, t(7) = 2.73, p < .05.

9 a H0: μ = 5; H1: μ ≠ 5
b The single-sample z test. There is one sample being compared with a

given population mean and σ is given (30 seconds or 0.5 minutes).
c z = 0.2/0.18 = 1.11
d zcrit = ±1.96
e No
f Not applicable – failing to reject the null.
g δ = 1.4; Table A.3 says the power is 0.29 or 29%.
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h Type II
i [Writing up a z test finding is not presented in the textbook, primarily
because z tests are rarely found in the scientific literature. However, the
following is an appropriate sentence.] There is no statistical evidence
to suggest that this coach’s soccer team is more fit than biological
male collegiate student/athletes in general, z = 1.11, n.s.

10 a H0: μangry = μcontrol.; H1: μangry ≠ μcontrol
b The independent-samples t test. There are two measures from two dif-

ferent and independent samples.
c tobt = 1.57
d df = 10; tcrit = ±2.23
e No
f Not applicable – failing to reject the null.
g δ = 1.6; Table A.3 says the power is 0.36 or 36%.
h Type II
i There is no statistical evidence to suggest that people who are angry
make more mistakes while operating a video game car than those
who are not angry, t(10) = 1.57, n.s.

11 This question involves data from three conditions – we have not yet
learned what statistical tools can be used to analyze data in this type of
research design. See Chapter 12, question 1, in the next part of the text
for the answers.

Chapter 12

1 ANOVA

2 Two; independent of

3 An ANOVA avoids the inflated alpha problem that comes with multiple
t tests.

4 Treatment variance, if the situation is experimental; primary variance more
generally.

5 Error variance or secondary variance

6 MSBG

7 MSW
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8 k

9 One measurement of variance, MSBG, incorporates primary variance as
well as error variance. The other measurement of variance, MSW, only
incorporates error variance. By comparing them in ratio form (MSBG over
MSW), primary variance can be evidenced by a larger than 1 result.

10 It is a family of positively skewed distributions that crest at the value of 1.
We might even say it has a mode of 1.

11 Independent-samples t test.

12 Normality; homogeneity of variance.

13 ANOVA summary table

14
Source SS df MS F p

Between groups 280.3 3 94.43 12.83 < .05

Within groups 247.68 34 7.28

Total 527.98 37

Reject the null: Fobs of 12.83 exceeds Fcrit of 2.88.

15
Source SS df MS F p

Between groups 5.88 4 1.47 2.59 n.s.

Within groups 6.30 11 0.57

Total 12.18 15

Fail to reject the null: Fobs of 2.59 does not equal or exceed Fcrit of 3.66.

16 a H0: μ1 = μ2 = μ3; H1: at least two of the means are different.

Aerobics Circuit Control Summary values

ΣX1 = 243 ΣX2 = 273 ΣX3 = 313 ΣX = 829

n1 = 4 n2 = 4 n3 = 4 ΣX2 = 58 115

M = 60.75 M = 68.25 M = 78.25 (ΣX)2 = 687 241

N = 12, k = 3

812 Appendix B Answers to Questions and Exercises



b SSBG =
2432

4
+
2732

4
+
3132

4
−
8292

12
= 57 886.75 − 57 270.08 = 616.67

c SSW = 58 115−
2432

4
+
2732

4
+
3132

4
= 228.25

d dfBG = k − 1 = 3 − 1 = 2
e dfW = N − k = 12 − 3 = 9

f MSBG =
616 67

2
= 308.34

g MSW =
228 25

9
= 25.36

h SST = 58115−
8292

12
= 844.92

i dfT = N − 1 = dfBG + dfW = 11

j F =
308 34
25 36

= 12.16

k Fcrit (2,9) = 4.26 (for α = 0.05)
l Reject H0.

m
Source of variation SS df MS F p

Between groups 616.17 2 308.34 12.16 < .05

Within groups (error) 228.25 9 25.36

Total 844.92 11

n ϖ2 =
616 67−2 25 36
844 92 + 25 36

= 0 65

65% of the variance in heart rate is accounted for by the levels of the
independent variable.

o (tcrit for all t’s = 2.201, df = 11, = .05)
Aerobics vs. circuit:

t =
68 25−60 75

25 36
1
4
+
1
4

= 2 11 n s

Aerobics vs. control:

t =
78 25−60 75

3 56
= 4 92 p < 0 05

Circuit vs. control:

t =
78 25−68 25

3 56
= 2 81 p < 0 05

There is statistical evidence that both the aerobic and circuit training
conditions are superior to the control condition, t(11) = 4.92, p < .05 and

Appendix B Answers to Questions and Exercises 813



t(11) = 2.81, p < .05, respectively. There is no statistical evidence of
significant difference between aerobic and circuit training, t(11) −
2.11, n.s.

p Yes. The participants were randomly assigned, and their experience was
directed by the researcher. This is an experiment. It is likely that aerobic
and circuit methods of training significantly reduce resting heart rate.

17 a H0:μ1 = μ2 = μ3; H1: at least two of the means are different.

West Midwest East Summary values

ΣX1 = 18 ΣX2 = 43 ΣX3 = 19 ΣX = 80

n1 = 5 n2 = 5 n3 = 5 ΣX2 = 624

M1 = 3.60 M2 = 8.60 M3 = 3.80 (ΣX)2 = 6400

N = 15, k = 3

b SSBG = 506.80 − 426.67 = 80.13
c SSW = 624 − 506.80 = 117.20
d dfBG = 3 − 1 = 2
e dfW = 15 − 3 = 12

f MSBG =
80 13
2

= 40.07

g MSW =
117 20
12

= 9.77

h SST = 624 − 426.67 = 197.33
i dfT = 15 − 1 = 2 + 12 = 14

j F =
40 07
9 77

= 4.10

k Fcrit(2,12) = 3.88 (for α = 0.05)
l Reject H0.

m
Source of variation SS df MS F p

Between groups 80.13 2 40.07 4.10 <.05

Within groups(error) 117.20 12 9.77

Total 197.33 14

n η2 =
80 13
197 33

= 0 4061 or 40 61%

o Tukey’s HSD for all comparisons equals

HSD= q
MSW
n

= 3 77
9 77
5

= 3 77 1 40 = 5 27
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West vs. Midwest: 8.60 − 3.60 = 5 (n.s.)
East vs. Midwest: 8.60 − 3.80 = 4.8 (n.s.)
West vs. East: 3.60 − 3.80 = −0.2 (n.s.)
This is an unusual case where the one-way ANOVA registers signif-

icance, but the follow-up test does not find a difference between any pair
of groups. Tukey’s test is rather conservative.
If Fisher’s LSD had run, we would have found evidence of two

differences:
(tcrit for all t’s = 2.145 with df = 14, α = 0.05)

t =
8 60−3 60

9 77
1
5
=
1
5

= 2 53 p < 0 05

East vs. Midwest:

t =
8 60−3 80

1 98
= 2 42 p < 0 05

West vs. East:

t =
3 60−3 80

1 98
= −0 10 n s

p No. This is a correlational design. The independent variable (geograph-
ical region) is not manipulated. Although participants are randomly
selected from each region, participants are not randomly assigned to
regions to determine the causal effect of regional residence. Therefore,
the correct interpretation of these data is that there is an association
between geographical residence and conservatism, not that one is caus-
ing the other.

18 a H0: μ1 = μ2 = μ3; H1: at least two of the means are different.

Breathing Medication Control Summary values

ΣX1 = 75 ΣX2 = 70 ΣX3 = 65 ΣX = 210

n1 = 5 n2 = 5 n3 = 5 ΣX2 = 3126

M1 = 15 M2 = 14 M3 = 13 (ΣX)2 = 44 100

N = 15, k = 3

b SSBG = 2950 − 2940 = 10
c SSW = 3126 − 2950 = 176
d dfBG = 3 − 1 = 2
e dfW = 15 − 3 = 12

Appendix B Answers to Questions and Exercises 815



f MSBG =
10
2

= 5

g MSW =
176
12

= 14.67

h SST = 3126 − 2940 = 186
i dfT = 15 − 1 = 2 + 12 = 14

j F =
5

14 67
= 0 34

k Fcrit(2,12) = 3.88 (for α = 0.05)
l Fail to reject the H0.
m

Source of variation SS df MS F p

Between groups 10 2 5 0.34 n.s.

Within groups (error) 176 12 14.67

Total 186 14

n There is no statistical evidence of a difference among treatment condi-
tions in the alleviation of panic attacks, F(2,12) = 0.34, n.s.

o Since the F ratio is nonsignificant, ω2 is superfluous.
p Conducting post hoc comparisons is unwarranted since the F ratio is

nonsignificant.
q It would have, if evidence of a difference had been found. The method-

ology is experimental. However, since no evidence of a difference was
found, no causal claims can be made.

19 a H0: μ1 = μ2; H1: μ1 ≠ μ2

Angry Control Summary values

ΣX1 = 54 ΣX2 = 41 ΣX = 95

n1 = 6 n2 = 6 ΣX2 = 823

M1 = 9 M2 = 6.83 (ΣX)2 = 9025

N = 12, k = 2

b SSBG = 766.17 − 752.08 = 14.09
c SSW = 823 − 766.17 = 56.83
d dfBG = 2 − 1 = 1
e dfW = 12 − 2 = 10

f MSBG =
14 09
1

= 14 09

g MSW =
56 83
10

= 5 68
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h SST = 14.09 + 56.83 = 70.92
i dfT = 12 − 1 = 10 + 1 = 11

j F =
14 09
5 68

= 2 48

k Fcrit(1,10) = 4.90 (for α = 0.05)
l Fail to reject the H0. (In comparison with Part 4, Problem 10, the con-
clusion is the same, fail to reject the H0.)

m
Source of variation SS df MS F p

Between groups 14.09 1 14.09 2.48 n.s.

Within groups (error) 56.83 10 5.68

Total 70.92 11

n There is no statistical evidence of a difference between conditions in the
ability to control the car, F(1,10) = 2.48, n.s.

o Since the F ratio is nonsignificant, ω2 is superfluous.
p It would have, if evidence of a difference had been found. The method-

ology is experimental. However, since no evidence of a difference was
found, no causal claims can be made.

20 a H0:μ1 = μ2 = μ3; H1: at least two of the means are different.

New T-shirt New Shoes Control Summary values

ΣX1 = 32 ΣX2 = 41 ΣX3 = 23 ΣX = 96

n1 = 5 n2 = 5 n3 = 5 ΣX2 = 664

M1 = 6.4 M2 = 8.2 M3 = 4.6 (ΣX)2 = 9216

N = 15, k = 3

b SSBG = 646.8 − 614.4 = 32.4
c SSW = 664 − 646.8 = 17.2
d dfBG = 3 − 1 = 2
e dfW = 15 − 3 = 12

f MSBG =
32 4
2

= 16 2

g MSW =
17 2
12

= 1 43

h SST = 32.4 + 17.2 = 664 − 614.4 = 49.6
i dfT = 15 − 1 = 2 + 12 = 14

j F =
16 2
1 43

= 11 33

k Fcrit(2,12) = 3.88 (for α = 0.05)
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l Reject H0.

m
Source of variation SS df MS F p

Between groups 32.4 2 16.2 11.33 <.05

Within groups(error) 17.2 12 1.43

Total 49.6 14

n η2 =
32 4
49 6

= 0 6532 or 65 32%

o Tukey’s HSD for all comparisons equals

HSD= q
MSW
n

= 3 77
1 43
5

= 3 77 0 53 = 2 02

Shirt vs. Shoes: 6.4 − 8.20 = −1.8 (n.s.)
Shirt vs. Control: 6.40 − 4.60 = 1.8 (n.s.)
Shoes vs. Control: 8.2 − 4.60 = 3.6 (p < .05)

p Statistical evidence suggests that type of clothing worn influences per-
ceptions of happiness, F(2,12) = 11.33, p <.05. A post hoc Tukey test
found statistical evidence suggesting that those wearing new shoes felt
happier than those who were not wearing a new article of clothing at
p < .05.

q Yes. This is an experimental design.

21 When H0 is correct, the numerator of the F ratio is the result of only error
variance (random factors). When H0 is incorrect, the numerator includes
error variance plus the effect due to treatment.

22 Since the F distribution is established with the assumption that H0 is true,
most F ratios cluster around 1, with the minimum value being 0, and all F
values positive. Even with H0 being true, sampling error may sometimes
lead to large F values, resulting in the distribution being positively skewed.

23 False. Both will lead to the same conclusion about the null hypothesis;
power is determined by other factors.

24 Between-group variation can be the result of treatment effect (primary var-
iance), individual differences, and experimental error.

25 Individual differences and experimental error (combined they can be
referred to as “secondary variance”).
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26 Only after the observed F directs the researcher to reject the null
hypothesis and when there is an interest in making certain group
comparisons.

27 Least significant difference.

28 Honestly significant difference.

29 Is

30
Source SS df MS F p

Between groups 58.5 2 29.25 1.30 n.s.

Within groups 740.5 33 22.44

Total 799.0 35

There is no statistical evidence a difference between groups in systolic
blood pressure, F(2,33) = 1.30, n.s.

31
Source SS df MS F p

Between groups 51.91 2 25.96 3.94 < .05

Within groups 276.53 42 6.58

Total 328.44 44

There is statistical evidence of a reduction in the number of weekly
headaches as a result of treatment, F(2,42) 3.94, p < .05. (Our post hoc ana-
lyses will probably show the following results.) Both medication and bio-
feedback significantly reduce headaches in comparison with the control
condition. There is no significant difference between the two forms of
therapy, however.

32
Source SS df MS F p

Between groups 143.22 3 47.74 11.19 < .05

Within groups 273.06 64 4.27

Total 416.28 67
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There is statistical evidence suggesting that there is at least one dif-
ference between majors in terms of the number of shoes brought to uni-
versity, F(3,64) = 11.19, p < .05. Tukey’s HSD found evidence with
p < .05 that science majors bring fewer shoes than history majors as
well as theater majors and psychology majors bring fewer shoes than
theater majors. If we chose a more permissive post hoc test, we may
have found evidence that psychology majors bring fewer shoes than
history majors.

Chapter 13

1 There must be two factors (or independent variables), each factor must have
at least two conditions, participants must be only assigned to one combina-
tion of levels of the two factors (in other words, not repeatedly measured),
and each of the possible combinations of conditions between the factors
must have participants (no empty cells).

2 In the first stage of a two-way ANOVA, the total variance is partitioned into
between-group and within-group variance. In the second stage, the
between-group variance is partitioned into variance due to Factor A, vari-
ance due to Factor B, and variance due to the interaction.

3 A main effect occurs when there is an effect found among the conditions of
one factor, independent of the influence of another factor. An interaction
occurs when the effect of one factor is altered depending on the value of
a second factor – this is new and unique variance not explained by main
effects.

4 The following are examples. The labels selected by the student will vary, but
the grid design will not.
a 2 × 2

In a group Not in a group

Peg-word System

Acronyms

The factor described in rows (mnemonic technique) can be an inde-
pendent variable.
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The factor described in columns (group type) can be an independent
variable.

b 3 × 2

White Collar Blue Collar

Group

Behavioral

Person Centered

The factor described in rows (therapy type) can be an independent
variable.
c 4 × 4

Arts Humanities Sciences Preprofessional

Dorm room

Library

Food Commons

Park Bench

The factor described in rows (study location) can be an independent
variable.

d 3 × 7

Sun. Mon. Tue. Wed. Thur. Fri. Sat.

Eating

Mood

Dissociative

5 Only by placing them in the same design will the researcher be able to look
for interactions.

6 Two different types (main effects and interaction). Twomain effects and one
interaction.

7 a H0: μA1
= μA2

= μAk
; there is no difference in populationmeans of the levels

of Factor A.
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H1: H0 is false, or at least one of the means of a level of Factor A is dif-
ferent from at least one other level.

b H0: μB1
= μB2

= μBk
; there is no difference in population means of the

levels of Factor B.
H1: H0 is false, or at least one of the means of a level of Factor B is dif-

ferent from at least one other level.
c H0: There is no interaction.
H1: There is an interaction.

8
a FA =

73 50
2 12

= 34 67, p < 05; Fcrit 2, 45 = 3 23

FB =
13 72
2 12

= 6 47, p < 0 05; Fcrit 2, 45 = 3 23

FA×B =
3 05
2 12

= 1 44, n s ; Fcrit 4, 45 = 2 61

b Critical values: FA(1, 30) = 4.17; FB(2, 30) = 3.32; FA×B(2, 30) = 3.32

Source SS df MS F p

Factor A 3.36 1 3.36 0.90 n.s.

Factor B 66.67 2 33.34 8.94 <.05

A × B 56.89 2 28.45 7.63 <.05

Within groups 111.83 30 3.73

Total 238.75 35

c All critical values are based on df = 1,16 and equal 4.49.

Source SS df MS F p

Factor A 0.45 1 0.45 0.35 n.s.

Factor B 6.05 1 6.05 4.73 <.05

A × B 84.05 1 84.05 65.66 <.05

Within groups 20.48 16 1.28

Total 111.03 19
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9 Refer to graphs.
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10 a df for FA are 2, 52.
b df for FB are 2, 52.
c df for FA×B are 4, 52.

11 The size of an F reflects the level of certainty that the null of no difference
between population means can be rejected. A large treatment effect does
lead to large F values, but so does a high degree of statistical power.
Another statistic is needed to measure effect size alone.

12 These values reflect different ways to represent the ratio of treatment var-
iance associated with the effect in question to the total amount of variance
in the study.

13 In a 2 × 2 design, there are only two conditions for each factor. A rejected
null for a main effect would have to mean that there is statistical evidence
of a difference between the only two-cell means in the study.

14 Fisher’s LSD. Tukey’sHSD requires each cell in the design to have the same
number of participants.

15 Tukey’s HSD.

16 a

Factor B: Deprivation

High
Deprivation

Low
Deprivation

Factor A:
Incentive

Low Incentive

MA1B1= 7.0
ΣX1 = 35
ΣX2

1 = 247
n1 = 5

MA1B2= 7.4
ΣX2 = 37
ΣX2

2 = 285
n2 = 5

MA1 = 7 2

High
Incentive

MA2B1= 4.8
ΣX3 = 24
ΣX2

3 = 118
n3 = 5

MA2B2 = 7.6
ΣX4 = 38
ΣX2

4 = 296
n4 = 5

MA2 = 6 2

MA2 = 5.9 MB2 = 7.5

MG = 6.7; ΣX = 134; ΣX2 = 946; N = 20; critical values for all F’s
(1,16) = 4.49.
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Source SS df MS F p

Factor A 5.0 1 5.0 3.45 n.s.

Factor B 12.80 1 12.80 8.83 < .05

A × B 7.20 1 7.20 4.97 < .05

Within groups 23.20 16 1.45

Total 48.20 19

b

4

5

6

7

8

X

Low High

Incentive

Low deprivation

High deprivation

0

c ϖ2
B =

11 35
49 65

= 0 23 or 23%

ϖ2
A×B =

5 75
49 65

= 0 12 or 12%

d Main ϖeffect for Factor B does not require further analysis – only two
conditions.
The significant interaction for a 2 × 2 design could be further analyzed

by running Fisher’s LSD for pairs of cells. For instance, the t for the
two deprivation conditions for low-incentive registers as nonsignificant,
[t(16) = 0.23, n.s.] but the t for the two deprivation conditions for high-
incentive registers as significant [t(16) = 2.59, p < .05].

e The interaction needs to be interpreted first. Based on the follow-up LSD
tests, statistical evidence has been found suggesting that rats with high
deprivation and high incentive take less time to traverse a maze than rats
in the other conditions. Although Factor B (deprivation) is registered as
significant, there does not appear to be a main effect for this variable.
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Three of the four means are relatively close; only the high-deprivation/
high-incentive condition showed change in the observed data.

17 a Factor A level 1 is Freshmen; level 2 is Seniors; Factor B level 1 is No
Delay; level 2 is Two-Hour Delay; level 3 is One-Day Delay.
Freshmen/No Delay: M = 12.20; ΣX = 61; ΣX2 = 759; n = 5
Freshmen/Two-Hour Delay: M = 7.40; ΣX = 37; ΣX2 = 283; n = 5
Freshmen/One-Day Delay: M = 6.20; ΣX = 31; ΣX2 = 199; n = 5
Seniors/No Delay: M = 12.20; ΣX = 61; ΣX2 = 763; n = 5
Seniors/Two-Hour Delay: M = 6.40; ΣX = 32; ΣX2 = 214; n = 5
Seniors/One-Day Delay: M = 6.20; ΣX = 31; ΣX2 = 199; n = 5
Freshmen: M = 8.60; Seniors: M = 8.27
No Delay: M = 12.20; Two-Hour Delay: M = 6.90; One-Day
Delay: M = 6.20

MG = 8.43; ΣXG = 253; ΣX2
G = 2417; N = 30

Source SS df MS F p

Factor A 0.84 1 0.84 0.31 n.s.

Factor B 215.27 2 107.64 39.43 <.05

A × B 1.66 2 0.83 0.30 n.s.

Within groups 65.60 24 2.73

Total 283.37 29

b

X

None 1 day

Delayed feedback

Freshmen

Seniors

0

6

5

7

8

9

10

11

12

13

2 hr
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c η2B =
SSB

SSB + SSW
=

215 27
215 27 + 65 6

=
215 27
280 87

= 0 77 or 77%

d No Delay vs. One-Day Delay: t =
6

0 74
= 8.11, p < .05

No Delay vs. Two-Hour Delay: t =
5 3
0 74

= 7.16, p <.05

Two-Hour Delay vs. One-Day Delay: t =
0 7
0 74

= 0.95, n.s.

tcrit (24) = 2.064

Tukey’s HSD isHSDB = qB
MSW
nB

= 3 88
2 73
10

= 2 03. When applied

to the three sets of means, the same findings emerge – fail to reject
the null between Two-Hour Delay vs. One-Day Delay, and reject the
other two.

e Statistical evidence suggests that delayed feedback has an effect on learn-
ing [F(2,24) = 39.43, p < .05], with Two-Hour Delays [t(24) = 7.16, p < .05]
and One-Day Delays [t(24) = 8.11, p < .05] both showing lower retention
than NoDelay. No statistical evidence of a difference between Two-Hour
and One-Day Delays, t(24) = 0.95, n.s. There was also no evidence to sug-
gest a difference for educational level, F(1,24) = 0.31, n.s., and no evidence
of an interaction, F(2,24) = 0.30, n.s.

18 a
Source SS df MS F p

Factor A 76.05 1 76.05 89.47 < .05

Factor B 31.25 1 31.25 36.76 < .05

A × B 4.05 1 4.05 4.76 < .05

Within groups 13.60 16 0.85

Total 124.95 19

b η2A =
SSA

SSA + SSW
=

76 05
76 05 + 13 60

= 0 85 or 85

η2B =
SSB

SSB + SSW
=

31 25
31 25 + 13 60

= 0 70 or 70

η2A×B =
SSA×B

SSA×B + SSW
=

4 05
4 05 + 13 60

= 0 23 or 23

c Because it is a 2 × 2 design, no follow-up tests are needed to explore the
main effects. However, we could run either follow-up test to help
explore the interaction. Let us run Tukey’s HSD:

HSDA×B = qA×B
MSW
nA×B

= 3 65
0 85
5

= 1 50
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Using this value to compare sets of means, we find evidence of the
following: medication improves mood and even more so when one is
engaged in cognitive therapy. Cognitive therapy improves mood
whether one is taking medication or not. And medication improves
mood whether or not one is engaged in cognitive therapy.
If using Fisher’s LSD test:

Since all cells have the same sample size, the numerator for each test
will be 0 85 0 4 = 0 58, and the tcrit will always be ±2.12. The t’s
from the perspective of cognitive therapy are [(8.6 − 5.2)/0.58 =
5.86] for medication and [(3.8 − 2.2)/0.58 = 2.75] for no medication.
The t’s from the perspective of medication are [(8.6 − 3.8)/0.58 =
8.28] for those engaged in cognitive therapy and [(5.2 − 2.2)/0.58 =
5.17] for those who are not. All are suggestive of population
differences.

By visually looking at a graph of the means, it appears that the interac-
tion is being driven by the cell containing scores from those experi-
encing both cognitive therapy and medication. This combination of
variables seems to produce a new and unique effect, even greater
than the main effects found with each variable separately.

19 a
Source SS df MS F p

Factor A 0.05 1 0.05 0.03 n.s.

Factor B 18.05 1 18.05 9.86 < .05

A × B 2.45 1 2.45 1.34 n.s.

Within groups 29.20 16 1.83

Total 49.75 19

b ϖ2
B =

SSB−df b MSW
SST +MSW

=
18 05−1 1 83
49 75 + 1 83

=
16 22
51 58

= 0 31 or 31%.

c No statistical evidence found regarding either Factor A (biological sex
of student) or the interaction. There was statistical evidence found
suggesting that Factor B (the attractiveness of the professor) influ-
enced student’s perceptions of learning, F(1,16) = 9.86, p < .05, with
students believing they can learn more from a physically attractive
professor.

d The researchers are assuming that the Likert scale used to measure
student’s beliefs is measuring this variable on an interval scale. This
assumption may be unfounded.
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20 a
Source SS df MS F p

Factor A 24.08 1 0.05 9.63 < .05

Factor B 6.75 1 18.05 2.70 n.s.

A × B 2.08 1 2.45 0.83 n.s.

Within groups 20.00 8 1.83

Total 52.91 11

b η2A =
SSA

SSA + SSW
=

24 08
24 08 + 20 00

= 0 55 or 55%.

c MA1 = 7.50,MA2 = 4.67. Since FactorA (Cologne) has only two conditions,
there is no need for follow-up tests. Statistical evidence suggests that the
wearing of cologne influences students’ tendencies to engage that person
in their conversation, F(1,8) = 9.63, p < .05. Students are more likely to
engage in conversation longer with a person deemed very attractive
(M = 7.50) than with a person deemed to be average looking (M = 4.67).

21 a
Source SS df MS F p

Factor A 51.04 1 51.04 .94 n.s.

Factor B 260.04 1 260.04 4.81 <.05

A × B 3.38 1 3.38 .06 n.s.

Within groups 1082.17 20 54.11

Total 1396.63 23

b MB1 = 28.42, MB2 = 21.84. Since the F for Factor B allows us to reject
the null hypothesis, we can conclude that statistical evidence suggests
that the race of the defendant has an effect on sentencing, with Black
defendants drawing stiffer sentences.

22 a
Source SS df MS F p

Factor A 220.03 1 220.03 9.02 <.05

Factor B 288.17 2 144.09 5.91 <.05

A × B 42.72 2 21.36 0.88 n.s.

Within groups 731.83 30 24.39

Total 1282.75 35
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b MA1 = 14.78; MA2 = 19.12; MB1 = 21.17; MB2 = 16.0; MB3 = 14.59
All critical values are tcrit(30) = ±2.042. Since Factor A is significant

and there are only two levels of Factor A, it is not necessary to perform
a t test between the two levels.

Type A vs. Type B: t =
5 17
1 98

= 2 61, p < 0 05

Type A vs. Type X: t =
6 58
1 98

= 3 32, p < 0 05

Type B vs. Type X: t =
1 41
1 98

= 0 71, n s

c Since the FactorA F leads us to reject the null hypothesis [F(1,30) = 9.02,
p < .05], we can conclude that statistical evidence suggests that
incentive affects sales production, with commission (M = 19.12) produ-
cing more sales than salary (M = 14.78). Since the Factor B F also leads
us to reject the null hypothesis [F(1,30) = 5.91, p < .05], we can conclude
that statistical evidence suggests that personality type affects sales
production. Follow-up analyses suggest that Type A’s produce more
than Type B’s [t(30) = 2.61, p < .05] or Type X’s [t(30) = 3.32, p < .05],
with no evidence of a difference between Type B’s and Type X’s
[t(30) = 0.71, n.s.]. Unfortunately, for the researcher’s hypothesis, there
is no statistical evidence suggesting an interaction between incentive
and type of personality on sales production.

23 In an independent- or dependent-samples t test, we are testing for a main
effect since there is only one independent variable. However, protected t
tests can be used in a two-way ANOVA to elucidate the nature of an inter-
action effect.

24 A one-way ANOVA tests for a main effect since there is only one factor,
although that factor can have more than two levels.

25 The presence of a significant interaction qualifies a straightforward inter-
pretation of a main effect. In other words, the interaction may be making it
look as if there is a main effect, when in reality the variance is due to the
interaction. Higher-order effects sometimes produce illusory lower-order
effects.

26 There would be no effect on the main effects, interaction, orMSW. Adding
a constant does not affect the variance; therefore, it has no effect on
an ANOVA.

830 Appendix B Answers to Questions and Exercises



27
Source SS df MS F p

Factor A 34 003.34 1 34 003.34 100.24 <.05

Factor B 31.86 2 15.93 .05 n.s.

A × B 23.03 2 11.52 .03 n.s.

Within groups 38 671 114 339.22

Total 72 729.20 119

There is statistical evidence suggesting that the biological sex of a
child relates to their ability to delay gratification [F(1,114) = 100.24,
p < .05], with biological females being able to delay longer (M = 63.03)
than males (M = 29.37). There is no statistical evidence of differences
between cognitive strategies [F(2,114) = 0.05, n.s.] and no statistical evi-
dence of an interaction between biological sex and cognitive strategy
[F(2,114) = 0.03, n.s.].
The effect size for Factor A, according to η2, is [34 003.34/(34 003.34 +

38 671)] 0.47 or 47%.

28
Source SS df MS F p

Factor A 187.26 1 187.26 6.35 <.05

Factor B 224.26 1 224.26 7.61 <.05

A × B 693.60 1 693.60 23.53 <.05

Within groups 1650.80 56 29.48

Total 2755.93 59

Marginal means: Mhighdrive = 21.73; Mlowdrive = 18.2; Measy = 18.03;
Mdifficult = 21.90

Cell means: Mhigh/easy = 16.4; Mhigh/diff = 27.07; Mlow/easy = 19.67; Mlow/

diff = 16.73
Follow-up tests: Let us use Tukey’s HSD to get a value to compare group
means from the same factor:

HSDA×B = qA×B
MSW
nA×B

= 3 41
29 48
15

= 4 78

Using this value and then looking at our cell means, we see that one cell
is driving all three effects, the “high-drive state/difficult task” condition.
There is no evidence for other differences. This simplifies our interpreta-
tion. We have statistical evidence to suggest that drive state and task
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difficulty combine to create greater arithmetic errors on the given task,
F(1,56) = 23.53, p < .05. Further analysis shows that participants in
the high-drive condition make more errors if the task is difficult
(M = 27.07) compared with those solving easy problems (M = 16.4) or
those in the low-drive state, regardless of task difficulty (Measy = 19.67;
Mdiff = 16.73), Tukey’s HSD = 5.26.

29
Source SS df MS F p

Factor A 19.01 1 19.01 8.85 < .05

Factor B 1.19 2 0.58 0.28 n.s.

A × B 5.03 2 2.51 1.17 n.s.

Within groups 141.75 66 2.15

Total 166.98 71

Since the only null rejected is the Factor A null, and it only has two con-
ditions, no follow-up tests are needed. The analysis is straightforward; sta-
tistical evidence suggests that students who use Facebook while studying
(M = 3.72) perform more poorly than students who do not (M = 4.75), F
(1,66) = 8.85, p < .05. There was no evidence to suggest an effect related to
the type of material studied [F(2,66) = 0.28, n.s.] or an interaction between
Facebook use and the type of material studied [F(2,66) = 1.17, n.s].
We should be cautious about using Likert scale data. Means only make

sense when the scale being used has conserved the quantitative space
between each integer.

30
Source SS df MS F p

Factor A 0.56 1 0.56 0.01 n.s.

Factor B 1105.56 1 1105.56 12.82 < .05

A × B 3.06 1 3.06 0.04 n.s.

Within groups 1034.75 12 86.23

Total 2143.93 15

Since the only rejected null is the Factor B null, and it only has two con-
ditions, no follow-up tests are needed. The analysis is straightforward; sta-
tistical evidence suggests that students who study with music (M = 23.25)
performed more poorly on the test than those who did not (M = 39.88),
F(1,12) = 12.82, p < .05. There was no evidence to suggest an effect related
to the type of material studied [F(1,12) = 0.01, n.s.] or an interaction
between music use and the type of material studied [F(1,12) = 0.04, n.s.].
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Chapter 14

1 Research designs involving the repeated measuring of more than two
conditions.

2 In a repeated-measures design, each participant is exposed to each treat-
ment condition. In a between-groups design, each participant receives
only one treatment.

3 “Order effects” is the name given to the effect when a difference between
treatment conditions occurs due to the order of presentation in a
repeated-measures design. When the order of presentation is not being
investigated, order effects introduce confounding variance.

4 “Counterbalancing” is a strategy used with repeated-measures designs in
which participants differ by the order in which experimental conditions
are presented. The purpose of counterbalancing is to prevent confounding
of the independent variable with order effects by distributing the carryover
effects that come with repeated measuring across all experimental
conditions.

5 Repeated-measures designs cannot be used when the variable is not
subject to experimental manipulation (e.g. participant variables). It
should not be run when carryover effects cannot be controlled. For exam-
ple, some forms of therapy result in a relatively permanent change in the
participant.

6 In a repeated-measures design, between-group variation is made up of treat-
ment effect and experimental error (there is no variation due to individual
differences); within-group variation consists of individual differences
(between-participant variability) and experimental error.

7 The effect due to individual differences is removed from the error term of a
within-groups design; it is mathematically partitioned out.

8 MSBG divided by MSerror

9 By using the same participants in every treatment condition, it is impossible
for one treatment condition to have more or less of a participant variable
than another treatment condition. The variance due to individual differ-
ences, quantified due to repeated measuring of individuals, can then be
partitioned out, providing a more powerful test.
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10 c Repeated-measures designs can achieve much more power with few
participants, and this is amplified if the variance removed due to
individual differences is large.

11 For a one-way ANOVA, dfBG = k − 1 = 2; dfW = N - k = 12. For a repeated-
measures ANOVA, dfBG = k − 1 = 2; dferror = (N − k) − (n − 1) = 28. Fcrit
(one way) = 3.88; Fcrit (repeated measures) = 3.34.

12 dfT

13 dfBG = k − 1 = 4; dferror (N − k) − (n − 1) = 76. The answers are 4 and 76.

14 9

15
Source SS df MS F p

Between groups 52.94 2 26.47 11.51 <.05

Within groups 20 12

Between participants 1.60 4

Error 18.40 8 2.30

Total 72.94 14

16 a
Source SS df MS F p

Between groups 80 2 40 16.81 <.05

Within groups 30 12

Between participants 10.96 4

Error 19.04 8 2.38

Total 110 14

b
Source SS df MS F p

Between groups 117.55 4 29.39 18.29 <.05

Within groups 66.82 40

Between participants 15.4 8

Error 51.42 32 1.61

Total 184.37 44
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17 a
Source SS df MS F p

Between groups 32.53 2 16.27 14.79 <.05

Within groups 13.20 12

Between participants 4.40 4

Error 8.80 8 1.10

Total 45.73 14

b ϖ2 =
32 53−2 1 10
45 73 + 1 10

=
30 33
46 83

= 0 65 or 65

η2 =
32 53
45 73

= 0 71 or 71

c HSD= 4 04
1 10
5

= 1 89

Mean differences for Incentive A vs. B = 2, p <.05
Mean differences for Incentive A vs. C = 3.6, p <.05
Mean differences for Incentive B vs. C = 1.6, n.s.
If we would have run Fisher’s LSD instead,
tcrit (8) = ±2.306

Incentive A vs. B: t =
7 40−5 40

0 66
= 3 03, p < 0 05

Incentive A vs. C: t =
7 40−3 80

0 66
= 5 45, p < 0 05

Incentive B vs. C: t =
5 40−3 80

0 66
= 2 42, p < 0 05

As we can see, there is perfect agreement.
d Statistical evidence suggests that the type of incentive influenced sales,

F(2,8) = 14.79, p < .05. Further analyses found statistical evidence
suggesting that Incentive A worked better than Incentive B, HSD = 2,
p < .05, and Incentive C,HSD = −3.6, p < .05. No evidence of a difference
was found between Incentives B and C, HSD = 1.6, n.s.

e The problem description does not specify, but it is reasonable to pre-
sume that counterbalancing of incentive programs was not used. As a
result, carryover effects might be introducing confounding variance.

18 a
Source SS df MS F p

Between groups 2754. 17 2 1377.09 47.54 <.05

Within groups 212.75 9

(Continued)
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(Continued)

Source SS df MS F p

Between participants 38.92 3

Error 173.83 6 28.97

Total 2966.92 11

b ϖ2 =
2754 17− 2 28 97
2966 92 + 28 97

=
2696 23
2995 89

= 0 90 or 90

η2 =
2754 17
2966 92

= 0 93 or 93

tcrit(6) = ±2.447

Positive vs. Negative: t =
52−15 75

3 81
= 9 51, p < 0 05

Positive vs. Control: t =
52−27
3 81

= 6 56, p < 0 05

Negative vs. Control: t =
15 75−27

3 81
= −2 95, p < 0 05

c Statistical evidence suggests that the type of subliminal message influ-
enced problem solving, F(2,6) = 47.54, p < .05. Further analyses found
statistical evidence suggesting that positive messages worked better
than negative messages, t(6) = 9.51, p < .05, and the control group, t
(6) = 6.56, p < .05, and the control group outperformed the negative
feedback group, t(6) = −2.95, p <.05.

d Since participants are repeatedly measured, it is hoped that each set of
math problems were deemed equally difficult (and not merely the same
list of problems). Furthermore, no statement was made about counter-
balancing the order of presentation. If this was not performed, carryover
effects may be introducing confounding variance.

19 a
Source SS df MS F p

Between groups 31.60 2 15.80 33.62 <.05

Within groups 10.80 12

Between participants 7.06 4

Error 3.74 8 0.47

Total 42.40 14
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b ϖ2 =
31 60− 2 0 47
42 40 + 0 47

=
30 66
42 87

= 0 72 or 72

η2 =
31 60
42 40

= 0 75 or 75

c HSD= 4 04
0 47
5

= 1 24

Mean differences for Feta Cheese vs. Caviar = 0.8, n.s.
Mean differences for Feta Cheese vs. Popcorn = 3.4, p <.05
Mean differences for Caviar vs. Popcorn = 2.6, p <.05
If we would have run Fisher’s LSD instead,
tcrit (8) = ±2.306
Feta Cheese vs. Caviar: t = 1 40−2 20

0 43 = −1 86, n s
Feta Cheese vs. Popcorn: t = 1 40−4 80

0 43 = −7 91, p < 0 05
Caviar vs. Popcorn: t = 2 20−4 80

0 43 = −6 05, p < 05
There is basic agreement between these two follow-up measures for

this exercise.
d Statistical evidence suggests that some hors d’oeuvres go better with

wine than others, F(2,8) = 33.62, p < .05. Further analyses found statis-
tical evidence suggesting that Popcorn went better than Feta Cheese,
HSD = 3.4, p < .05, and caviar, HSD = −2.6, p < .05. No evidence of a dif-
ference was found between Feta Cheese and Caviar, HSD = 0.8, n.s.

e There may be an issue with using a Likert scale to measure a taste rating,
and there was no mention in the problem description that counterba-
lancing was used. If the order was preserved throughout the study, car-
ryover effects might be introducing confounding variance.

20 a
Source SS df MS F p

Between groups 32.40 2 16.20 26.27 < .05

Within groups 17.2 12

Between participants 12.27 4

Error 4.93 8 0.62

Total 49.6 14

b ϖ2 =
32 40− 2 0 62
49 60 + 0 62

=
31 16
50 22

= 0 62 or 62

η2 =
32 40
49 60

= 0 65 or 65
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c tcrit (8) = ±2.306

Shirt vs. Shoes: t =
6 40−8 20

0 50
= −3 60, p < 0 05

Shirt vs. Control: t =
6 40−4 60

0 50
= 3 60, p < 0 05

Shoes vs. Control: t =
8 20−4 60

0 50
= 7 20, p < 0 05

d Statistical evidence suggests that the type of new clothing influenced
perceptions of happiness, F(2,8) = 16.20, p < .05. Further analyses found
statistical evidence suggesting that wearing new shoes generated more
happiness than wearing a new shirt, t(8) = 3.60, p < .05, and the control
group, t(8) = 7.20, p < .05, and the new shirt group seemed happier than
the control group, t(8) = 3.60, p <.05. Notice the difference findings
compared with Problem 20 in Chapter 12 – which used the same data
but with an independent-groups design. The increased power of a
repeated-measures ANOVA found evidence of more differences.

e It appears that the researchers dealt with carryover effect issues through
counterbalancing, though having the control condition always go last
(as is implied) might be a problem. Furthermore, there is the issue of
measuring happiness using a 10-point scale: is this interval data or
higher?

21 a
Source SS df MS F p

Between groups 5114.80 2 2557.40 9.18 < .05

Within groups 2893.60 12

Between participants 663.73 4

Error 2229.87 8 278.73

Total 8008.40 14

b ϖ2 =
5114 80− 2 278 73
8008 40 + 278 73

=
4557 34
8287 13

= 0 55 or 55

η2 =
5114 80
8008 40

= 0 64 or 64

c tcrit (8) = ±2.306

Low vs. Medium: t =
62 80−55 80

10 56
= 0 66, n s

Low vs. High: t =
62 80−98
10 56

= −3 33, p < 0 05

Medium vs. High: t =
55 80−98
10 56

= −4 00, p < 0 05

838 Appendix B Answers to Questions and Exercises



d Statistical evidence suggests that the degree of distraction influenced pain
tolerance, F(2,8) = 9.18, p < .05. Further analyses found statistical evidence
suggesting that high degrees of distraction worked better than both
low degrees of distraction, t(8) = −3.33, p < .05, and medium degrees of
distraction, t(8) = −4.00, p < .05. No evidence of a difference was found
between low and medium degrees of distraction, t(8) = 0.66, n.s.

e It is assumed that the 20-minute interval in between the presentation
of different conditions eliminated carryover effects. No statement
was made in the description about counterbalancing the conditions.
Carryover effects due to extreme nature of the dependent variable
and/or the order of presentation may be introducing confounding
variance.

22 a
Source SS df MS F p

Between groups 89 334.77 2 44 667.39 16.24 <.05

Within groups 62 742.83 15

Between participants 35 236.93 5

Error 27 505.90 10 2 750.59

Total 152 077.61 17

b ϖ2 =
89 334 77−2 2 750 59
152 077 61 + 2 750 59

=
83 833 59
154 828 20

= 0 54 or 54

η2 =
89 334 77
152 077 61

= 0 59 or 59

c tcrit (10) = ±2.228

Technique A vs. B: t =
407 50−240 22

30 28
= 5 52, p < 0 05

Technique A vs. C: t =
407 50−361

30 28
= 1 54, n s

Technique B vs. C: t =
240 33−361

30 28
= −3 99, p < 0 05

d Statistical evidence suggests that the type of technique influenced read-
ing speed, F(2,10) = 16.24, p < .05. Further analyses found statistical
evidence suggesting that Technique A outpaced Technique B,
t(10) = 5.52, p < .05, and Technique C also outpaced Technique B,
t(10) = −3.99, p < .05. No evidence of a difference was found between
Techniques A and C, t(10) = 1.54, n.s.

e The order of presentation is not addressed by the problem. This could
be an issue if carryover effects are experienced.
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23 a
Source SS df MS F p

Between groups 37.00 2 18.50 9.10 < .05

Within groups 299.50 15

Between participants 279.17 5

Error 20.33 10 2.03

Total 336.50 17

b ϖ2 =
37 00− 2 2 03
336 50 + 2 03

=
32 94
338 53

= 0 10 or 10

η2 =
37 00
336 50

= 0 11 or 11

c HSD= 3 88
2 03
6

= 2 26

Mean differences for Quiet Room vs. Dining Hall = 3.5, p <.05
Mean differences for Quiet Room vs. Various = 2.0, n.s.
Mean differences for Dining Hall vs. Various = 1.5, n.s.

d Statistical evidence suggests that study location influences student per-
formance, F(2,10) = 9.10, p < .05. Further analyses showed evidence sug-
gesting that students perform better having studied in a quiet room
compared with the dining hall, HSD = 3.5, p < .05. No evidence of dif-
ferences between a quiet room and a variety of locations was not found,
HSD = 2.0, n.s., and no evidence of a difference was found between
studying in the dining hall or a variety of locations, HSD = 1.5, n.s.

24
Source SS df MS F p

Between groups 2574.55 2 1287.28 15.60 < .05

Within groups 2933.38 45

Between participants 457.25 15

Error 2476.13 30 82.54

Total 5507.92 47

Statistical evidence suggests that social desirability is affected by attrac-
tiveness, F(2,30) = 15.60, p <.05. Follow-up tests provide evidence suggest-
ing that attractive people are considered more socially desirable than
average-looking people, t(30) = 2.73, p <.05, and unattractive people,
t(30) = 5.59, p <.05, while average-looking people are considered more
socially desirable to unattractive people, t(30) = 2.86, p <.05.
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25
Source SS df MS F p

Between groups 45.64 2 22.82 4.35 <.05

Within groups 228.00 42

Between participants 80.97 14

Error 147.03 28 5.25

Total 273.64 44

Statistical evidence suggests that success–achievement ratings by
biological females of biological males is influenced by visual cues
related to concepts of masculinity, F(2,28) = 15.60, p <.05. Follow-up tests
provide evidence suggesting that biological females view as more likely to
achieve success and biological males who possess physical characteristics
associated with a traditional understanding of masculinity compared with
those who possess nontraditional physical characteristics, t(28) = 2.93,
p < .05. Statistical evidence for other effects was not found.

26
Source SS df MS F p

Between groups 57.27 2 28.63 10.87 <.05

Within groups 91.40 27

Between participants 44.00 9

Error 47.40 18 2.63

Total 148.67 29

Statistical evidence suggests that the number of steps that students walk
changes as they use a pedometer, F(2,18) = 10.87, p <.05. Follow-up tests
provide statistical evidence suggesting that students walk more after 6 and
12 weeks of using a pedometer compared with the first week, t(18) = 3.15,
p < .05 and t(18) = 4.52, p < .05, respectively. No statistical evidence was
found of a difference between 6 and 12 weeks, t(18) = 1.36, n.s.

27
Source SS df MS F p

Between groups 74.08 2 37.04 2.70 n.s.

Within groups 261.88 21

Between participants 69.96 7

Error 191.92 14 13.71

Total 335.96 23
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No statistical evidence was found to suggest that extroverts have differ-
ent perceptions of satisfaction between past, present, and projected future
life experiences, F(2,12) = 2.70, n.s. Since the overall null hypothesis could
not be rejected, no follow-up analyses were run. (As a methodological
aside, note that the scale used to measure perceptions of life satisfaction
may not be interval or ratio. This is unclear in the problem.)

Part 5. Review of Analyses of Variance

1 c. and f. A one-way ANOVA can be thought of as an extension of an inde-
pendent-samples t test into designs with three or more conditions, and a
repeated-measures ANOVA can be thought of as an extension of a depend-
ent-samples t test into designs with three or more conditions.

2 No. Although the mathematics are different, a t test and its corresponding
ANOVA are equally powerful (statistically speaking). Mere convention
keeps researchers using t tests with two-cell designs (see Section 12.1).

3 Amixed design is a form of a two-way ANOVA but one where one factor is
repeatedly measured. So, the two-way ANOVA and repeated-measures
ANOVA concepts are needed.

4 Don’t be confused by how the data are presented. This is a 2 × 2 factorial
design and requires a two-way ANOVA for analysis. Following is the
ANOVA summary table.

Source SS df MS F p

Factor A 85.56 1 85.56 20.17 <.05

Factor B 390.06 1 390.06 44.69 <.05

A × B 52.56 1 52.56 6.02 <.05

Within groups 104.75 12 8.73

Total 632.93 15
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All three F’s direct the researcher to reject the corresponding null
hypothesis. Of course, the main effects need to be carefully examined
after the interaction is interpreted to see if they are illusory or not.
A superficial examination of the cell and marginal means suggests that
the drug imipramine outperforms vitamin B1 (main effect) but espe-
cially so when the drug is combined with “talk” therapy (interaction).
The other main effect (therapy style) seems to be an artifact of the
interaction.

5 This is a repeated-measures design. It can be analyzed using either a
dependent-samples t test or a repeated-measures ANOVA – each having
the same degree of statistical power to avoid a Type II error. Conventionally,
the t test is used in two-cell designs. The analysis found statistical
evidence that participants stared longer at the image with a red background
(M = 3.31) compared with the image with the off-white background
(M = 2.94), t(6) = 3.29, p < .05.

6 This altered design from Problem 5 now requires us to run a repeated-
measures ANOVA. There are three conditions now necessitating the
ANOVA. The summary table is shown below.

Source SS df MS F p

Between groups 1.65 2 0.83 8.23 < .05

Within groups 25.78 18

Between participants 24.57 6

Error 1.21 12 0.10

Total 190.78 20

The observed F directs the researcher to reject the null of no difference
between the three conditions. Other statistical tools (e.g. HSD or LSD)
can be used to evaluate mean differences between specific conditions.
Fisher’s LSD run with SPSS found statistical evidence suggesting that both
of the bold colors, red (M = 3.54) and green (M = 3.24), were stared at
longer than the off-white (M = 2.86). This analysis supports the research-
ers’ contention that the difference in staring time may be due not to the
color red, but simply due to the brightness of the color compared with
the off-white.

7 This is a between-groups single-factor design. The appropriate statisti-
cal tool would be the one-way ANOVA. The summary table is
shown below.
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Source of variation SS df MS F p

Between groups 52.10 2 26.05 6.78 <.05

Within groups(error) 69.14 18 3.84

Total 121.24 20

This F directs the researcher to reject the null of no difference between the
three conditions. Other analytical tools (e.g. HSD or LSD) can be used to
evaluate mean differences between specific conditions. Fisher’s LSD run
with SPSS found statistical evidence suggesting that the story condition
(M = 8.43) takes longer for children to fall asleep than does the milk con-
dition (M = 4.57).

8 The appropriate analysis for this design is a one-way ANOVA. There is only
one factor, and participants are assigned to one condition. We may recall
that a similar problem was presented at the end of Chapter 14 (repeated-
measures ANOVA). The design has been changed, but the data is the same.
The summary table is shown below.

Source of variation SS df MS F p

Between groups 37.00 2 18.50 0.93 n.s.

Within groups(error) 299.50 15 19.97

Total 336.50 17

The design change created tremendous change. In the Chapter 14 problem,
the F was rejected, and subsequent analysis found evidence of other differ-
ences. In the between-groups version, the F cannot be rejected. A careful
examination shows us why; the within-groups SS is huge compared with
the between-groups SS. Furthermore, most of this within-groups error is
associated with individual differences. In the repeated-measures ANOVA,
we see that over 279 units of this error is partitioned out, leaving us with
only about 20 units of SSerror. But, in a one-way design, this error cannot
be removed. No evidence of differences between conditions was found,
F(2,15) = 0.93, n.s.

9 Do not be confused by how the data are presented. Reorganize the data
to see that this is a between-groups design, with only two groups. It can
be analyzed using either an independent-samples t test or a one-way
ANOVA – each having the same degree of statistical power to avoid a Type
II error. Conventionally, the t test is used in two-cell designs. The analysis
did not find statistical evidence that stated gender was related to preparation
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time for the dance, t(13) = −2.04, n.s. It is true that the obtained t value
was very close to the rejection criteria. However, the needed probability
of 5% was not met. It is possible that in failing to reject the null hypothesis,
we will be making a Type II error. The increased power of more partici-
pants may have resulted in a different outcome.

10 This is a repeated-measures design, and there are more than two condi-
tions. The proper statistical tool for analysis would be a repeated-measures
ANOVA. The summary table is shown below.

Source SS df MS F p

Between groups 21.72 2 10.86 3.53 n.s.

Within groups 66.66 18

Between participants 29.71 6

Error 36.95 12 3.08

Total 88.38 20

The observed F does not direct the researcher to reject the null hypoth-
esis of no difference between the three conditions. The observed F is large,
but not quite large enough. Perhaps there is not enough power to detect a
genuine effect (despite the fact that the design allows for the powerful
repeated-measures ANOVA). Statedmore properly, no statistical evidence
was found to suggest that the outdoor temperature influences the creativ-
ity in writing poems, F(2,12) = 3.53, n.s.

11 There are two factors involved in this design: first-mover and biological
sex. Each is also a between-groups factor. The clear analytical choice is
the two-way ANOVA. The summary table is shown below.

Source SS df MS F p

Factor A (First Mover) 1.89 1 1.89 0.67 n.s.

Factor B (Bio Sex) 14.06 1 14.06 5.01 < .05

A × B 0.00 1 0.00 0.00 n.s.

Within groups 33.66 12 2.81

Total 49.61 15

The only observed F that directs us to reject a null hypothesis is the one
for Factor B (Biological Sex). Looking at the marginal means, the analysis
has provided us with statistical evidence suggesting that biological male
sellers (M = $5.34) fare better than biological female sellers (M = $3.47)
during negotiations of this type, F(1,15) = 5.01, p < .05.
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Chapter 15

1 In a correlational design, a study is conducted without exerting control
over the phenomenon under investigation; data is gathered as it presents
itself to the researcher. In an experimental design, some procedural vari-
ables are held constant, and others are purposely manipulated by the
experimenter (e.g. drug dosages). By manipulating an independent vari-
able in an experimental design, we are more likely to be able to show a
causal relationship in the effect of the independent variable on the
dependent variable.

2 a Causation is always determined by the methodological design, not the
statistical analysis.

3 “Bivariate distribution” is the term used to describe a data set in which
there are pairs of scores, each pair belonging to a given participant. Height
and shoe size, for instance, are bivariate data when these measures come
from the same sample of individuals.

4 No answer provided. Answers will vary. Positive correlations are marked
by higher scores on one variable being associated with higher scores on
a second variable.

5 No answer provided. Negative correlations are marked by higher scores on
one variable being associated with lower scores on a second variable.

6 b Two of them are not legitimate correlations (correlations cannot
exceed the absolute value of 1). Of the remaining two, −0.69 is stronger
than 0.58.

7 A scatter plot of a +1 or −1 correlation would be data lined up perfectly.
The slope would have to be either positive or negative, but the angle of
the slope would be irrelevant.

8 An estimate of the magnitude of the correlation, direction of correlation
(i.e. positive or negative), linearity, and presence of outliers. The angle
of the slope is not informative.

9 ρ=
0 13
4

= 0 03

10 ρ=
−3 11
4

= −0 78
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11
rcrit

at α = 0.05
Reject
H0?

rcrit
at α = 0.01

Reject
H0?

a. r = 0.39 df = 100 ±0.19 Y ±0.25 Y

b. r = −0.47 df = 21 ±0.41 Y ±0.53 N

c. r = −0.09 df = 11 ±0.55 N ±0.68 N

d. r = 0.44 df = 6 ±0.71 N ±0.83 N

e. r = −0.62 df = 12 ±0.53 Y ±0.66 N

f. r = 0.93 df = 29 ±0.36 Y ±0.46 Y

12 a The scatter plot will have data points going from the lower left to the
upper right. They will be gathered in an oval, not a straight line.

b The scatter plot will have data points going from the upper left to the
lower right. They will be gathered in a tight oval, close to a straight diag-
onal line.

c The scatter plot will have data points going from the lower left to the
upper right. They will be gathered in a slight oval, something close to
a circle.

d The scatter plot will have data points that will gather into the shape of
either a “U,” upside down “U,” “C,” or backward “C.” All of these reflect
curvilinear relationships between two variables.

13 These are just rough estimates, designed to see if we understand the basic
way in which scatter plots reflect correlations.
a r = 0
b r = +0.50
c r = −0.50
d r = +0.90

14
rcrit 5% rcrit 1% rcrit 5% rcrit 1%

a. 0.388 0.496 Reject Reject

b. 0.388 0.496 Reject Fail to reject

c. 0.532 0.661 Reject Reject

d. 0.444 0.561 Reject Reject

e. 0.355 0.456 Reject Fail to reject

f. 0.666 0.798 Reject Reject

g. 0.514 0.641 Reject Fail to reject

h. 0.195 0.254 Reject Fail to reject

(Critical values for h are approximate, based on df = 100.)
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15 a
ΣX = 24 ΣY = 21 ΣXY = 125

(ΣX)2 = 576 (ΣY)2 = 441 np = 4

ΣX2 = 150 ΣY2 = 113

robt =
−4

16 25
= −0 25

b H0: ρ = 0; H1: ρ ≠ 0
c rcrit (2) = ±0.950
d Do not reject the null hypothesis.
e r2 = (–0.25)2 = 0.0625 or 6.25%. (However, r2 would not be reported

since r is nonsignificant.)

16 a
ΣX = 32 ΣY = 25 ΣXY = 213

(ΣX)2 = 1024 (ΣY)2 = 625 np = 4

ΣX2 = 266 ΣY2 = 175

robt =
52

54 78
= 0 95

b H0: ρ = 0; H1: ρ ≠ 0
c rcrit (2) = ±0.950
d Reject the null hypothesis when r is equal to or greater than rcrit.
e r2 = (0.95)2 = 0.90, or 90%

17 a
ΣX = 43 ΣY = 41 ΣXY = 453

(ΣX)2 = 1849 (ΣY)2 = 1681 np = 4

ΣX2 = 471 ΣY2 = 449

robt =
49

63 44
= 0 77

b H0: ρ = 0; H1: ρ ≠ 0
c rcrit(2) = ±0.950
d Do not reject the null hypothesis.
e r2 = 0.593 or 59.3%. (r2 would not be reported since r is nonsignificant)

18 a
ΣX = 20 ΣY = 24 ΣXY = 110

(ΣX)2 = 400 (ΣY)2 = 576 np = 5

ΣX2 = 106 ΣY2 = 124

robt =
70

75 63
= 0 93
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b H0: ρ = 0; H1: ρ ≠ 0
c rcrit (3) = ±0.878
d Reject the null hypothesis.
e r2 = 0.865 or 86.5%

19 Answers will vary. One example would be to measure a company’s sales
personnel in terms of their degree of extroversion (personality variable)
and their effectiveness at selling (observed behavior). This is a correlational
design (no manipulation of an independent variable) and involves one
personality variable and one observed behavior.

20 Answers will vary. One example would be to manipulate dosages of a given
drug to various individuals (e.g. 0, 5, 10, 20 ml) and then measure their
heart rate or breathing (observed behavior). This is an experimental
design (manipulation of an independent variable) and involves a medicinal
variable and an observed behavior.

21 Causal interpretations are prohibited in Exercise 18 because the data is
correlationally gathered. There is no manipulation. Any number of vari-
ables might explain the relationship between sales effectiveness and extro-
version. Causal interpretation is allowed in Exercise 19 because the data is
experimentally gathered. There is manipulation of a variable – which par-
ticipant gets what level of the drug. If a correlation is found, we are justified
in claiming the drug that is at least partially responsible for the change in
observed behavior.

22 a
ΣX = 18 ΣY = 30 ΣXY = 96

(ΣX)2 = 324 (ΣY)2 = 900 np = 5

ΣX2 = 80 ΣY2 = 190

robt =
−60
61 64

= −0 97

b H0: ρ = 0; H1: ρ ≠ 0
c rcrit (3) = ±0.878
d Reject the null hypothesis.
e r2 = 0.941 or 94.10%
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23 Refer to graph.
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24 ρ=
64
75

= 0 85

25 A restricted range of scores may underestimate the size of the population
correlation.

26 The use of extreme groups may increase the size of the correlation.

27 r will underestimate ρ.
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28 a
ΣX = 56 ΣY = 503 ΣXY = 3887

(ΣX)2 = 3136 (ΣY)2 = 253 009 np = 7

ΣX2 = 542 ΣY2 = 36 365

robt =
−959

1008 60
= −0 95

b H0: ρ = 0; H1: ρ ≠ 0
c rcrit (5) = ±0.754
d r2 = 0.9025 or 90.25%
e Reject the null hypothesis.

29 a
ΣX = 18 ΣY = 621 ΣXY = 2022

(ΣX)2 = 324 (ΣY)2 = 385 641 np = 6

ΣX2 = 94 ΣY2 = 64 979

robt =
954

1007 93
= 0 95

b H0: ρ = 0; H1: ρ ≠ 0
c rcrit (4) = ±0.811
d r2 = 0.9024 or 90.25%
e Reject the null hypothesis.

30 Refer to graph.
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The variables appear to be related, but not in a linear fashion. The most
reasonable course of action is to not run a Pearson r (it will most likely
underestimate the relationship between these variables), but to rather
run a curvilinear measure of association, something not covered in this
text.

31 r(11) = 0.87, p < .05. Statistical evidence suggests that greater amounts of
smoking correlate with a greater number of sick days taken by employees,
r2 = 0.752 or 75.2%.

32 r(10) = 0.05, n.s. There is no statistical evidence to suggest that a relation-
ship exists between intelligence, as measured in this study, and word
processing speed. No need to generate an r2.

33 Drilling: r(24) = 0.65, p < .05
Rubber Dam: r(24) = 0.46, p < .05

34 r(21) = 0.413, p < .05

Chapter 16

1 The mean. It is the most frequent score in a normal distribution, and the
error associated with it will likely be smaller than other guesses.

2 Regression analysis is important for making predictions to solve practical
problems and to build and test theories.

3 Just as in Chapter 15, bivariate data is typically not experimentally gathered.
Data gathered from correlational designs do not imply causation. If it is
experimentally gathered, causal interpretations are implied.

4 The regression line is fitted to the scatter plot in such a way that the sum of
the squared errors (Σe2) is minimized.

5 Y intercept

6 Σ(Y − Yp) results in a summed error of 0.

7 se is the estimate of the average standard deviation for the set of conditional
distributions associated with a given population of bivariate data.
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8 A small standard error of the estimate means there is very little error asso-
ciated with the prediction; a large standard error of the estimate means
there is large error associated with the prediction.

9 If r = 0, then b = 0.

10 The slope is a ratio of the rise over the run for bivariate data placed on a
scatter plot. It tells us the degree and direction of change in Y for each
unit change in X. It does not tell us anything about the strength of
the relationship between the two variables. (Of course when the null
hypothesis b = 0 cannot be rejected, it does communicate that the
relationship is either nonexistent or too weak to detect.)

11 Yp is always the mean of the conditional distribution associated with a
particular X value. It is merely a predicted value, but it is unbiased, and
the prediction error associated with it is as small as possible.

12 When the null hypothesis that b = 0 cannot be rejected or when the
null hypothesis that r = 0 cannot be rejected. A regression analysis
should not be run if a relationship between the two variables cannot
be established.

13 The assumption of normality for the conditional distributions is important
because Yp is the mean of each conditional distribution. For skewed distri-
butions there is concern that the mean does not represent centrality well
(see Chapter 3).

14 The assumption of homoscedasticity allows us to assume se is the same for
every value of X. If each Xwere associated with conditional distributions of
differing variances, there would have to be a different standard error of the
estimate for each X score.

15 Multiple regression uses multiple predictor variables; each one is able to
add to the predictive power.

16 Overgeneralizing to populations different from the populations used to
establish the regression equation might lead to predictions that are no
better than chance or systematically biased.

17 a b = −0.22
b b = 0.26
c b = 0.55
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18 With a negative correlation, it is reasonable to conclude that higher gas
prices will be associated with fewer miles driven for vacation and vice
versa. However, caution is needed; we must not convince ourselves that
we understand the causal relationship between these two factors.

19 a 2.28
b 3.24
c 3.88

20 a b = 1.81
b Yp = 8.83 + 1.81(X − 4.50)
c 1.22

21 a b = −0.84
b Yp = 8.00 − 0.84(X − 8.67)
c 3.39
d Yp = 8.00 − 0.84(1 − 8.67) = 14.44

22 MX = 12.80 MY = 40.40

ΣX = 64 ΣY = 202 ΣXY = 2985

(ΣX)2 = 4096 (ΣY)2 = 40 804 np = 5

ΣX2 = 990 ΣY2 = 9 142

a b=
1997
854

= 2 34

b Yp = 40.40 + 2.34(0 − 12.80) = 10.45

c se =
1

5 3
5 9142−40 804−

5 2985 − 64 202 2

5 990−4096
= 3 97

d Yp = 40.40 + 2.34(16 − 12.80) = 47.89 seconds

e 47.89 (±1se) = 43.92 to 51.86

23 MX = 12 MY = 23

ΣX = 72 ΣY = 138 ΣXY = 1739

(ΣX)2 = 5184 (ΣY)2 = 19 044 np = 6

ΣX2 = 886 ΣY2 = 3 560

a b=
10 434−9 936
5 316−5 184

= 3 77

b Yp = 23 + 3.77(0 − 12) = −22.24
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c se =
1

6 4
6 3560−19 044−

6 1739 − 72 138 2

6 886 −5184
= 4 27

d Yp = 23 + 3.77(10 − 12) = 15.46; when converted to $1000’s = $15 460

e 15.46 (±1.96se) = 7.091 to 23.829; when converted to $1000’s = $7 091 to
$23 829

24 MX = 3.38 MY = 3.43

ΣX = 16.88 ΣY = 17.17 ΣXY = 58.09

(ΣX)2 = 284.93 (ΣY)2 = 294.81 np = 5

ΣX2 = 57.67 ΣY2 = 59.01

a b=
290 45−289 83
288 35−284 93

= 0 18

b Yp = 3.43 + 0.18(3.00 − 3.38) = 3.36
Yes, since we would predict the student to achieve a GPA of 3.36

(3.00 minimum required).

c se =
1

5 3
5 59 01−294 81−

5 58 09 − 16 88 17 17 2

5 57 67 −284 93
= 0 092

Yp = 3.43 + 0.18(3.67 − 3.38) = 3.48
3.48 ± 1se = 3.388 to 3.572

25 a b = 0.22
b Yp = 2.31 + 0.22(X − 14)
c Yp = 2.31 + 0.22(0 − 14) = −0.77
d se = 0.96
e Yp = 2.31 + 0.22(15 − 14) = 2.53
f Yp = 2.31 + 0.22(10 − 14) = 1.43 1.43 ± 1se = 0.47 to 2.39

26 F(1,10) = 0.029, n.s. The null hypothesis that b = 0 cannot be rejected,
r(10) = 0.05, n.s. A regression analysis is not recommended.

27 a b = 0.59
b Yp = 46.33 + 0.59(X − 104.5)
c Yp = 46.33 + 0.59(0 − 104.5) = −15.33
d se = 4.99
e Yp = 46.33 + 0.59(100 − 104.5) = 43.68
f 43.68 ± 2se = 33.7 to 53.66

28 a b = −1.81
b Yp = 5.00 – 1.81 (X − 2.09)
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c se = 0.79
d Yp = 5.00 − 1.81 (3 − 2.09) = 3.35
e 3.35 ± 2se = 1.77 to 6.58
f Be aware that the subjective well-being scale may not be interval or ratio.

29 Drilling: Yp = 5.77 + 0.64(X − 5.15)
se = 1.98

Yp = 5 77 + 0 64 7−5 15 = 6 95

Rubber Dam: Yp = 5.42 + 0.47(X − 5.15)
se = 2.44

Yp = 5 42 + 0 47 7−5 15 = 6 29

30 Yp = 58.35 + 0.35(54 − 56.96) = 57.31
se = 16.65
Yp = 57.31 ± 16.65 = 40.66 to 73.96

Part 6. Review of Linear Correlation and Linear Regression

1 a

2 In a word, prediction. A regression analysis allows us to leverage a known
relationship between two variables for predictive use when a given value is
unknown.

3 a Bivariate information regarding the performance of people who play both
tennis and ping pong.

b Specific information regarding Sarah’s tennis-playing ability – so it
can be used in a regression analysis to predict future performance in
ping pong.

4 There is not enough information given to make a prediction. (There is no
bivariate data or even any descriptive words used.)

5 As the size of the correlation increases, prediction error decreases.

6 A correlation. Each variable can bemeasured, and the amount of shared var-
iance between them can be represented indirectly with an r or directly with
an r2.
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7 A one-way ANOVA. Each political category would be a condition; chari-
table donations would be the measured variable. Even though it is not an
experiment, this design seems most appropriate.

8 Regression. Regression is the only statistical tool that will help in generat-
ing a predicted value for an unknown.

9 A two-way ANOVA. There are two variables that can be classified as
categories (biological sex and political attitude). These will be the two
dimensions. Even though it is not an experimental design, a two-way
ANOVA would be best suited for this situation.

10 a –0.87
b Yp = 5.30 − 1.32(10 − 4.2) = −2.36
c t(9) = −0.59, n.s. No statistical evidence of a difference was found.

11 a This one is tricky. If we decide to see these groups as being independent
of each other (setting aside that each set of scores is a sibling pair),
we would run an independent-samples t test to test the null that
μmales = μfemales. The result is t(18) = 1.57, n.s. The null of equal popu-
lation means cannot be rejected. If, however, we see each pair of
scores as a dependent set, then we can run a dependent-samples t test.
The result is t(9) = 2.68, p <.05. The null of equal population means
can be rejected.

b The null ρ = 0 can be rejected, r(10) = +0.66, p < .05.
c Yp = 2.90 + 0.77(2 − 3.72) = 1.58 hours or about 1 hour and 35 minutes.
Just enough for most movies!

12 a Yes, there is evidence of a relationship. The null of ρ = 0 can be rejected,
r(5) = −0.77, p < .05.

b r2 = 0.59. This is a measure of the shared variance. It is quite high,
nearly 60%.

c Yp = 11.57 – 1.88(5 − 1.86) = 5.67 or 5 and 2/3 of a month. Anyone famil-
iar with developmental milestones in children realizes that this would be
highly unusual. At this rate, a child born with 8 or 9 older siblings might
be predicted to walk on day 1. Perhaps the relationship between these
two variables is not linear, at least for higher values of X (sibling
number).

13 a Yes, the null hypothesis that ρ = 0 can be rejected, r(11) = −0.61, p < .05.
There is statistical evidence suggesting that lower retirement percen-
tages and higher memory scores are linked.

b A regression analysis can be used to make predictions.
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c Yp = 9.02 – 0.046(20 − 67.85) = 11.22 (since the slope was so slight, three
decimal places were used for the calculations); Yp = 9.02 – 0.046(40 −
67.85) = 10.30. So a drop of nearly 1 full memory point would be
expected.

d No. This data was gathered correlationally; no manipulation of a causal
variable was employed. One could imagine retirement causing memory
decline, memory decline causing early retirement, or some other varia-
ble or set of variables causing both of these variables to covary.

14 Assuming the standard deviation of the population is not known, a single-
sample t test should be used.

Chapter 17

1 Population assumptions like normality and homogeneity of variance.

2 The expected frequencies of each cell are determined based on the total
number of observed frequencies; therefore, the total number of expected
frequencies will equal the total number of observed frequencies. The
expected frequencies are a set of numbers that suggest what the observed
frequencies should be in the available categories if the null is correct.

3 The chi-square goodness-of-fit test is used on categorical data spread across
on dimension or factor. The chi-square test for independence is used on cat-
egorical data spread across two dimensions or factors.

4 Sample size is very important for determining the degrees of freedom for
most inferential tests, but for the chi-square tests, the degrees of freedom
are determined solely by the number of categories available.

5 Although the chi-square test is bidirectional, the measure of poor fit is
squared – this makes each cell difference between the observed and
expected frequency a positive value. Follow-up standardized residual anal-
ysis, however, can be used to show which way the cell is deviating from what
is expected.

6 d

7 c Both are measures of effect size.

8 a Both are follow-up tests to better explain an effect.

858 Appendix B Answers to Questions and Exercises



9
fo fe (fo − fe)

2 (fo − fe)
2/fe R

70 79.60 92.16 1.16 −1.08

160 159.20 0.64 0.004 0.06

168 159.20 77.44 0.49 0.70

30 20.40 92.16 4.52 2.13

40 40.80 0.64 0.016 –0.13

32 40.80 77.44 1.90 −1.38

χ2 = 8.09

χ2crit = 5.99

There are more unfavorable responses to Treatment I than would be
expected by chance, χ2(2, N = 500) = 8.09; we have statistical evidence
to reject the null hypothesis of no relationship. The cell, Unfavorable
Response to Treatment I, makes a significant contribution to the signifi-
cant χ2.
Cramér’s V = 0.13

10 Using the contingency table formula χ2 =
110 255−1520 2

55 55 53 57
= 19 26

χ2crit = 3 84 χ2 1, N = 110 = 19 26, p < 0 05

There is statistical evidence of a difference but opposite to the hypoth-
esis. It seems biological females were more likely than biological males to
keep their pencil.
Cramér’s V = 0.42

11 a df = 1
b df = 6
c df = 12
d df = 2

12
Design χ2obt df χ2crit Reject H0?

a. 2 × 2 4.5 1 3.84 Yes

b. 3 × 3 9.0 4 9.49 No

c. 1 × 5 17.22 4 9.49 Yes

d. 2 × 4 5.55 3 7.82 No
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13 a H0: There is no relationship between type of bumper sticker and being
stopped by the police.
H1: The variables are related (not independent).

b and c

Stop Brutality Sticker Smile Sticker

Stopped 18 5 23

Not Stopped 7 20 27

25 25 N = 50

fo fe (fo − fe)
2 (fo − fe)

2/fe

18 11.50 42.25 3.67

5 11.50 42.25 3.67

7 13.50 42.25 3.13

20 13.50 42.25 3.13

χ2 = 13.60

χ2crit = 3 84

d Statistical evidence suggests that drivers displaying “Stop Brutality”
stickers are stopped more often than drivers displaying “Smile” stickers,
χ2(1, N = 50) = 13.60, p <.05.

e Cramér’s V = 0.52

14 a ( fo)

30 50 20 20 120

10 30 40 20 100

40 80 60 40 N = 220

( fe)

21.82 43.64 32.73 21.82

18.18 36.36 27.27 18.18
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b ( fo)

7 7 14

5 11 16

12 18 N = 30

( fe)

5.60 8.40

6.40 9.60

15 a ( fo)

27 17 13 57

25 13 45 83

52 30 58 N = 140

( fe)

21.17 12.21 23.61

30.83 17.79 34.39

b ( fo)

10 24 34

62 36 98

72 60 N = 132

( fe)

18.55 15.45

53.45 44.55

16 2. Provided the two completed cells are not in the same row or column.

17 3; 5.

Appendix B Answers to Questions and Exercises 861



18
Spring Summer Fall Winter

160 190 170 130

162.5 162.5 162.5 162.5

fo fe (fo − fe)
2 (fo − fe)

2/fe (fo − fe)/√fe

160 162.5 6.25 0.04 –0.49

190 162.5 756.25 4.65 2.16

170 162.5 56.25 0.35 0.59

130 162.5 1056.25 6.50 –2.55

χ2 = 11.54

There is statistical evidence to reject the null hypothesis of no differences,
χ2 = (3, N = 650) 11.54, p < .05. Follow-up analyses suggest that more peo-
ple buy RV’s in the summer than would be expected by the null and fewer
people buy them in the winter than would be expected by the null. The
advice to dealers depends on other issues. If there is a need to even out
sales throughout the year, the dealers would be advised to advertise more
heavily in the winter. If they want to take advantage of the peak buying
season, they might be advised to advertise more heavily in the summer.

19
Sun. Mon. Tues. Wed. Thurs. Fri. Sat.

fo 56 29 17 22 25 15 33

fe 28.14 28.14 28.14 28.14 28.14 28.14 28.14

fo fe (fo − fe)
2 (fo − fe)

2/fe

56 28.14 776.18 27.58

29 28.14 0.74 0.03

17 28.14 124.10 4.41

22 28.14 37.70 1.34

25 28.14 9.86 0.35

15 28.14 172.66 6.14

33 28.14 23.62 0.84

χ2 = 40.69

χ2crit = 12 59

χ2(6,N = 197) = 40.69, p < .05; statistical evidence exists to reject the null
hypothesis.
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20
Accident No Accident

Rain 29 35 64

No Rain 31 48 79

60 83 143

χ2 =
143 1 392−1 085 2

64 79 60 83
=
13 477 607
25 178 880

= 0 54

χ2crit = 3 84; χ2 1, N = 143 = 0 54, n s

21
fo fe (fo − fe)

2 (fo − fe)
2/fe R

2 8.30 39.69 4.78 –2.18∗
20 26.08 36.97 1.42 –1.19

27 14.62 153.26 10.48 3.24∗
19 12.70 39.69 3.13 1.77

46 39.92 36.97 0.93 0.96

10 22.38 153.26 6.85 –2.62∗
χ2 = 27.59

χ2crit = 5 99

Statistical evidence suggests that there are fewer easy births among
primiparous mothers, fewer difficult births among multiparous
mothers, and more difficult births among primiparous mothers than
would be expected by chance, χ2(2, N = 124) = 27.59, p < .05. Those
R values with asterisks reflect cells that make a significant contribution
to the χ2 value.

22 Correct ID Incorrect ID

Primiparous 8 19 27

Multiparous 34 9 43

42 28 N = 70

χ2 =
70 72−646 2

27 43 42 28
= 16 89

Yes, χ2crit = 3 84; χ2 1, N = 70 = 16 89, p < 0 05
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23 Because we are summing across all cells, χ2 will increase as the number
of categories increases. Therefore, χ2crit needs to become corresponding
larger as well.

24 Yes, assuming each participant is only counted in one category,
χ2 = 613.65, p < .05; the null hypothesis is rejected. A residual analysis
found evidence suggesting that more people than would be expected get
tattoos for familial reasons and less people than would be expected get
tattoos for conformity or personal expression reasons.

25 Younger mothers give birth to more physically immature and fewer phys-
ically mature babies than would be expected by chance. Older mothers
give birth to more physical mature and fewer physically immature
babies than would be expected by chance, χ2(1, N = 114) = 26.67,
p < .05. Cramér’s V = 0.48.

26 There is an association between diabetes and prolonged healing, with
diabetics showing longer healing times, χ2(1, N = 810) = 137.08, p < .05.

27 There is no differential effect due to treatment, χ2(1, N = 172) = 0.75, n.s.

28 fo =

Part of the country Tennis Golf

Northeast 7 9 16

Southeast 6 18 24

Southwest 20 25 45

Midwest 15 20 35

48 72 120

fe =

Part of the country Tennis Golf

Northeast 6.4 9.6 16

Southeast 9.6 14.4 24

Southwest 18 27 45

Midwest 14 21 35

48 72 120
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There is no statistical evidence of a relationship between the part of the
country and the sport most enjoyed (considering only golf and tennis),
χ2(3, N = 120) = 2.84, n.s.

29 The key to answering this question is to realize that the results can be
converted into numbers representing categories. The chi-square analysis
found statistical evidence of a relationship between education level and
gun rights position, χ2(2,N = 660) = 11.24, p < .05. Follow-up residual anal-
ysis suggests that people with a graduate degree are more in favor of gun
control than a hypothesis of no relationship would predict. Cramér’s V
measure of the effect size is 0.41.

Chapter 18

1 The raw data are organized from lowest to highest (or highest to lowest), and
ranks are applied orderly. When ties occur, the next two ranked positions
are averaged, and each old value is replaced with the averaged rank. The
same process is applied when three or more ties occur with the same scaled
value. Take the corresponding number of ranked positions needed, find the
average of those ranked positions, and assign each scaled value the same new
averaged ranked value.

2 Outlier data, which in an interval or ratio scale lies far away from the rest of
the values in the distribution, is brought to within just one value of the rest of
the data once it is ranked. This is sometimes seen as a solution for research-
ers who have an outlying data point.

3 a

4 c

5 The Mann–Whitney U test.

6 The parametric test should be selected every time (assuming all assump-
tions have been met). Nonparametric tests, because of the precision loss
associated with ranked data compared with interval or ratio data, are less
statistically powerful. In other words, the Type II error rate will be larger
with a nonparametric test.
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7
X RX Y RY

3 2 7 4

2 1 2 1.5

4 3.5 4 3

9 6 12 6

8 5 8 5

4 3.5 2 1.5

8
Score Rank Condition

2 2 X

2 2 Y

2 2 Y

3 4 X

4 6 X

4 6 X

4 6 Y

7 8 Y

8 9.5 X

8 9.5 Y

9 11 X

12 12 Y

9
X Y D Rank

3 7 −4 −6

2 2 0 2

4 4 0 −2

9 12 –3 −5

8 8 0 – (Discard)

4 2 2 4
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10
X RX Y RY

77 3 45 6.5

54 8 45 6.5

96 1.5 83 3

12 10 37 8

73 5 93 1

76 4 14 10

56 7 52 5

96 1.5 85 2

68 6 62 4

15 9 19 9

11
X RX Y RY D D2

77 3 45 6.5 –3.5 12.25

54 8 45 6.5 1.5 2.25

96 1.5 83 3 –1.5 2.25

12 10 37 8 2 4

73 5 93 1 4 16

76 4 14 10 –6 36

56 7 52 5 2 4

96 1.5 85 2 –0.5 0.25

68 6 62 4 2 4

15 9 19 9 0 0

ΣD2 = 81

rs = 1−
6ΣD2

np np−1
= 1−

6 81
10 100−1

= 1−
486
990

= 0 51

No, the null hypothesis cannot be rejected. The Spearman critical value
for α = 0.05 two-tailed test is 0.648.
No, it would not have mattered if the ranking had been reversed; the

same value would have been produced. If one variable was ranked highest
to lowest and the other ranked lowest to highest, the formula would have
generated a −0.51.This would have been confusing for interpretation
purposes.
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12
X RX Y RY

11 2 19 9

14 5 10 1

16 7.5 15 5.5

11 2 15 5.5

15 6 16 7

16 7.5 11 2

18 10 14 4

11 2 19 9

12 4 19 9

17 9 12 3

13
X RX Y RY D D2

11 2 19 9 –7 49

14 5 10 1 4 16

16 7.5 15 5.5 2 4

11 2 15 5.5 –3.5 12.25

15 6 16 7 –1 1

16 7.5 11 2 5.5 30.25

18 10 14 4 6 36

11 2 19 9 –7 49

12 4 19 9 –5 25

17 9 12 3 –6 36

ΣD2 = 258.5

rs = 1−
6ΣD2

np np−1
= 1−

6 258 5
10 100−1

= 1−
1551
990

= −0 57

No, the null hypothesis cannot be rejected. The Spearman critical value
for α = 0.05 two-tailed test is 0.648. This may be surprising; the numbers
seem to be significantly negatively correlated. However, the relationship is
not strong enough to count as evidence against the null hypothesis. This
exercise may give us a sense of just how little statistical power is found in
nonparametric tests.
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14 Here is the worked-out formula for the point-biserial correlation:

rpb =
MY1 −MY0

sy

n1n0
n n−1

=
8 5−6 11

3 47
9 8
17 16

=
2 39
3 47

72
272

= 0 69 0 51 = 0 36

15 Scatter plots for a. and c.
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b

Affiliation Criticism

Score Rank Score Rank D D2

16 1 40 1 0 0

14 2.5 35 2 0.5 0.25

14 2.5 30 3 –0.5 0.25

12 4 18 4 0 0

10 5 14 5 0 0

8 7 13 6 1 1

9 6 12 7 −1 1

4 8 4 8 0 0

ΣD = 0 ΣD2 = 2.5

c Refer to scatter plot above.

d rs = 1−
6 2 5
8 82−1

= 0 97

e H0: ρs = 0; H1: ρs ≠ 0
f rscrit = 0 738; rs 8 = 0 97, p < 0 05

16
Attractiveness Popularity

Rank Rank D D2

1 1 0 0

2 3 −1 1

5 2 +3 9

3 4 −1 1

4 5 −1 1

7 7 0 0

9 6 +3 9

6 8 −2 4

8 9 −1 1

10 10 0 0

ΣD = 0 ΣD2 = 26

a rs = 1−
6 26

10 102−1
= 0 84
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b H0: ρs = 0; H1: ρs ≠ 0
c rscrit = 0 65; rs 10 = 0 84, p < 0 05
d There is evidence of a significant, positive correlation between

physical attractiveness and popularity, rs(10) = 0.84, p < .05.

17
Democrat Republican

MY1 = 2 71 MY0 = 7 86

n1 = 7 n0 = 7

sy = 3 34; N = 14

a rpb =
2 71−7 86

3 34
7 7
14 13

= −0 80

b H0: ρ = 0; H1: ρ ≠ 0
c rcrit = 0.532; rpb(12) = −0.80, p <.05
d There is statistical evidence of a negative correlation between

political affiliation and attitudes toward military intervention in Central
America, with Republicans favoring more aggressive intervention,
rpb(12) = −.80, p < .05.

e r2pb = (−0.80)2 = 0.64 or 64%

18
Correct Incorrect

36 16

39 14

22 26

30 9

7

11

ΣY0 = 127; ΣY1 = 83; MY0 = 31.75; MY1 = 13.83; n0 = 4; n1 = 6;
sy = 11.40; N = 10

a rpb =
13 83−31 75

11 40
6 4
10 9

= −0 82

b H0: ρ = 0; H1: ρ ≠ 0
c rcrit = 0.632; rpb(8) = −0.82, p < .05
d There is statistical evidence of a negative correlation between the

answer to the critical question and the total test score on the test, with
an incorrect answer associated with lower total test scores, rpb(8) = –.82,
p < .05. [Note: In interpreting this correlation, we should not be
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thinking, “Of course missing a question will lead to a lower overall score,
this is a trivial finding.” Since the difference betweenMY0 andMY1 is not
one point, clearly something else is going on here. Most likely, those
students who answer the critical question correctly are more likely to
answer other questions correctly (note the much higher mean (31.75)
for the correct group.)]

19
a rs = 1−

6 53 5

9 92−1
= 0 55

b H0: ρs = 0; H1: ρs ≠ 0
c rscrit = 0.70; rs(9) = 0.55, n.s.
d There is no evidence found suggesting that posture and body shape are

related, rs(9) = 55, n.s.

20
a rs = 1−

6 62

12 122−1
= 0 78

b H0: ρ = 0; H1: ρ ≠ 0
c rscrit = 0.587; rs(12) = 0.78, p < .05
d There is statistical evidence of a positive correlation between perfor-

mance on clinical and written exams, rs(12) = 0.78, p < .05.

21
a rpb =

13 65−11 47
1 89

10 10
20 19

= 0 59

b H0: ρ = 0; H1: ρ ≠ 0
c rcrit = 0.444; rpb(18) = 0.59, p < .05
d There is statistical evidence of a positive correlation between age a

child first walks and the presence or absence of an older sibling, with
earlier age of walking associated with the presence of an older sibling,
rpb(18) = 0.59, p < .05.

22
a rpb =

6 6−5 0
3 08

5 5
10 9

= 0 28

b H0: ρ = 0; H1: ρ ≠ 0
c rcrit = 0.632; rpb(8) = 0.28, n.s.
d No statistical evidence was found to suggest that expressed gender

and attitudes about state-mandated paid maternity leave are related,
rpb(8) = 0.28, n.s.

23
a rs = 1−

6 44

8 82−1
= 0 48

b H0: ρs = 0; H1: ρs ≠ 0
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c rcrit = 0.738; rs(8) = 0.48, n.s.
d Since rs is nonsignificant, there would be little point in reporting r2s .

However, for the sample, it appears that about 23% of the variance is
shared between the two measures.

24 a H0: The population distribution of A (behavioral therapy) is the same as
the population distribution of B (psychoanalysis).
H1: The population distribution of A is not the same as the population
distribution of B.

a Because the data is in ranks, and the null hypothesis is not stated in
terms of a relationship, but rather in terms of differences, the Mann–
Whitney U test should be used instead of a point-biserial correlation.

Rank: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

Condition: B, B, B, A, B, B, A, A, A, B, A, A

ΣRA ΣRB

4 1

7 2

8 3

9 5

11 6

12 10

51 27

nA = 6 nB = 6

UA = 6 6 +
6 6+ 1

2
−51 = 6

UB = 6 6 +
6 6 + 1

2
−27 = 30

U = 6

a Ucrit = 5 (with df = 6,6) U = 6, n.s.
b There was no statistical evidence found of a difference in interviewing

skills based on training track, U(6,6) = 6, n.s.

25 When using the Mann–Whitney U test when one of the samples is greater
than 20, transform the U value to a z value, and use critical z values as
cutoffs. This can be done because a sample size greater than 20 yields a
sampling distribution of U that approximates a normal distribution.
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26 With three scores having difference scores of 0, discard one and assign
one of the remaining two ranks to the Positive group and the other to
the Negative group.

27 Both the smaller ΣR and U will equal 0.

28 Rank: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

Condition: A, B, A, A, A, B, B, B, A, B,

ΣRA ΣRB

1 2

3 6

4 7

5 8

9 10

22 33

nA = 5 nB = 5

UA = 5 5 +
5 5+ 1

2
−22 = 18

UB = 5 5 +
5 5 + 1

2
−33 = 7

U = 7

zU =
7− 5 5 2

5 5 5 + 5+ 1 12
= −1 15

zcrit = 1 96

Since zU < zcrit, do not reject the null hypothesis.

29
Music

Participant New Age Hip Hop Difference Rank

P1 2 6 –4 –4

P2 1 6 –5 –6

P3 3 2 1 1

P4 4 8 –4 –4

(Continued)
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(Continued)

Music

Participant New Age Hip Hop Difference Rank

P5 3 6 –3 –2

P6 1 5 –4 –4

T = smallest ΣRanks = 1
Tcrit = 0 (with df = 6); T= 1, n.s. There is no statistical evidence to suggest

that type of music has an effect on how fast students eat, T(6) = 1, n.s. This
problem seems to be another example of the power weakness associated
with nonparametric tests.

30
UA = 6 6 +

6 6 + 1
2

−24 5 = 32 50

UB = 6 6 +
6 6+ 1

2
−53 5 = 3 5

Ucrit = 5 with df = 6, 6

U = 3 5; p < 0 05

31 a Mann–Whitney U test
b Wilcoxon signed-ranks test
c Spearman rank correlation coefficient
d Point-biserial correlation coefficient
e Spearman rank correlation coefficient

32
zobt =

14−55 55 + 1 4

55 55 + 1 2 55 + 1 24
= −6 33

Zcrit = 1.96. Therefore, we have statistical evidence to reject the null
hypothesis.

33
New T-shirt Control

8 9

10 6

19 22

7 11

(Continued)
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(Continued)

New T-shirt Control

1 23

4 24

5 12

3 14

13 2

20 15

21 18

16 17

Rank: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,

Condition: A, B, A, A, A, B, A, A, B, A, B, B,

Rank: 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24

Condition: A, B, B, A, B, B, A, A, A, B, B, B

ΣRA = 1 + 3 + 4 + 5 + 7 + 8 + 10 + 13 + 16 + 19 + 20 + 21 = 127
ΣRB = 2 + 6 + 9 + 11 + 12 + 14 + 15 + 17 + 18 + 22 + 23 + 24 = 173

UA = 12 12 +
12 12 + 1

2
−127 = 95

UB = 12 12 +
12 12 + 1

2
−173 = 49

U = 49

Ucrit = 37; fail to reject the null hypothesis. No statistical evidence has
been found to reject the null hypothesis that suggests that there is no dif-
ference in happiness between those wearing new t-shirts and those who
are not.

34 a H0: The population distribution of A (propranolol) is the same as the
population distribution of B (diuretic).
H1: The population distribution of A (propranolol) is not the same as

the population distribution of B (diuretic).
b T = 8.5, p <.05
c Tcrit = 25 (with df = 15)
d There is statistical evidence of a difference in effectiveness of propran-

olol and diuretic for lowering systolic blood pressure, with propranolol
being more effective, T(15) = 8.5, p < .05.
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35 Ucrit = 64 (with df = 15,15)
UA = 165, UB = 60
SinceUB <Ucrit reject the null hypothesis. There is statistical evidence to

suggest that propranolol is more effective than a diuretic.

36 zobt = −2.21; p < .05. We have found statistical evidence to reject the null
hypothesis. It appears that the drug does a better job of helping alcoholics
avoid drinking than the vitamin.

Part 7. Review

1 A parametric hypothesis test relies not only on methodological assumptions
but also on certain statistical assumptions associated with the type of scaled
data gathered (interval or ratio) and the features of the populations from
which the data was gathered – normal distributions and homogeneity of
variances across the populations. Parametric tests make use of the mean
and other mean-based statistics like the variance and standard deviation.
Nonparametric tests still rely on methodological assumptions, but do not
make any statistical assumptions related to the type of scaled data gathered
or the features of the population of data. Nonparametric statistics can be
applied to frequency count data as well as ranked data (ordinal scale).

2 Parametric tests are to be preferred simply because they have more power. If
the null hypothesis is wrong, parametric tests are more likely to generate
statistical evidence to reject the null. This typically makes nonparametric
tests a “Plan B” option, something to be resorted to if needed.

3 a 5
b 2
c 8
d 3
e 4
f 9
g 1
h 6

4 Please note, this is not a t test or Mann–Whitney U test – it is a correlation.
Because one variable is dichotomous, the point-biserial correlation needs to
be run. A computerized analysis is found, r(12) = 0.51, n.s. It is close to the
critical value of ±0.53, but did not reach it. So the null must not be rejected.
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5 The Mann–Whitney U test is the proper analytical tool to use. Analysis by
computer generated aU = 10. This is not smaller thanUcrit, which is 5. The
null hypothesis cannot be rejected. This was also the case for the same data
presented in the review for Part 4, question 10.

6 Use the chi-square test for independence for this problem. Yes, the null can
be rejected. The χ2 = 30.81, much greater than the χ2crit = 15.51 for 8 (4 × 2)
degrees of freedom. Further analysis shows more married people than
would be expected if the two dimensions were independent own dogs
and fewer divorced or widowed people than would be expected if the
two dimensions were independent own dogs.

7 TheWilcoxon is the proper test to run. A computerized analysis produced
a zobt = −1.86, n.s. The null hypothesis cannot be rejected.

8 The proper test for this situation would be the chi-square goodness-of-fit
test. The obtained chi-square is 6.73; the critical chi-square for 4 degrees of
freedom is 9.49. We cannot reject the null hypothesis of no differences
between book types.

9 The proper test depends on how the researcher interprets the scale of
measurement for stress. A conservative approach would suggest that this
scale is ordinal and so the test of choice should be the Spearman. When
run, the analysis generates an r = 0.50, n.s. (rcrit = ±0.70). Amore permissive
approach would treat the stress measure as an interval scale and a Pearson r
could be run. In this case the r = 0.68, p < .05 (rcrit = ±0.67). The fact that the
more standard measure allows for a rejection, while the less powerful non-
parametric does not, highlights the cost that is incurred when using
nonparametrics.

10 Chi-square goodness of fit. It is categorical data and there is only one
factor.

11 If the number of burps is being counted, the proper test should be the inde-
pendent-samples t test. There are two independent groups, and the
dependent variable is being measured on a ratio scale. If, however, there
were reasons to believe that a statistical assumption would be violated,
the Mann–Whitney U test would be the preferred analytical tool.

12 The proper test would be a chi-square goodness-of-fit test. Students are
either biological males or females, and the assumed null would be that
there should be equal numbers of both in the senior class of this major.
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13 a Answers will vary. One possible answer would be placing students into a
preferred social media category while also categorizing students based
on major area of study or some other categorical variable (e.g. person-
ality type). This would be a two categorical variables study – social
media category and major of study.

b Answers will vary. One possible answer would be to place students into
one of the two different types of social media platforms and then meas-
ure the amount of content they provide within a given time period.

c Answers will vary. A Wilcoxon test would be run on any repeated-
measures design where the data was suspected not tomeet the statistical
assumptions of the dependent-samples t test. The answer to “b” could
be modified to make it a repeated-measures design, and the data meas-
ured (input) could be ranked instead of measured as a continuous
variable.

14 a Answers will vary. One possible answer would be to create a National
League and American League category and simply count the times
the fantasy league was won by a team with a roster predominately com-
posed of players from one league or the other.

b Answers will vary. One possible answer would be to create a bivariate
database with a “0” or “1” to represent a roster of players from predom-
inately one league or the other and the other variable being the number
of times that team has won the league. (This would require fantasy lea-
gue owners to keep the same drafting strategy across years.)

c Answers will vary. One possible answer would be to create a bivariate
database with a ranked representation of where each team finished in
a given year as the other variable and the percentage of National League
players on the roster that year as the other. Because the finish position is
ranked, a Spearman would need to be used.

15 Given the manner in which these variables are being measured, a chi-
square test for independence is the analytical tool to use.

16 In this situation, it appears that there is a continuous measure (literacy) as
well as a dichotomous measure (marital status). A point-biserial correla-
tion would be the tool of choice.
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Appendix C

Basic Data Entry for Microsoft® Excel and SPSS®

Microsoft® Excel

Following are some guidelines for how to enter data into Excel:

1) Open a new file (or an existing file if adding additional data).
2) Activate the cell in which we intend to input data.
3) Input the data by highlighting the cell where data is to be placed and simply

typing in the information. There are three types of information that might
be imputed: text, numeric, or formulas. The term “data” typically refers
to numeric information, but sometimes words can be considered data,
especially if a variable is categorical.

4) Hitting the return key will feature the cell directly below the cell currently
being featured. Hitting the tab key will feature the cell immediately to the
right of the cell currently being featured. The mouse can also be used to
move the cursor over the cell that needs to be featured. Simply click the
mouse and the cell will become activated.

5) Data is typically organized such that each participant is assigned one row
and each variable is assigned on column. Column names are typically added
across the top row to help identify the data. Participant numbers are often
not inputted due to the already existing numbering system down the
left-hand column. However, sometimes it is important to create a specific
column for participant identification purposes. This is usually the leftmost
column.

6) If the data is repetitive, patterned, or serial, shortcuts can be used to input
the data. For instance, we can place the first set of values or pattern, and
while it is highlighted, we can grab the lower right-hand corner of the grid
and drag the box downward.

7) Information can be edited while the cell is activated through standard word
processing editing procedures, or, if the data has already been registered, a
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cell can be edited by activating it again using the mouse and then going up
to the data entry cell at the top of the spreadsheet and making the edits.

8) To highlight a set of data, simply place the cursor over one corner of a
contiguous set of data, and then drag the cursor in the direction needed
to cover the cells needed.

9) There are cutting and pasting functions available. In fact, there are numer-
ous data management tools available to the user. These are identified across
the top of the file. The most useful ones for inputting data can be found
under “Home,” “Formulas,” and “Data.”

10) Under “Data” look to see if there is a “Data Analysis” option. If there is not,
we will need to add it. Please see your Excel User’s Manual to determine
how to install the “Data Analysis ToolPak.” This feature is required to
run many of the statistical tests discussed in the textbook.

11) Excel is a very flexible and sophisticated data organization tool. This is but a
brief introduction into data entry and organization. Please consult the
user’s manual or any number of online tutorials to understand further
the features of this very helpful program.

SPSS®

Following are some guidelines for how to enter data into SPSS:

1) The first important thing to notice about SPSS is the two different views that
can be reached by clicking boxes in the lower left of the screen: the “Data
View” and the “Variable View.”

2) The “Variable View” should be accessed first (even though the program typ-
ically opens with the “Data View” activated). Here is where variables are
named. They are also identified by Type (Numeric is the default value),
and many other specifications can be made. For instance, we can note what
various categorical values mean in the “Values” column, and we can identify
what type of scaling was used in for the measure under the “Measure”
column. The default is “Scale,” which means interval or ratio. “Ordinal” or
“Nominal” can be selected.

3) Toggling to the “Data View” allows us to input data. Here the procedure is
very similar to any other data base program. We can use the return key to
move down a column and the tab key to move to the right along a row.
The mouse can also be used to move around the grid. Data can be imputed
into a cell once it is highlighted.

4) Typically, data from the same participant is placed along the same row. This
is important for any repeated-measures or bivariate data analysis. In fact,
data along the same row will be assumed to come from either the same par-
ticipant or participants who were matched ahead of time. For this reason,
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data from independent groups will need to be identified through a second
variable, oftentimes labeled as “Condition.” In this way, scores independently
gathered across two or more conditions will populate one column, and nom-
inal values such as “0,” “1,” “2,” and so on will populate another column.

5) SPSS, unlike Excel, is a program expressly constructed for the statistical
analysis of data. As a result, it is quite sophisticated. To understand better
this power and flexibility of this program, one is encouraged to purchase
a tutorial resource and/or to use tutorial videos found online.
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Glossary

Abscissa The horizontal (X) axis of a graph.
Addition rule Used to determine the probability of occurrence of one or more

of many possible events.
Alpha inflation The result of conducting multiple t tests such that the

probability of a type I error increases with the number of t tests.
Alpha level The value set by the researcher that specifies the probability of

making type I error (rejecting a true null hypothesis).
Alternative hypothesis The opposite of the null hypothesis. The hypothesis

that is automatically accepted when the null hypothesis is rejected. Accepting
the alternative hypothesis means that the results of a study are probably not
due to chance; there is probably an effect, difference, or relationship between
variables.

Analysis of variance (ANOVA) A statistical test designed to determine if there
are population differences among several sample means.

A posteriori approach Determining the probability of an event empirically by
gathering data and then dividing the number of times A has occurred by the
total number of data points gathered.

A priori approach See Classical approach to probability.
A priori tests A category of tests, selected prior to the rejection of the null

hypothesis in an overall analysis, that are used to locate differences between
pairs of means.

Asymptotic When a line on a graph continually approaches but never reaches
the X axis.

Balancing A means of controlling an extraneous variable by representing it
equally across all conditions.

Bar graph A frequency distribution for categorical (nominal) data.
Bayes’ theorem The formula developed by Thomas Bayes that allows one to

find the probability of B given A if one knows the probability of A given B as
well as the probability of B and the probability of A given not B.
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Between-group variation Ameasure of the variation among group means in a
study with two or more groups.

Between-participants design See Independent-samples design.
Biased sample A nonrandomly selected sample such that each member of a
population does not have an equal chance of being selected.

Bimodal distribution A distribution with two modes.
Bivariate distribution A distribution of two variables in which scores are
paired. A correlation is based on a bivariate distribution.

Categorical data Nominal data arranged by categories. For example, marital
status: single, married, divorced, widowed. See Nominal scale.

Cell The section of a design identifying a single group amidst multiple factors.
For instance, a 2 × 2 factorial design has four cells: Cell1,1; Cell1,2; Cell2,1; and
Cell2,2.

Central limit theorem The mathematical theorem that states that the
sampling distribution of means approaches a normal curve as the sample size
increases. The mean of the sampling distribution is equal to the mean of the
population of raw scores. The standard deviation of the sampling distribution
is equal to σ n.

Central tendency A statistic that indicates wherein the distribution scores
tend to bunch. The mean, median, and mode are common measures of
central tendency.

Chi-square distribution A theoretical sampling distribution of chi-square
values. The shape of the chi-square distribution changes as a function of the
degrees of freedom.

Chi-square test One of two significance tests (goodness of fit; test for
independence) using frequency count data.

Class interval Groups of equal-sized ranges as determined by the researcher
based on howmuch information loss one is willing to sacrifice in exchange for
tabular simplicity.

Classical approach (or a priori approach) Logically determining the
probability of an event by dividing the number of ways the event can occur by
the total number of possible outcomes.

Coefficient of determination A squared correlation coefficient. It measures
the amount of variation of Y scores accounted for by the variation of X scores.
A measure of common or shared variance.

Cohen’s d One of the simplest, direct, and most often used measures of
effect size.

Computational (raw-score) formulas A formula that uses the raw scores of the
distribution. Although a computational formula obscures the conceptual basis
of the formula, it is used for ease in hand calculations.

Conditional distribution In regression, the spread of Y scores for a given
X score.
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Conditional probability An expression of likelihood given that another
particular event has occurred.

Confidence interval A range of values within which a researcher can state with
a certain degree of confidence that a population parameter will fall.

Confidence limits The upper and lower values of a confidence interval.
Confounding variable An uncontrolled extraneous variable that

systematically varies with an independent variable. A confounding variable
can offer a plausible alternative explanation for the results of the study.

Contingency (frequency or cross-tabulation) table A table that categorizes
observations as frequency counts along a two-factor grid.

Continuous variable A variable that theoretically has an infinite number of
points between any two numbers.

Control group In experimental research, a condition marked by the absence of
the independent variable.

Correlated (dependent) samples A research design in which the scores of one
experimental condition are not independent of scores of another
experimental condition, also called a dependent-samples design or repeated-
measures design. Another example of a correlated samples design is a
matched-participants design in which the selection of one sample determines
who will be selected for the other sample(s).

Correlated-samples t test See Dependent-samples t test.
Correlation (or prediction or association) A description of the degree to

which two or more variables relate to one another. This is one of the goals of
the researcher.

Correlation coefficient A measure of the degree of association between two
variables. A correlation coefficient can range from −1 to +1. The higher the
absolute value of the correlation coefficient, the stronger the relationship
between the two variables.

Correlational designs Studies that do not control and manipulate variables.
Correlational research examines the covariation among variables.

Counterbalancing A strategy used with repeated-measures designs in which
participants differ by the order inwhich experimental conditions are presented.
The purpose of counterbalancing is to prevent confounding of the independent
variable with order effects by distributing carryover effects that come with
repeated measuring across all experimental conditions.

Cramér’s V A measure of association for nominal variables. In this text, it is
used as a measure of effect size for both the chi-square goodness-of-fit test
and the chi-square test for independence.

Critical region The area under a curve that has the values that lead to rejection
of the null hypothesis.

Critical values The values that separate the rejection regions from those regions
of the null distribution that would not lead to a rejection of the null hypothesis.
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Cumulative frequency distribution A frequency distribution, which includes
a column that indicates the total frequency of scores up to and including a
given class interval.

Curvilinear relationship A nonlinear relationship between X and Y. For
example, when lower scores on X are associated with lower scores on Y,
medium X scores are associated with medium Y scores, but higher X scores
are associated with lower Y scores.

Definitional formulas Formulas that emphasize the conceptual basis of the
statistic. Although it may be much more involving if used for hand
calculations, it clearly reflects the essence of the statistic.

Degrees of freedom The number of values that are free to vary with certain
restrictions placed on all values.

Dependent-samples t test A significance test used with dependent sampling
in which scores across conditions are paired. See Repeated-measures design.

Dependent variable A measured variable that is expected to be a consequence
of the independent variable. In experimental research, the dependent variable is
causally determined, in part, by the independent variable. In correlational
research in which a regression equation is used to predict the value of one
variable given the value of another variable, the dependent variable is also called
the predicted variable or criterion variable.

Description Defining, identifying, classifying, categorizing, and organizing a
topic of interest. This is the initial goal of the researcher.

Descriptive statistics Statistical techniques designed to describe and
summarize data in an abbreviated form.

Deviation score (x) (or error score) The difference between a score and the
mean of the distribution.

Dichotomous variable A variable that takes only two contrary values (e.g.
depressed = 0, not depressed = 1).

Discontinuous (or discrete) variable A variable that can take on only a finite
number of values and for which there are no meaningful intermediate values.

Distribution A list of scores arranged in order of magnitude.
Distribution-free tests In inferential statistics, tests that do not make
assumptions about characteristics of the population distribution.

Dummy coding Assigning arbitrary numbers to two designate groups of
observations (e.g. citizen = 0 and alien = 1).

Error (or secondary) variance A measure of the variation between group
means or among scores within a group due to uncontrolled, random factors
(including individual differences between participants) in the experiment
or study.

Eta-squared (η2) A statistic that estimates the size of an effect; a ratio of
primary variance over total variance.

Expected frequencies The number of observations expected to occur when
the null hypothesis is true.
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Experiment A reserved term for a particular research design involving (i) a
high degree of control over the independent variable, (ii) careful
measurement of the dependent variable, and (iii) complete control of all other
variables.

Experimental error A measure of variance either between group means
or within groups that is due to unsystematic influences on individual
scores. The contributors to experimental error can include unreliable
measures, inconsistent administration, and disturbances in the research
environment.

Experimental group A group marked by the presence of an independent
variable; distinguished from a “control group,” which is marked by the
absence of an independent variable.

External validity The extent to which experimental findings can be
generalized to different populations, settings, treatment variables, and
measurement variables.

Extraneous variable Any variable found in an experimental context that is not
either being manipulated or carefully measured.

Factor A variable that has at least two conditions associated with it; in an
experimental context, an “independent variable.” A two-way ANOVA has two
factors or independent variables.

Factorial ANOVA The factorial ANOVA analyzes data from a research study
that has two or more independent variables.

Factorial (or complex) design A research design that has two or more factors
(or “independent variables” if used in an experimental context).

F distribution A theoretical sampling distribution of F values. The shape of the
F distribution is a function of the degrees of freedom. F distributions are
positively skewed, with most F values bunched around 1.

Fisher’s LSD (Least Significant Difference) A multiple comparison test used to
locate the source of significance following a significant F test. Also called a
protected t test.

Frequency The number of times each score occurs in a distribution.
Frequency count Data in the form of “how many” rather than “how much.”

A chi-square analysis uses frequency counts.
Frequency polygon A graph with measured scores on the X axis and

frequencies on the Y axis. Each point above an X score represents the
frequency of occurrence of that score.

Goodness-of-fit test A chi-square test that examines the degree to which
observed data from a set of categories arranged along a single factor coincide
with theoretical or previously empirical-derived expectations.

Grand mean The mean of all the scores in an experiment.
Grouped frequency distribution A table possessing equal-sized class

intervals with an adjacent column noting the frequency of occurrence for
values corresponding to each class interval.
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Heteroscedasticity In regression analysis, a violation of homoscedasticity
wherein the variances of the conditional distributions are unequal.

Higher order A relative judgment of types of effects. In an analysis involving
multiple effect types, the effect involving the most number of factors or
independent variables is the highest order effect and so on.

Histogram A graph of vertical bars with shared borders in which the height of
each bar corresponds to the frequency of scores for a given class interval.

Holding constant Ameans of controlling an extraneous variable by treating it
as a constant.

Homogeneity of variance Variances of equivalent values in two or more
populations. Parametric significance tests assume this equivalence.

Homoscedasticity An assumption in regression analysis in which all
conditional distributions have equal variances.

Hypothesis A prediction, emerging from a theory, about what data is expected
to be found given a particular situation.

Hypothesis testing A method for testing claims made about population
parameters. Hypothesis tests are also called significance tests.

Independent events Events that are unrelated. The occurrence of one event
does not affect the occurrence of another event.

Independent observations The methodological assumption that each score
within a sample is independent of all other scores.

Independent-samples design A research design in which the scores of one
condition are unrelated to (independent of ) the scores in any other condition.

Independent-samples t test A significance test used to compare the sample
means of two samples. See Independent-samples design.

Independent variable The manipulated variable believed to be the “cause”
part of a cause–effect relationship. In regression, the predictor variable.

Individual differences A measure of variance between group means or
between individual scores within a group that is due to the unique skills,
abilities, and tendencies of individual participants.

Inferential statistics Statistical techniques using sample data that allow
researchers to make inferences about the characteristics of the population
from which the sample came.

Interaction In a factorial design, when the effect of one factor is altered
depending on the value of a second factor. This is new and unique variance
not explained by main effects.

Internal validity The degree to which an experiment can allow the investigator
to make a cause-and-effect statement of the relationship between the
independent and dependent variable. The presence of confounding variables
decreases the internal validity of an experiment.

Interquartile range (IQR) The difference between the first and third quartiles.
Interval estimate See Confidence interval.
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Interval scale A scale of measurement in which the quantitative distance
between intervals is held constant across the breadth of the scale. The zero
point, however, is arbitrary.

Kurtosis The peakedness or flatness of a distribution curve.
Least squares criterion The criterion used in the least squares method to

establish a regression line. See Least squares method.
Least squares method The method of fitting a regression line to a scatter plot

such that the sum of the squared errors is at a minimum.
Leptokurtic A distribution curve that is relatively narrow and possessing an

accentuated peak.
Level of significance (alpha level) The probability value (e.g. .05) at which the

null hypothesis is rejected.
Linear relationship A relationship between two variables in which as the value

of one variable changes, the value of a second variable changes by a constant.
Main effect An effect found among the conditions of one factor, independent

of the influence of another factor.
Manipulation The controlled presentation of an independent variable.
Mann–Whitney U test A nonparametric hypothesis test used to compare

two-independent samples. It is the nonparametric counterpart to the
independent-samples t test.

Matched-participants design See Matched-samples design.
Matched-samples design A research design in which participants are paired

on a theoretically important participant variable and then randomly split and
assigned to different groups. This technique is designed to control potent
participant variables (e.g. IQ, age, ethnicity, etc.).

Mean The sum of scores divided by the number of scores.
Mean deviation A measure of dispersion or variability in the distribution of

scores. The mean deviation is the sum of the absolute values of deviation
scores divided by the number of scores.

Mean square (MS) In ANOVA, a sum of squares divided by its degree of
freedom.

Mean square between (MSBG) A weighted measure of variation between
group means.

Mean square within (MSW) A weighted average of within-group variances of
two or more samples, also called the pooled variance.

Measurement The assignment of numbers to attributes, objects, or events
according to a set of predetermined rules.

Measures of central tendency See Central tendency.
Measures of variability (or dispersion) Numerical measures that reflect the

degree to which scores of a distribution are spread out.
Median The midpoint of a distribution in which 50% of the scores fall below

the midpoint.
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Mesokurtic A curve that has a degree of peakedness that is intermediate
between leptokurtic and platykurtic curves.

Midpoint The balance point of an interval.
Mode The score in a distribution that occurs most frequently.
Multiple comparisons Tests of differences between means performed after an
ANOVA. Multiple comparisons are performed to locate the source of
significance found by an F test.

Multiple regression A statistical technique that uses two or more variables to
predict a criterion variable.

Multiple regression equation A regression equation in which more than one
predictor variable is used to predict a criterion variable.

Multiplication rule A rule used to determine the probability of the joint
occurrence of two or more events.

Mutually exclusive events When the occurrence of one event precludes the
occurrence of another event.

Negatively skewed distribution A skewed distribution in which the elongated
tail points toward the smaller or negative numbers.

Nominal scale Ameasurement scale that conveys no quantitative information,
but rather merely distinguishes one attribute, object, or event from others.

Nonparametric tests Statistical tests that do not make assumptions about
population parameters and do not require interval or ratio data.

Normal distribution (normal curve) A symmetrical bell-shaped curved line
escalating gradually at first and then more aggressively, inflecting at some
point and then tapering to a peak.

Normality The statistical assumption that the population from which the
sample is taken is normally distributed.

Null hypothesis Symbolized as H0, the null hypothesis is a statement about
some population characteristic. It usually states no effect, no difference, or no
relationship between variables.

Observation Making careful and systematic measurements of events
occurring in the world by using either one of the five senses or scientific tools
and instruments.

Observed frequencies The actual frequency counts recorded in a set of
categories.

Omega-squared (ω2) A statistic that estimates the size of an effect; an adjusted
ratio of primary variance over total variance.

One-tailed (or directional) test A statistical test in which the rejection region
lies only in one tail of the sampling distribution.

One-way ANOVA A statistical test (F test) used to compare several sample
means to determine if one or more have come from populations with
different means. Used only with research designs with one independent
variable or (if nonexperimental) one factor.

Operational definition A description of the concrete measurement of a
concept for the purposes of a given research project.
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Order effects Differences between treatment conditions due to the order of
presentation in a repeated-measures design. Order effects should be removed
by altering the order of treatments among participants.

Ordinal scale A scale of measurement registering the relative position between
attributes, objects, or events.

Ordinate The vertical (Y) axis of a graph.
Paired-samples t test See Dependent-samples t test.
Parameter A numerical population value. Parameters are usually inferred

from sample statistics.
Parametric tests Significance tests that require interval or ratio scaled data and

that make assumptions about the characteristics of populations.
Participant variable A characteristic of a participant that is fixed at the time of

the experiment.
Pearson product-moment correlation coefficient A measure of association

between two variables created by Karl Pearson. It is a very powerful and
frequently used measure of association.

Percentile The value in a distribution below which falls a certain percentage of
scores.

Percentile rank A number assigned to a score that indicates the percentage of
scores found below that score.

Platykurtic A distribution curve that is relatively broad and possessing a
muted peak.

Planned comparisons See A priori tests.
Point-biserial correlation A correlational analysis used when one variable is

continuous and the other variable is dichotomous, symbolized as rpb.
Point estimation Using a sample statistic to infer the value of a population

parameter.
Pooled variance Aweighted average of variances from two samples. SeeMean

square within.
Population Every member of a given group.
Positively skewed distribution A skewed distribution in which the elongated

tail points toward the larger positive numbers.
Post hoc (or posteriori) tests A category of tests, usually selected prior to the

rejection of the null hypothesis in an overall analysis, which are then used to
locate differences between pairs of means.

Power The probability of an inferential test to reject correctly a null hypothesis.
Probabilistic dependence When knowledge of the occurrence of one event

changes the probability of occurrence of a second event.
Probabilistic independence When knowledge of the occurrence of one event

has no effect on determining the probability of occurrence of a second event.
Probability A measure of the likelihood that an event will occur. Probability

values range from 0 to 1.
Protected t test See Fisher’s LSD.
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Qualitative independent variable An independent variable that changes by
kind or type. For example, different kinds of drugs.

Quantitative independent variable An independent variable that changes by
an amount. For example, different doses of a drug.

Quartile One-fourth of a distribution of scores.
Quasi-experiment A research design that hasmany of the same characteristics
of an experiment, but one in which participants are not randomly assigned to
conditions.

Random assignment The placing of participants into study conditions such
that each participant is equally likely to be assigned to a given condition.

Random factors Unsystematic sources of variation. Individual differences and
experimental error are random factors. These factors generate error variance,
also called secondary variance.

Randomization The assignment of participants to treatment conditions so
that each participant is just as likely to be assigned to one or another
condition. Randomization is intended to spread participant variables equally
across treatment conditions to eliminate participant variables as confounds.

Random sample A sample of scores taken from a population in such a way that
each score of the population has an equal chance of being included in the
sample.

Random sampling A means of selecting participants (or observations) for a
study in such a way that each participant (or observations) in the population
has an equal chance of being included in the sample.

Range A measure of dispersion in a distribution. The highest score of a
distribution minus the lowest score.

Ratio scale A scale of measurement that has all the characteristics of an
interval scale plus a “true” zero point.

Raw score A quantitative score obtained in a study. Also called an
original score.

Real limits The upper and lower boundaries of an interval of measurement.
The upper real limit of the number is one-half the unit of measurement above
the number; the lower real limit of a number is one-half the unit of
measurement below the number.

Regression A set of statistical procedures applied to correlated bivariate data
that allow a researcher to use the value of one variable to predict the value of
another variable.

Regression equation An equation used to predict a Y value given a specific
X value.

Regression line (linear) A mathematically generated straight line fitted to a
scatter plot by the least squares criterion. The regression line includes all
predicted values of Y for all X scores.

Related-samples t test See Dependent-samples t test.
Repeated-measures design An experimental design (usually) in which
participants are exposed to all conditions of the study.
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Representativeness The methodological assumption that the participants
comprising the sample represent the population in question.

Research hypothesis A statement (prediction) about the expected outcome of
a study; usually derived from theory or previous research findings.

Robust statistic A statistic (e.g. t test) that is resistant to violations of a
particular assumption (usually the assumption of normality).

Sample A subset of participants (or observations) drawn from a population.
Sample space Specification of the probabilistic situation.
Sampling The process of selecting participants (or observations) into a study.
Sampling distributions Theoretical distributions of a statistic based on all

possible random samples of size n taken from the same population.
Sampling error The difference between a sample statistic and a population

parameter (e.g. M − μ).
Scatter plot A graphic representation of a bivariate distribution.
Scientific hypothesis See Research hypothesis.
Semi-interquartile range (SIQR) The interquartile range divided by 2.
Shared variance The amount of variance in one variable that can be explained

or accounted for by variance in a second variable.
Simple frequency distribution Scores arranged from highest to lowest, with

the frequency of occurrence of each score indicated in a column beside the
scores.

Skewed distribution An asymmetrical distribution in which scores tend to
bunch at either the left or the right end of the curve. Skewed distributionsmay
be either positive or negative.

Slope The angle of a straight line. A descriptive feature of a regression line.
Spearman rank correlation A correlation coefficient for two sets of ranked

data, symbolized as rs.
Standard deviation A measure of dispersion or variability of a distribution

of scores. The standard deviation is the square root of the variance. In a
normal distribution the mean plus and minus one standard deviation
marks approximately the middle 68% of the scores.

Standard error of the difference The standard deviation of a sampling
distribution of differences between means.

Standard error of the estimate In regression, a measure of prediction error.
The average standard deviation of the conditional distributions.

Standard error of the mean The standard deviation of a sampling distribution
of means.

Standard normal curve A graph of the standard normal distribution.
Standard normal distribution A distribution of z scores with a mean of 0 and

a standard deviation of 1. Derived from a raw score distribution that is
normally distributed.

Standard score A raw score expressed in standard deviation units. A z score is
an example of a standard score.

Statistic A numerical value of a sample.
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Statistical hypothesis A numerical statement of the potential outcome of a
study. Statistical hypotheses usually come in mutually exclusive and
collectively exhaustive pairs: the null and alternative hypothesis.

Statistically significant A conclusion that a test statistic is unlikely to have
occurred by chance. In a well-controlled experiment, a statistically significant
finding indicates that the independent variable has had an effect on the
dependent variable.

Sum of squares (SS) The sum of the squared deviations from the mean. This
concept is a component of numerous statistical formulas.

tDistribution A family, based on different sample sizes, of various bell-shaped
distributions of t values. Also called the Student t distribution. The t
distribution has a mean of 0.

t Test Any number of inferential tests based on the t distribution.
Test for independence A chi-square test that examines the degree to which
observed data from a set of categories arranged along two factors coincide
with theoretical or previously empirical-derived expectations.

Test statistic In hypothesis testing, the obtained value that is compared with
the critical value to determine statistical significance.

Theory An attempt to explain and organize collections of data regarding a
topic of interest (or “phenomenon”) by referring to general principles and
relationships that are independent of the topic to be explained.

Treatment In experimental research, an analogous term to “independent
variable” – most often used when its presence may result in the change of a
participant’s behavior.

Treatment variance (or primary variance) In an ANOVA, the amount of
variance among sample means due to the action of the independent variable
or if nonexperimental, group membership.

Truncated range When one end of a distribution of sample scores is arbitrarily
cut off. In a correlational analysis, if one variable has a truncated range, the
correlation of the sample will tend to underestimate the population
correlation.

Tukey’s HSD (Honestly Significant Difference) A conservative multiple
comparison test used to locate the source of significance in designs withmore
than two conditions.

Two-tailed (or nondirectional) test A statistical test in which the critical
region is divided equally between the two tails of the sampling distribution.

Two-way ANOVA A statistical test designed to determine if there are
population differences within a research design containing two factors (or
independent variables).

Type I error Rejecting a true null hypothesis.
Type II error Failing to reject a false null hypothesis.
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Understanding The ability to make some cause-and-effect statement
regarding a topic of interest and other variables. This is the highest goal of the
researcher.

Unimodal distribution A distribution with one mode.
Univariate distribution A frequency distribution based on one variable.
U value The test statistic used in the Mann–Whitney U test.
Variance Ameasure of dispersion or variability of a distribution of scores. The

variance is the average squared deviation score. Because of the squaring, it is
not stated in the original units of the measured variable, unlike the standard
deviation. However, the variance is a statistic commonly used in formulas for
hypothesis testing.

Weighted mean The mean of two or more individual means in which the
individual means are weighted according to their respective sample sizes.

Wilcoxon signed-ranks test A nonparametric hypothesis test used to
compare two dependent samples. It is the nonparametric counterpart to the
dependent-samples t test.

Within-group variation A measure of the variation of scores within a group.
Within-participants design See Repeated-measures design.
Y intercept The point on the Y axis at which a prediction line intersects.
z score A transformed raw score that indicates the number of standard

deviation units the raw score is from the mean of the distribution.
z test A significance test used to decide if a sample mean comes from a

population with a specified mean. This test may also be used to compare two
sample means. In either case, the z test requires knowledge of the population
standard deviation.

68-95-99.7 rule If a data set is normally distributed, this rule is used to
understand how standard deviations roughly approximate how scores are
distributed. Roughly 68% of scores fall within ±1 standard deviation of the
mean; roughly 95% of scores fall within ±2 standard deviations of the mean;
and roughly 99.7% of scores will fall within ±3 standard deviations of
the mean.
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List of Selected Formulas

Population/
sample mean

μ=
ΣX
N

M =
ΣX
n

(3.1a, 3.1b)

Weighted mean
M =

n1 M1 + n2 M2 + nn Mn

n1 + n2 + nn

(3.2)

Definitional formulas

Population
variance σ2 =

Σ X−μ 2

N

(4.6)

Sample
variance s2 =

Σ X−M 2

n−1

(4.7)

Computational formulas

Population
variance σ2 =

ΣX2− ΣX 2 N

N

(4.12)

Sample
variance s2 =

ΣX2− ΣX 2 n

n−1

(4.13)

Any formula for the standard deviation is the square root
of the variance formula

Population/
sample
formulas for z

z =
X−μ

σ
z =

X−M
s

(5.3a, 5.3b)

Population/
sample
formulas for X
given z

X = μ + zσ X = M + zs (5.4a, 5.4b)
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Probability of
favorable event P =

number of favorable events
total number of events

(6.1)

Addition rule
formula for two
events

P(A or B) = P(A) + P(B) − P(A and B) (6.4)

Multiplication
rule formula for
two events

P(A and B) = P(A| B)P(B) (6.6)

Conditional
probability
formula

P A B =
P A and B

P B
(6.7)

Bayes’ theorem
P B A =

P A B P B
P A B P B +P A notB P notB

(6.8)

Standard error
of the mean

σM =
σ

n
(7.2)

Estimated
standard error
of the mean

sM =
s
n

(7.3)

Single-sample
z and t test

zobt =
M−μ

σM
tobt =

M−μ

sM
df = n − 1

(8.1, 8.3)

Cohen’s d for
single-sample z
and t test

d =
M−μ

σ
d =

M−μ

s
(8.2, 8.4)

Definitional
formula
for sM1−M2

sM1−M2 = s2p
1
n1

+
1
n2

(9.2)

The pooled
variance s2p = s21 n1−1 +

s22 n2−1
n1 + n2−2

(9.3)

Variance
formula
for sM1−M2

sM1−M2 =
s21 n1−1 + s22 n2−1

n1 + n2−2
1
n1

+
1
n2

(9.4)

Computational
formula
for sM1−M2

sM1−M2 =

Σ X2
1 −

ΣX1
2

n1
+ Σ X2

2 −
ΣX2

2

n2

n1 + n2−2
1
n1

+
1
n2

(9.5)
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The t ratio
tobt =

M1−M2

sM1 −M2

df = n1 + n2 − 2
(9.7)

Cohen’s d for
independent-
samples t test

d =
M1−M2

s2p

(9.8)

The estimate of
the standard
error of the
difference, sD

sD =
sD
np

(10.1)

Computational
formula for sD sD =

ΣD2− ΣD 2 np
np−1

(10.2)

Dependent-
samples t test tobt =

MX −MY

sD
df = np − 1

(10.4)

Cohen’s d for
dependent-
samples t test

d =
MX −MY

sD

(10.5)

Delta δ= γ n (11.1)

Gamma γ =
μalt −μ0

σ
(11.2)

Determining
sample size for
a single-sample
t test

n=
δ

γ

2 (11.3)

Computational
formula for
SSBG

SSBG =
ΣX1

2

n1
+

ΣX2
2

n2
+ +

ΣXk
2

nk
−

ΣX 2

N

(12.4)

Computational
formula for SSW SSW =ΣX2−

ΣX1
2

n1
+

ΣX2
2

n2
+ +

ΣXk
2

nk

(12.6)

Computational
formula for SST SST =ΣX2−

ΣX 2

N
= SSBG + SSW

F =
MSBG
MSW

where each MS =
SS
df

dfT = N − 1;

dfBG = k − 1; dfW = N − k

(12.8)
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Omega-
squared, ω2 ϖ2 =

SSBG−df BG MSW
SST +MSW

(12.9)

Eta-squared, η2
η2 =

SSBG
SST

(12.10)

Tukey’s HSD
HSD= q

MSW
n

(12.11)

Fisher’s LSD
test

t =
Mi−Mj

MSW
1
ni

+
1
nj

(12.12)

Computational
formula for SST SST =ΣX2−

ΣX 2

N

(13.2)

Computational
formula for SSW

SSW =ΣX2−
ΣXA1B1

2

nA1B1

+
ΣXA1B2

2

nA1B2

+ +
ΣXk

2

nk

(13.6)

Computational
formula for SSA

SSA =
ΣXA1

2

nA1

+
ΣXA2

2

nA2

+ +
ΣXk

2

nk
−

ΣX 2

N

(13.8)

Computational
formula for SSB

SSB =
ΣXB1

2

nB1

+
ΣXB2

2

nB2

+ +
ΣXk

2

nk
−

ΣX 2

N

(13.10)

Computational
formula for
SSA ×B

SSA×B = nk MA1B1 −MA1 −MB1 +MG
2

+ MA2B1 −MA2 −MB1 +MG
2

+ MA1B2 −MA1 −MB2 +MG
2

+ MA2B2 −MA2 −MB2 +MG
2

FA =
MSA
MWW

; FB =
MSB
MWW

; FA×B =
MSA×B

MWW

where each MS =
SS
df

df T =N −1; df W =N −k; df A = levels −1;

df B = levels −1; df A×B = df A × df B

(13.11)

Omega-
squared,
ϖ2

A, ϖ
2
B, ϖ

2
A×B

ϖ2
A =

SSA− df A MSW
SST +MSW

ϖ2
B =

SSB− df B MSW
SST +MSW

ϖ2
A×B =

SSA×B− df A×B MSW
SST +MSW

(13.12–13.14)
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Eta-squared,
η2A, η

2
B, η

2
A×B

η2A =
SSA

SSA + SSW
η2B =

SSB
SSB + SSW

η2A×B =
SSA×B

SSA×B + SSW

(13.15–13.17)

Tukey’s HSD
values, HSDA,
HSDB, HSDA × B

HSDA = qA
MSW
nA

HSDB = qB
MSW
nB

HSDA×B = qA×B
MSW
nA×B

(13.18–13.20)

Fisher’s LSD
test,
two-way
ANOVA

t =
Mi−Mj

MSW
1
ni

+
1
nj

(13.21)

Computational
formula for SST SST =ΣX2−

ΣX 2

N

(14.1)

Computational
formula for
SSBG

SSBG =
ΣX1

2

n1
+

ΣX2
2

n2
+ +

ΣXk
2

nk
−

ΣX 2

N

(14.2)

Computational
formula for SSW

SSW =ΣX2−
ΣX1

2

n1
+

ΣX2
2

n2
+ +

ΣXk
2

nk

(14.3)

Computational
formula for
SSBP

SSBP =
P1

2

k
+

P2
2

k
+ +

Pn
2

k
−

ΣX 2

N

(14.4)

Formula for
SSerror

SSerror = SSW − SSBP

F =
MSBG
MSerror

where each MS =
SS
df

dfBG = k − 1; dferror = (N − k) − (n − 1)

Repeated-
measures
omega-
squared, ω2

ϖ2 =
SSBG−df BG MSerror

SST +MSerror

(14.5)

Repeated-
measures eta-
squared, η2

η2 =
SSBG
SST

(14.6)
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Formula for
Tukey’s HSD,
repeated-
measures

HSD= q
MSerror

n

(14.7)

Repeated-
measures
Fisher’s LSD

t =
Mi−Mj

MSerror
1
ni

+
1
nj

(14.8)

z score formula
for the Pearson
population
correlation

ρ=
Σ zXzY

Np

(15.1)

The
computational
formula for
Pearson’s r

r =
np ΣXY − ΣX ΣY

np ΣX2 − ΣX 2 np ΣY 2 − ΣY 2

(15.2)

Linear
regression
equation

Yp = MY + b(X −MX) (16.5)

Computational
formula for the
slope

b=
np ΣXY − ΣX ΣY
np ΣX 2 − ΣX 2

(16.6)

Computational
formula for se

se =
1

np np−2
npΣY 2− ΣY 2 −

npΣXY − ΣX ΣY 2

npΣX2− ΣX 2

(16.9)

Correlation
formula for se se = sY 1−r2

np
np−2

(16.10)

χ2

χ2 =
fo− fe

2

fe

(17.1)

fe fe =
fcfr
N

(17.2)

Cramér’s V
ϕ=

χ2

N df row column

(17.4)

Standardized
residual

R=
fo− fe

fe

(17.5)
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Spearman rank
correlation, rs

rs = 1−
6ΣD2

np n2p−1

(18.1)

Point-biserial
correlation, rpb

rpb =
MY1 −MY0

sy

n1n0
n n−1

(18.2)

UA UA = nAnB +
nA nA + 1

2
−ΣRA

(18.3)

UB UB = nAnB +
nB nB + 1

2
−ΣRB

(18.4)

The U to zU
transformation
formula

zU =
U − nAnB 2

nAnB nA + nB + 1
12

When using Formula 18.5, if either >20,
critical values are found in the z table
(0.10 = 1.65; 0.05 = 1.96; 0.01 = 2.58)

(18.5)

Wilcoxon
signed-ranks
test for large
sample sizes

zobt =
T − n n+ 1 4

n n+ 1 2n+ 1
24

When using Formula 18.6, critical
values are found in the z table

(0.10 = 1.65; 0.05 = 1.96; 0.01 = 2.58).
When n < 50, df = n in Table A.12

(18.6)
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List of Symbols

Symbols

α Level of significance; probability of Type I error

a Y intercept

b Slope

β Probability of Type II error

B Number of scores below an interval

1 − β Power

C Columns

χ2 Chi-square

cum f Cumulative frequency

d Cohen’s d effect size measure

D Difference score

D Mean of difference scores

df Degrees of freedom

dfA Degrees of freedom for Factor A

dfA × B Degrees of freedom for the interaction

dfB Degrees of freedom for Factor B

dfBG Degrees of freedom between group

dferror Degrees of freedom error

dfW Degrees of freedom within group

δ Delta

E Exact number of scores in an interval

(Continued)
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Symbols

f Frequency of occurrence of a score

fc Frequency of scores in a column

fe Expected frequency

fo Observed frequency

fm Number of scores in the critical interval

fr Frequency of scores in a row

F Sum of all frequencies below the lower limit of a critical interval; F statistic in
ANOVA

γ gamma

η2 Eta-squared; effect size measure

h Interval width

H0 Null hypothesis

H1 Alternative hypothesis

HSD Tukey’s honestly significant difference test

k Number of groups; number of the last group

L Exact lower limit of a critical interval

LSD Fisher’s least significant difference test; protected t test

LL Lower limit of an interval

μ Population mean

μM Mean of a sampling distribution of means

μalt Mean of the alternative (“treated”) population

μ0 Population mean when null hypothesis is true

M Sample mean

MG Grand mean; mean of several groups

MS Mean square

MSA Mean square for Factor A

MSA × B Mean square for A × B interaction

MSB Mean square for Factor B

MSBG Mean square between group

MSW Mean square within group

MSerror Mean square error

N Number of scores in a population

n Number of scores in a sample

nk Number of scores in the last group

np Number of pairs of scores
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Symbols

P A person in a repeated-measures ANOVA

P Probability

P(A) Probability of event A

P(B) Probability of event B

P(A and B) Probability of event A and event B co-occurring

P(not B) Probability of event B not occurring

P(A or B) Probability of event A or event B

P(A | B) Probability of event A given event B

P(A | not B) Probability of event A occurring given event B did not occur

P(B | A) Probability of event B given event A

PR percentile rank

q The studentized range statistic

Q1 First quartile

Q3 Third quartile

r Pearson product moment correlation coefficient for a sample

ρ Rho

rpb Point-biserial correlation coefficient

R Standardized residual

rs Spearman rank correlation coefficient

Σ Sigma (summation)

s Sample standard deviation

s2 Sample variance

sD Standard deviation of difference scores

sD Standard error of the difference for dependent samples

se Standard error of the estimate

s2p Pooled variance

sY Standard deviation of Y scores

sM Estimated standard error of the mean

sM1 −M2 Estimated standard error of the difference between sample means

SS Sum of squares

SSBG Between-group sum of squares

SSBS Between-subjects sum of squares

SSerror Sum of squares error

(Continued)
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Symbols

SSW Within-group sum of squares

σ Population standard deviation

σ2 Population variance

σM Standard error of the mean (population)

σM1 −M2 Standard error of the difference between means (population)

T Wilcoxon T statistic

t t statistic

tobt t test

UL Upper limit of an interval

U Mann–Whitney U statistic

ϕ Cramér’s V; effect size measure for chi-square

ω2 omega-squared

X A raw score from an X distribution

X Sample mean

XH Highest score in a distribution

XL Lowest score in a distribution

Xp X given a percentile rank

x Deviation score

Yp Y predicted

z z score

zobt z test

zU U to z transformation for Mann–Whitney U test
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Index

68–95–99.7 rule 110–111

a
Abscissa 50
Absolute zero point 41
Addition rule 171–175
Alpha levels 230–232, 235
Alternative hypothesis 199–201,

269–271, 273, 319, 384–385,
438, 486, 549–550, 594, 637–
639, 681, 690–691, 696, 700

Analysis of variance (ANOVA):
one-way 377–410
repeated-measures 483–505
summary tables 399, 452, 498
two-way 425–463

Answers to problems 757–880
(Appendix B)

A posteriori approach to
probability 171

A priori approach to probability 171
A priori tests 403
Assumptions of:
chi-square test 660
dependent-samples t test 323
independent-samples

t test 288–289
one-way ANOVA 384

repeated-measures ANOVA
500

single-sample t test 249–250
single-sample z test 249–250
two-way ANOVA 456

b
Balancing 11
Bar graph 52
Basic data entry:
Microsoft® Excel 881–882
SPSS® 882–883

Bayes’ theorem 184–188
Between-groups design, see Between-

participants design
Between-groups variation 380–381
Between-participants

design 266–267,
Between-participants

variability 488, 491
Biased sample 21
Bimodal 81
Bivariate distribution 531

c
Categorical data 636
Causal relationship 23–25, 534–535
Central Limit Theorem 205
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Central tendency,
measures of 69

Cell 426–427
Chi-square distribution

644–646
Chi-square test 636–637
goodness-of-fit test 637–644
test for independence 647–653
for a 2×2 contingency

table 653–656
Class intervals 47–49
Classical approach to probability, see

A priori approach to
probability

Coefficient of determination 545–
549, 606–607

Cohen’s d
for dependent-samples t test 321
for independent-samples

t test 283
for single-sample t test 249
for z test 239–240

Collectively exhaustive 201
Common variance, see Shared

variance
Complex design, see Factorial design
Computational formulas (for the

variance) 106, 107, (for the
standard deviation) 110

Conditional distribution 595–596,
609–610

Conditional probability 179–180
Confidence interval, see Interval

estimation
Confidence limits, see Interval

estimation
Confounding variable 10
Contingency table 647–648,

653–659
Continuous variable 42
Control group 8

Correlated-samples t test, see
Dependent-samples t test

Correlation 6, 23–24, 531–561,
679–686, 686–691

Correlational design 24–25,
534–535

Correlation coefficient 531–532,
534–535, 536–540,
556–561, see also
Pearson product-moment
correlation coefficient;
Spearman rank correlation
coefficient; point-biserial
correlation coefficient

Counterbalancing 313, 485
Cramér’s V 656–657
Criterion of significance 230–231,

235, 238–240
Critical values 230, 235, 243–244
Cross-tabulation table, see

Contingency table
Cumulative frequency

distribution 49
Curvilinear relationship 539–540,

557, See also Nonlinear
relationship

d
Definitional formulas (for the

variance) 105, 107, (for the
standard deviation) 110

Degrees of freedom 241–245
for chi-square 644–645,

(goodness-of-fit), 641, (test for
independence) 652

for correlation (Pearson) 551;
(Spearman), 686; (point-
biserial) 690

for dependent-samples t test 319
for independent-samples

t test 277
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for one-way ANOVA 393
for repeated-measures

ANOVA 491–492
for single-sample t test 241
for two-way ANOVA 445–446

Delta 352, see also Effect size
Dependent events 178–184
Dependent-samples t test 311–314,

322–323
Dependent variable 8–9
Description 5
Descriptive statistics 26, 69
Deviation score (x) 72–73
Dichotomous variable

686–688
Directional hypothesis test, see

One-tailed test
Discontinuous variable 41–42
Discrete variable 41–42
Distribution-free tests 636, see

Nonparametric tests
Dummy coding 687

e
Effect size 352–356, see alsoCohen’s

d, Cramér’s V, Eta-squared,
Omega-squared

Error score, see Deviation score
Error variance
for one-way ANOVA 382–393
for repeated-measures

ANOVA 487–489
for two-way ANOVA 440

Estimated standard error 210–212,
of the difference 271–273,

316–318
of the mean 240–243

Estimation
interval, see Interval estimation
parameter 196
point 196

Eta-squared 402–403, 456–457, 501
Expected frequencies 637–640
Experiment 6–9
Experimental error 381, 382, 440,

487–489, 491–493
Experimental group 8
External validity 20–23
Extraneous variable 9–16

f
Factor 425
Factorial design 425–426, 428
Fisher’s LSD test 403, 405–406,

460–461, 502–503
F distribution 396–398
Frequency count 635–636
Frequency distribution
cumulative 48
grouped 45–48
mean of 74–76
simple 45

Frequency polygon 50–52
Frequency table, see

Contingency table
F test, see Analysis of variance

g
Gamma 352–354, see also

Effect size
Glossary 897–909
Grand mean 388, 391–393,

441–444, also see
Weighted mean

Grouped frequency
distribution 45–48

h
Heteroscedasticity 609–610
Higher-order effect 436
Histogram 52
Holding constant 10
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Homogeneity of variances 271, 289,
384, 456, 500

Homoscedasticity 598, 609–610
Hypothesis 4
Hypothesis testing 197
for chi-square (goodness-of-

fit) 637–645, (test for
independence) 652–653

for correlation (Pearson) 549–
554; (Spearman), 686;
(point-biserial) 690–691

for dependent-samples
t test 319–321

for independent-samples
t test 273–275

for Mann-Whitney U 695–698
for one-way ANOVA 396–399
for regression 593–594
for repeated-measures

ANOVA 497
for single-sample t test

243–247
for single-sample z test

227–232
for two-way ANOVA 451–453
for Wilcoxon signed-ranks

test 700–701

i
Independent events 176–177
Independent observations 250,

288–289, 384, 456
Independent-samples design, see

Between-participants design
Independent-samples t test 265,

268–280, 322–323
Independent variable 7–9, 581
qualitative 8
quantitative 7

Individual differences 380–381, 382,
440, 487–488

Inferential statistics 26, 163–165
Interaction 425–428, 431
Interaction sum of squares, see Sum of

squares, interaction
Interaction variability 440
Internal validity 18, 20–21
Interquartile range (IQR) 99,

113–114
Interval estimation 196, 250–252,

289–291, 323–327
Interval scale 38–39

k
Kurtosis 61

l
Least squares criterion 587–590
Least squares method 586, 589–591
Leptokurtic 61
Linear correlation, see Linear

relationship
Linear regression, see Regression
Linear relationship 539, 557
Lower real limit 43–44, 48

m
Main effects 428–429
Manipulation 7
Mann-Whitney U test 691–698
Matched-samples design 314
Mean 71–73, 83–85
of frequency distribution 74–75
of sampling distribution 205
population 71
sample 71
weighted (or grand) 73–74, see

also Weighted mean
Mean deviation 100–102
Mean Square:
between (MSBG) 386–387,

390–391
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error 492–493
for factors 445–446
for interaction 446
within (MSW) 385–386, 391–

392, 446
Measurement 37
Measures of central tendency 69
Measures of dispersion, see Measures

of variability
Measures of variability 97
Median 76–79, 83–85
Microsoft® Excel:
for chi-square (goodness-of-fit

and test for
independence) 662–663

for correlation (Pearson) 566;
(Spearman), 708–709;
(point-biserial) 708

for data display 63–64
for dependent-samples

t test 328
for independent-samples

t test 293–294
for Mann-Whitney U 708
for one-way ANOVA

412–413
for regression 613–614
for repeated-measures

ANOVA 507–508
for single-sample t test 252
for two-way ANOVA 466–467
for Wilcoxon signed-ranks

test 708
Midpoint 42–43
Mode 81, 83–85
Multiple comparisons 403–406,

501–503
Multiple regression 581–582
Multiplication rule 175–178
Mutually exclusive events

172–173

n
Negatively skewed distribution, see

Skewed distribution, negatively
Nominal scale 37–38
Nondirectional hypothesis

test 230–231
Nonlinear relationship 539–540,

557–558
Nonparametric tests 636–637,

677–678
Normal curve, see Normal

distribution
Normal distribution 59
Normality, assumption of 251, 288–

289, 323, 384, 456, 500
Null hypothesis 199–201, 232, 269–

271, 273, 319, 384–385, 438,
486, 549–550, 594, 637–639,
681, 690–691, 695, 700

o
Observation 4
Observed frequencies 637–640
Omega-squared (ω2) 400–402, 456–

457, 500–501
One-tailed (or directional) test 244,

284–288
One-way analysis of variance

(ANOVA) 380–396
Operational definition 5
Order effects 485
Ordinal scale 38
Ordinate 50
Original scores, see Raw scores
Overgeneralization 609

p
Paired-observations t Test, see

Dependent-samples t Test
Parameter estimation, see Estimation,

parameter
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Parameters 70
Parametric tests 636–637, 677
Participant variable 12–16, 21
Pearson product-moment correlation

coefficient 532–535,
540–544

Percentile 99
Percentile rank 127–132, 147–148
Platykurtic 61
Planned comparisons, see

A priori tests
Point-biserial correlation 686–691
Point estimation, see Estimation, point
Pooled variance 272
Population 21
Population mean, see Mean,

population
Population variance, see Variance,

population
Positively skewed distribution, see

Skewed distribution,
positively

Posteriori tests, see Post hoc tests
Post hoc tests 403, 457–461,

501–503
Power 343–344
Power analysis 351–354
Primary variance, see Treatment

variance
Probabilistic dependence

177–179
Probabilistic independence 176
Probability 168–171
a priori approach 171
a posteriori approach 171

Protected t test, see Fisher LSD test

q
Qualitative independent variable,

see Independent variable,
qualitative

Quantitative independent variable,
see Independent variable,
quantitative

Quartile 98–99
Quasi-experiment 20, 499

r
Random assignment 13–16, 21
Random factors 381–382, 386, 410,

440, 483, 486–487
Randomization 12–15
Random sample 195–196
Random sampling 21–22
Range 97–98, 113
Ranking 38
Ratio scale 41
Raw scores 44
Real limits:
of class intervals 48
of numbers 43

References 885–894
Regression 579–589
Regression equation 580, 589–

590, 594
Regression line 585–589, 591–594
Rejection region 229–231
Repeated-measures analysis of

variance (ANOVA) 486–498
Repeated-measures design 311–

313, 319–320, 483–486
Representativeness, assumption

of 249–250, 289, 323, 384,
456, 500, 594, 660

Research hypothesis 197–198
Research process, (overview

of) 3–25
Restricted range 556–557,

608–609
Robust statistic 250, 289, 323, 384,

456, 500, 677, 704
Rounding 70
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s
Sample 21
Sample mean, see Mean, sample
Sample space 179–180
Sample variance, see Variance, sample
Sampling 21
Sampling distribution 203–205
estimating features of 210
mean of 205
of difference scores 315–318
of mean differences 270–275
of means 204–205
standard deviation of 205–206

Sampling error 211–212
Sampling with replacement

170, 204
Sampling without replacement 170
Scatter diagram, see Scatter plot
Scatter plot 536–540
Scientific hypothesis, see Research

hypothesis
Secondary variance, see Error variance
Semi-interquartile range

(SIQR) 99–100, 113–114
Shared variance 545–549, 606–607
Simple frequency distribution 45
Single-sample t test 240–247
Single-sample z test, see z test
Skewed distribution 59–60
negatively 59–60
positively 59–60

Slope 586, 587, 590, 592–593
Spearman rank correlation 679–686
SPSS®:
for chi-square (goodness-of-fit

and test for
independence) 664–666

for correlation (Pearson) 566;
(Spearman and point-biserial),
708–710

for data display 63–65

for dependent-samples
t test 329–331

for independent-samples
t test 295

for Mann-Whitney U 712
for one-way ANOVA 412–413
for regression 611, 614–615
for repeated-measures

ANOVA 508–510
for single-sample t test 254–256
for two-way ANOVA 464,

467–469
for Wilcoxon signed-ranks

test 714
Standard deviation 109–110,

113–114
of sampling distribution 205–206

Standard error:
Estimate, see Estimated

standard error
of the estimate 594, 598–600,

606–607
of the mean 206–208

Standardized residual 657–659
Standard normal

distribution 139–140
Standard score 137, 139
Statistical hypothesis 198, 199
Statistical tables 735–756
Statistics 70
Straight line 539, 586–589
Strength of association 500, 531,

535, 539, 556
Summary table, ANOVA, see Analysis

of variance, summary tables
Sum of squares (SS) 105–107, 110
between-groups 390–391, 441–442
between-participants 491
error 491–492
for Factors 443–444
interaction 444
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Sum of squares (SS) (cont’d)
total 392–393, 441
within-Groups 391–392, 442

t
t Distribution 240–242
Theory 3
Treatment 8
Treatment variance 380–382, 439,

487–489
t Test 222, also see dependent-

samples t test, independent-
samples t test, single-sample
t test

Tukey’s HSD 403–405, 457–460,
501–502

Two-tailed (or nondirectional)
tests 284–286

Two-way analysis of variance
(ANOVA) 428, 437–451

Type I error 233–235
Type II error 233–235

u
Uncommon variance 547
Understanding 6
Unimodal 81

Unshared variance, see Uncommon
variance

Upper real limit 43–44

v
Variability, measures of, see Measures

of variability
Variable 7
Variables, types of 7–9
Variance 102–108, 113–114
pooled 272
population 102–108
sample 102–108

w
Weighted mean 73–74
Wilcoxon signed-ranks

test 698–704
Within-group variation 381–383
Within-participant’s design, see

Repeated measures design

y
Y Intercept 585

z
z Scores 137–141
z Test 222–232
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